Impaired B Cell Development in the Absence of Krüppel-like Factor 3

J Immunol 2011; 187:5032-5042; Prepublished online 14 October 2011;
doi: 10.4049/jimmunol.1101450
http://www.jimmunol.org/content/187/10/5032

Supplementary Material http://www.jimmunol.org/content/suppl/2011/10/14/jimmunol.1101450.DC1

References This article cites 59 articles, 31 of which you can access for free at: http://www.jimmunol.org/content/187/10/5032.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Impaired B Cell Development in the Absence of Krüppel-like Factor 3

Thi Thanh Vu,* Dominique Gatto,† Vivian Turner,‡ Alister P. W. Funnell,*† Ka Sin Mak,‡ Laura J. Norton,‡ Warren Kaplan,∥ Mark J. Cowley,∥ Fabien Ageneys,∥ Jörg Kirberg,∥ Robert Brink,‡,# Richard C. M. Pearson,*∥ and Merlin Crossley*∥

Krüppel-like factor 3 (Klf3) is a member of the Klf family of transcription factors. Klf3s are widely expressed and have diverse roles in development and differentiation. In this study, we examine the function of Klf3 in B cell development by studying B lymphopoiesis in a Klf3 knockout mouse model. We show that B cell differentiation is significantly impaired in the bone marrow, spleen, and peritoneal cavity of Klf3 null mice and confirm that the defects are cell autonomous. In the bone marrow, there is a reduction in immature B cells, whereas recirculating mature cells are noticeably increased. Immunohistology of the spleen reveals a poorly structured marginal zone (MZ) that may in part be caused by deregulation of adhesion molecules on MZ B cells. In the peritoneal cavity, there are significant defects in B1 B cell development. We also report that the loss of Klf3 in MZ B cells is associated with reduced BCR signaling strength and an impaired ability to respond to LPS stimulation. Finally, we show increased expression of a number of Klf genes in Klf3 null B cells, suggesting that a Klf regulatory network may exist in B cells. The Journal of Immunology, 2011, 187: 5032–5042.

Krüppel-like factors (Klf3s) are a family of 17 transcription factors that are characterized by a C-terminal classical C2H2 zinc fingers (1). They have multiple roles in regulating cellular differentiation in many tissues (2), and a number of Klf3s play important roles in hematopoiesis (3). Klf1 is essential for erythropoiesis (4); Klf2 is required for T cell migration and survival (5), and has recently also been shown to be involved in B cell differentiation, migration, and homing (6–8). Klf4 has roles in both monocyte and B cell differentiation and activation (9, 10). Accordingly, their deregulation underlies many human blood diseases, including thalassemia, lymphoma, and leukemia (3, 11, 12).

Klf3 was first identified in an erythroid screen for factors related to Klf1 (13). Klf3 is generally accepted to act as a transcriptional repressor in combination with its corepressor Ctbp (14), although in certain contexts it can function as an activator (15, 16). Its hematopoietic role has not been fully characterized, although it is known to be a direct target gene of the erythroid factor Klf1 (17). Initial studies of the Klf3 knockout mouse revealed a role in adipogenesis (18); however, Klf3 is broadly expressed, and its functions in other tissues are beginning to be described (19).

A number of studies have revealed a role for Klf3 in B cell function. The immortalized pre-B cell line 18-81 is notable in having a single Abelson-murine leukemia proviral integration within the Klf3 locus, resulting in increased expression of Klf3 (20). This cell line undergoes premature somatic hypermutation and class switching, suggesting a role for Klf3 in B cell activation and potentially tumorigenesis. In support of a role in B cell activation, it has been observed that Klf3 expression levels are altered in response to Ag stimulation of naive B cells (21). Klf3’s role in B cell cancer is further supported by inspection of the Retroviral Tagged Cancer Gene Database developed by Akagi et al. (22), which reveals that viral integration into the Klf3 locus is associated with lymphoma and marginal zone (MZ) B cell cancer. Finally, we have recently shown that B cell-specific transgenic overexpression of Klf3 results in increased MZ B cells in vivo, thereby confirming a role for Klf3 in B lymphopoiesis (23).

To further investigate the in vivo roles of Klf3 in B cell development and function, we have carried out an analysis of B lymphopoiesis in Klf3 null mice (18). We have found that Klf3 has a role in ensuring normal B cell development in the bone marrow, spleen, and peritoneal cavity. Specifically in the bone marrow, there is a marked reduction in pre-B cells and an overrepresentation of recirculating mature B cells. In the spleen, we see defects in MZ B cell positioning, leading to the formation of a poorly defined MZ. As a possible explanation for this, MZ B cells from the spleen of Klf3 knockout mice show increased cell surface expression of the trafficking molecules CD62L and β7 integrin. Klf3 null MZ B cells also have an impaired response to both LPS stimulation and BCR crosslinking. In the peritoneal cavity of Klf3 knockout mice, there is a significant reduction in the percentage and number of B1 B cells. Finally, we observed...
derepression of Klf8 and Klf12 genes in sorted B cell populations in the absence of Klf3 protein. This suggests that a network of Klf3 may exist in B cells, and that the related factors Klf8 and Klf12 may be able to partially compensate for the lack of Klf3 in Klf3 knockout mice.

Materials and Methods

Mice

The generation and genotyping of the Klf3 knockout mouse is described elsewhere (18). Mice were maintained on either FVB/NJ or C57BL/6 backgrounds. All procedures were approved by the Animal Care and Ethics Committee, University of Sydney (Approval no. L02/6-2009/3/ S007). Age-matched littersmates were sacrificed between 10 and 12 wk of age.

B cell isolation and flow cytometry

Single-cell suspensions in RPMI 1640/0.5% FCS were obtained by passing cells through 70-μm nylon filters. RBCs were lysed in ACK buffer containing 10 mM potassium bicarbonate, 150 mM ammonium chloride, and 0.1 mM EDTA, pH 7.3. B cells were purified using either the B Cell Isolation kit from Miltenyi Biotec or by FACS. Follicular (FO) and MZ B cells were identified by including Ab stains for B220, CD21, and CD23. Abs were used at optimally titrated concentrations and cells incubated for 1 h in the dark. Live/dead gating was performed by inclusion of either 7-aminoactinomycin D (Sigma-Aldrich) or Topro-3 (Invitrogen). Flow cytometry was performed using FACS calibur and FACSaria instruments (BD Biosciences). Analysis was done using FlowJo Software (TreeStar).

Abs

All Abs were supplied by BD Biosciences, unless otherwise indicated. The following Abs were used for flow cytometry: PE rat anti-mouse CD45R/B220 (RA3-6B2); FITC anti-mouse BP-1 (6C3; ebioscience); PE anti-mouse integrin β7 (M293); FITC anti-mouse CD11b (MI70); FITC anti-mouse CD21/CD35 (7G6); PE-Cy7 anti-mouse CD23 (FcεRII; B3B4; ebioscience); PE anti-mouse CD43 (S7); PE anti-mouse CD5 (53-7.3); PE anti-mouse CD62L (MEL-14; ebioscience); allophycocyanin anti-mouse CD93 (AA4.1; ebioscience), Alexa Fluor 647 anti-mouse IgD (11-26c.2a; BioLegend); and FITC anti-mouse IgM (I4/1).

Fetal liver chimeras

Embryonic day 14.5 Klf3−/− or Klf3+/+(C57BL/6, CD45.2+) fetal liver (FL) cells were mixed 1:1 with wild-type E14.5 FL cells (C57BL/6.SJL-PpRca, CD45.1). C57BL/6 recipient mice were whole-body irradiated with two doses of 425 cGy (X-RAD 320 Biological Irradiator; PXI) 24 h before reconstitution. A total of 2 × 10⁷ FL cells was injected into the tail vein of each recipient. Mice were analyzed 8 wk after reconstitution.

Immunohistology

Snap-frozen spleens were sectioned at a thickness of 5–7 μm. Sections were fixed with ice-cold acetone for 10 min and stored at −80°C until used. After rehydration with PBS, sections were blocked with 30% horse serum for 15 min and then incubated with anti–CD3-biotin (500A2; ebioscience), Alexa Fluor 550-streptavidin (Invitrogen), anti–IgD-Alexa Fluor 647 (11-26c.2a), and anti–IgM-FITC (R6-60.2; BD Biosciences). Slides were mounted with Fluoromount G (Southern Biotech). Images were acquired on a Zeiss Inverted microscope at 10× objective magnification.

In vitro CFSE B cell stimulation assays

Wild-type and Klf3 knockout FO and MZ B cells were isolated from mouse spleens using the B Cell Isolation kit from Miltenyi Biotec. A total of 3 × 10⁶ B cells was then pelleted in polypropylene tubes at room temperature. Cells were resuspended at a concentration of 10⁶–10⁷ cells/mL in cell loading medium, containing 4 mM probenecid, 4 μg/mL Fura Red AM, and 10 μg/mL Fura Red AM (Molecular Probes), and incubated for 30 min at 37°C. Baseline fluorescence signals were collected for 60 s. Cells were then stimulated with 26 μg/mL anti-mouse IgM F(ab′)₂ fragments (Jackson Immunoresearch), and calcium flux was determined by measuring dye fluorescence for 300 s with samples maintained at 37°C. FO and MZ B cells were identified by including Ab stains for B220, CD21, and CD23. The experiment was repeated three times, with at least 500 events being counted for each stimulated cell population.

RNA extraction and cDNA synthesis

RNA extraction was performed using TRI-Reagent, according to manufacturer’s guidelines (Sigma-Aldrich). RNA samples were further purified using RNeasy columns (Qiagen) and by treating with DNase I (Ambion). cDNA was prepared using Superscript VILO cDNA synthesis kit (Invitrogen), according to instructions.

Primers and real-time PCR

Primers were designed using Primer3 plus (http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi) and synthesized by Sigma-Aldrich. Primer sequences are available on request. Real-time PCRs were prepared using SYBR Green PCR master mix kit (Roche) and performed using the ABI PRISM 7700 Sequence Detection System. Samples were run in triplicate with a minimum of three animals per genotype.

Microarray analysis

For global gene expression analysis, total CD19+ splenic B cells were positively sorted using MACS (Miltenyi Biotec). RNA was then labeled using the Affymetrix IXT Express kit and hybridized in quadruplicate to Affymetrix Mouse Gene 1.0 ST Arrays (Affymetrix, Santa Clara, CA). Robust multichip average normalization of microarray data was carried out using Affymetrix Power Tools (v1.8.6), and normalized data were analyzed by Gene Set Enrichment Analysis (http://www.broadinstitute.org/gsea). Microarray data are available in the Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) via accession number GSE31622.

Statistical analysis

Statistical analysis was done using Prism 5.0 (GraphPad). Statistical significance was determined using the two-tailed Student t test.

Results

Klf3 is required for normal B cell development in the bone marrow

To study the role of Klf3 in B cell development in the bone marrow, we used flow cytometry to assess the pro-B, pre-B, and immature B cell populations. Bone marrow B cells were stained for B220 and CD43 to distinguish pro-B cells (B220hi/CD43+), immature B cells (B220int/CD43+), and mature recirculating B cells (B220int/CD43−). This revealed that, in Klf3 null bone marrow, there is a significant increase in the percentage of recirculating mature B cells, with a concomitant reduction in pro-B and immature B cells (Fig. 1A, top panel). Additional staining for BP-1 and CD24 allowed identification of the Hardy B cell subsets, fractions A–C (Fig. 1A, middle panel). Staining for IgM and IgD divided the more mature CD43− B cells into pre-B (fraction D), immature (fraction E), and mature recirculating B cells (fraction F) (24) (Fig. 1A, lower panel). This analysis revealed that in the absence of Klf3, there is an equivalent number of cells in fraction A (Fig. 1C). However, in Klf3 knockout mice, there are significantly fewer cells in subsequent fractions (B–D), suggesting that Klf3 may play a role in the initial transition of B cells from fraction A to fraction B.

We also observed a noticeable difference in B cell differentiation when comparing the early (fractions A–E) and mature recirculating B cell populations (fraction F) in the absence of Klf3 (Fig. 1A). There is a significant increase in the percentage and number of recirculating mature B cells, at the apparent expense of the earlier
B cell populations in Klf3 null bone marrow (Fig. 1B, 1C). However, there is no difference in the total bone marrow B cell count comparing wild-type and Klf3 knockout mice (Fig. 1D).

Given the dramatic increase in fraction F cells in the Klf3 null bone marrow, we decided to examine the number of B cells in the peripheral blood, spleen, and lymph nodes of Klf3 knockout mice. We also observed a significant increase in the number of B cells in the peripheral blood in the absence of Klf3 (Fig. 1D). However, we did not see a difference in B cell counts in the spleen and lymph nodes when comparing wild-type and Klf3 knockout mice (Fig. 1D).

FIGURE 1. B cell development is disrupted in the bone marrow of Klf3 knockout mice. Bone marrow cells from wild-type and Klf3−/− mice were collected at 12 wk of age. RBCs were lysed and single-cell suspensions analyzed by flow cytometry to identify Hardy fractions A–F. A. Representative plot of fractions A–F, comparing wild-type and Klf3 knockout mice. B. Statistical analysis of fractions A–F, comparing wild-type (n = 9) and Klf3 knockout mice (n = 9). C, B cell counts for fractions A–F, comparing wild-type and Klf3 knockout mice. D. Peripheral WBC and secondary lymphoid tissue B cell counts comparing wild-type (n = 9) and Klf3 knockout mice (n = 13) at 12 wk of age. *p < 0.05, ***p < 0.001.

Klf3 is required for MZ B cell positioning in the spleen

On exiting the bone marrow, maturing B cells migrate to the spleen, where they undergo further differentiation through a number of transitional stages to become either MZ or FO B cells. We have previously determined that both the percentage and number of MZ B cells are significantly decreased in the spleen of Klf3 null mice (23), demonstrating that Klf3 plays a role in normal MZ B cell development.

To further investigate the role of Klf3 in MZ B cell development, we carried out an immunohistological analysis of the spleen of Klf3 null mice (Fig. 2A). Staining of FO (IgDhi) and MZ (IgMhi)
The Journal of Immunology 5035

Defects in B cell development in the bone marrow and spleen are cell autonomous

Our analysis of Klf3 knockout mice revealed an accumulation of recirculating mature B cells in the bone marrow and a decrease in the frequency and absolute number of MZ B cells in the spleen. To confirm that these defects in B cell differentiation result directly from the loss of Klf3 expression in B cells, we performed competitive reconstitution experiments by injecting a mix of Klf3 null and wild-type hematopoietic precursor cells into congenic irradiated recipient mice. Because homozygous Klf3 null FL cells were used for this experiment, Wild-type C57BL/6.SJL-Ptprca

An analysis of bone marrow B cells derived from the wild-type reconstitution mix revealed a similar proportion of cells in fractions D–F, irrespective of the CD45.2 gate (Fig. 3A). This shows that B cells from the wild-type littermates of Klf3 knockout mice are able to progress normally through this stage of differentiation in the bone marrow. Inspection of the CD45.2 histograms (Fig. 3A) and cell counts (Fig. 3C) reveals that Klf3 null CD45.2 B cells appear to have a modest competitive advantage over the C57BL/6 CD45.1 wild-type cells in the repopulation of the bone marrow, wild-type and Klf3 knockout CD62L mRNA levels, MZ B cells were purified by FACS of material pooled from four mice and RNA isolated for real-time RT-PCR analysis (lower panel). The relative gene expression was normalized against 18S and the lowest expression set to 1. Real-time runs were performed in triplicate and error bars show SEM.

FIGURE 2. MZ B cell development is affected in the spleen of Klf3 knockout mice. A. Immunofluorescence analysis of wild-type and Klf3 knockout spleens at 12 wk of age. Spleen sections were stained for CD3 (T cells, red), IgD (FO B cells, green), and IgM (MZ B cells, blue). Arrows compare the normal wild-type MZ with the poorly defined structure seen in the Klf3 knockout section. Images (10×) were obtained on a Zeiss inverted microscope. B. Expression of CD62L in Klf3 null MZ B cells. For analysis of cell surface expression, splenic B cells were isolated from eight wild-type and six knockout mice by magnetic bead labeling and column depletion of non-B cells. For each mouse, FO (CD21hi/CD23med/lo) and MZ (CD21hi/CD23hi) B cells were gated and analyzed for surface expression of CD62L. Shown are representative flow cytometry plots indicating gating of wild-type and Klf3 knockout FO and MZ B cells (upper panel), surface expression of CD62L in wild-type and Klf3 knockout FO and MZ B cells (middle panel), and statistical analysis of the mean fluorescence intensity of CD62L surface expression in wild-type and Klf3 knockout gated FO and MZ B cells (lower panel). Mice were individually analyzed and error bars represent SEM. *p < 0.05, ***p < 0.001. For analysis of B cells revealed that the well-defined positioning of MZ B cells around the splenic follicles of the wild-type mouse is absent in the Klf3 null spleen. In knockout mice, the MZ B cell number is reduced, and those MZ cells that are present appear diffusely and aberrantly located, suggesting that Klf3 may have direct or indirect roles in regulating the expression of genes that control B cell migration. To explore this possibility, we first examined global expression changes in cell adhesion and homing genes by sorting CD19+ B cells from wild-type and Klf3 null spleens for microarray analysis. We found significant changes in a number of key genes, including those with roles in egress from lymphoid organs (CD69 and S1p3) (25, 26) and endothelial cell interaction (CD62L) (Supplemental Table 1).

To determine whether changes in the expression of certain cell surface adhesion molecules in Klf3 null MZ B cells might explain their mislocalization, we sorted MZ B cells from Klf3 knockout mice and examined expression of the trafficking molecules CD62L (L-selectin/Sell) (27) and β7 integrin (Igβ7) (28) by real-time PCR. Because MZ B cell numbers are severely reduced in Klf3 knockout mice, cells were pooled from a number of animals to obtain sufficient material for this analysis. We found increased expression of both CD62L (Fig. 2B) and β7 integrin (Supplemental Fig. 1A) mRNA in the sorted Klf3 null MZ B cells. We also examined cell surface expression of both of these molecules in gated FO and MZ B cells purified from several mice and found that they are significantly upregulated in Klf3 knockout MZ B cells (Fig. 2B, Supplemental Fig. 1A). Finally, we examined expression of a number of homing genes in CD19+ B cells purified from lymph nodes of Klf3 knockout mice. In these cells, we did not see any significant changes in expression in the absence of Klf3, suggesting that the effects on B cell homing are more pronounced in the MZ lineage (Supplemental Fig. 1B).
providing a higher proportion of cells within the analyzed fractions.

When the recipient bone marrow is reconstituted with a mix of CD45.1 wild-type and CD45.2 Klf3^{−/−} cells, we observed an increase in the percentage of fraction F cells and a decrease in the percentage of fraction D cells, when gating on CD45.2⁺ cells (Fig. 3A). This reduction in the Klf3^{−/−}-derived immature B cell population (fraction D) and the significant increase in recirculating Klf3^{−/−} B cells (fraction F) are very well aligned to the observations made in the bone marrow of Klf3 null mice (Fig. 1). It is also apparent that the CD45.2 Klf3^{−/−}-derived cells are at a competitive disadvantage to the CD45.1 wild-type cells in their ability to reconstitute fractions D and E in the bone marrow (Fig. 3C).
We also examined B cell development in the spleen of the recipient mice. Analysis of B cells derived from the wild-type reconstitution mix revealed a similar proportion of transitional, MZ, and FO B cells, irrespective of the CD45.2 gate (Fig. 3B), indicating that transplanted Klf3^{+/+} CD45.2 precursors cells are able to repopulate the splenic B cell compartment. The Klf3^{+/+} CD45.2 B cells appear to compete well with the CD45.1 C57BL/6 wild-type cells in the repopulation of transitional, MZ, and FO B cells in the spleen (Fig. 3C). However, when recipient mice are reconstituted with a mix of CD45.1 wild-type and CD45.2 Klf3^{−/−} cells, Klf3 null B cells show a reduced ability to repopulate the splenic B cell compartment, with Klf3 null B220⁺ cells being present at one third the number of wild-type B220⁺ cells. Even more noticeable is the dramatic failure of the Klf3^{−/−}–derived B cells to repopulate the MZ B cell compartment, with <5% of Klf3 null cells, compared with competitor wild-type cells, accounting for the MZ B cell niche (Fig. 3B). Klf3^{−/−} CD45.2 cells are also less able to compete in the repopulation of the transitional and FO B cell populations (Fig. 3C). The observation that Klf3 null precursors are impaired in their ability to reconstitute the MZ B cell population agrees with our previous analysis of splenic B cell development in Klf3 knockout mice (23) and demonstrates that these defects are directly due to the absence of Klf3 expression in B cells.

Taken together, our reconstitution experiments using Klf3 null FL cells support a significant B cell autonomous role for Klf3 in early B cell differentiation in the bone marrow and also in specifying MZ B cell fate in the spleen.

Klf3 is required for B1 B cell development in the peritoneal cavity and spleen

Given that MZ B cell development is disrupted in the Klf3 null mouse (23), we decided to examine the differentiation of the functionally related B1 B cells. Although the number and proportion of B2 cells in the peritoneal cavity is not significantly different in Klf3 knockout mice, we noticed a considerable

![FIGURE 4. Abnormal B1 B cell development in the peritoneal cavity of Klf3 knockout mice. A, Peritoneal cavity B cells were analyzed by flow cytometry to identify B2, B1a, and B1b B cell populations. Shown is a representative plot comparing wild-type and Klf3 knockout mice. B, Statistical analysis of peritoneal B1 and B2 cells, comparing wild-type (n = 6) and Klf3 knockout mice (n = 8). C, Total peritoneal B1 and B2 cell counts, comparing wild-type (n = 6) and Klf3 knockout (n = 8) mice. D, Representative flow cytometry plot and statistical analysis comparing wild-type (n = 8) and Klf3 knockout (n = 8) splenic B1 and B2 cells. Mice were analyzed at 12 wk of age. *p < 0.05, ***p < 0.001.](http://www.jimmunol.org/)
reduction in the percentage and count of B1 B cells (Fig. 4). Within the B1 compartment, we found that the number of both B1a and B1b cells were significantly lower in the knockout mice (Fig. 4C). B1 cells are also present in the spleen at low numbers but are believed to be functionally distinct from peritoneal B1 cells (29). In the spleen, we observed a modest but significant increase in the percentage of B1 cells (Fig. 4D).

Klf3 is differentially expressed in B cell subsets in the bone marrow and spleen

Having determined that both the proportion and number of B cells is altered in certain populations in the spleen and bone marrow, we next examined the expression levels of Klf3 in these cells in wild-type mice. To do this, we first sorted pre-B cells, immature B cells, and recirculating mature B cells (fractions D, E, and F, respectively) from the bone marrow and examined the relative expression of Klf3 in the cells by real-time RT-PCR. We observed a progressive increase in Klf3 mRNA levels as B cells mature in the bone marrow, with an approximate 8-fold increase in the recirculating B cell population compared with pre-B cells (Fig. 5A). We also examined Klf3 expression in MZ and FO sorted B cell populations in the spleen, again by real-time PCR. In the spleen, we found that Klf3 expression is ∼2-fold lower in MZ B cells compared with FO cells (Fig. 5B).

Klf3 null MZ B cells show an impaired LPS response

To further investigate the disruption to B cell function in the spleen of Klf3 knockout mice, we used microarray analysis to examine gene expression changes in sorted CD19+ B cells. Microarray data were subject to Gene Set Enrichment Analysis (http://www.broadinstitute.org/gsea) to identify pathways disrupted in Klf3 knockout B cells. One of the pathways most significantly affected was the TLR signaling pathway with the downregulation of a number of TLR pathway genes (Supplemental Table II and data not shown). These genes were ranked in the top 500 most downregulated genes, with Tlr6 being the third most downregulated gene, with a 3.7-fold reduction in expression. TLRs 2, 3, 7 and 8 were also downregulated. In addition, the expression of several coreceptors and TLR pathway effector molecules was also altered in B cells lacking Klf3. The full interpretation of these results, however, is complicated by the general reduction in the number of MZ B cells in the spleens of Klf3 knockout animals. To address this, we purified FO and MZ B cells from wild-type and Klf3 knockout mice (Supplemental Fig. 2) and assessed the ability of these sorted populations to respond to LPS stimulation. We found that although wild-type and Klf3 null FO B cell populations showed an equivalent low-level response to LPS, MZ cells lacking Klf3 had an approximate 50% reduction in their proliferative capacity after LPS activation (Fig. 6). We also analyzed the expression of select TLR pathway genes in sorted CD19+ lymph node B cells using real-time PCR. We observed a significant decrease in expression of Tlr-6 (∼13-fold) and in CD36 (2.5-fold) in lymph node B cells lacking Klf3, whereas other genes such as CD14 and MD-2 were already expressed at low levels and changes in their expression were not evident (data not shown). Taken together, these results suggest that B cell activation pathways regulated by TLR signaling are impaired in Klf3 knockout animals and argue that TLR-pathway genes may be regulated by Klf3.

Loss of Klf3 affects BCR signaling

Given that BCR signaling strength influences B cell fate (30, 31) and that loss of Klf3 disrupts B cell differentiation, resulting in a reduction of both MZ and B1 B cells, we examined the effect of Klf3 deficiency on BCR signaling. We assessed levels of calcium mobilization in gated FO and MZ Klf3 null B cells after anti-IgM-induced BCR activation. In Klf3 null MZ B cells, we observed both a delay in signaling and a reduced signal peak, whereas wild-type and Klf3 knockout FO B cells showed an equivalent response (Fig. 7).

Klf3 may function within a regulatory network of Klf genes in B cells

Klf3 is known to repress the expression of Klf8 in erythroid tissue (32); Klf8 is closely related to Klf3 and is also able to bind the corepressor Ctbp and function as a transcriptional repressor (33). Examination of our microarray data revealed that both Klf8 and Klf12 expression is increased in Klf3 knockout CD19+ splenic B cells. Klf12 is also closely related to Klf3 and again functions primarily as a transcriptional repressor in partnership with Ctbp (34). We confirmed by real-time PCR that Klf8 and Klf12 expression is derepressed in Klf3 null CD19+ splenic B cells (Fig. 8A). Given that B cell populations are disrupted in Klf3 knockout mice, complicating direct comparison with wild-type mice, we also examined Klf gene expression in pure B cell populations. Again, in both splenic B220+CD23+CD21+ FO B cells and lymph node CD19+ B cells sorted from Klf3 knockout mice, we observed derepression of Klf8 and Klf12 expression (Fig. 8, Supplemental Fig. 2). Our analysis of the sorted B cell populations also indicated
that Klf10 is modestly upregulated in Klf3 null FO B cells, whereas expression of Klf9 and Klf13, two factors that play a role in B cell biology (10, 35), was unaltered (Fig. 8). Furthermore, the defects in MZ B cell development seen in mice lacking either Klf3 or Klf2 (7) also suggest that these two Klfs may function in a regulatory network during B cell development (Fig. 9).

Discussion

Klf3 is required for normal B cell development

The absence of Klf3 leads to significant defects in B cell development in the bone marrow, spleen, and peritoneal cavity. In particular, our analysis has revealed a reduction in immature B cells and a dramatic increase in recirculating mature B cells in the bone marrow; in the spleen, there is incorrect positioning of MZ B cells, and in the peritoneal cavity, there is a significant loss of B1 B cells. Importantly, both the proportion and actual number of B cells are altered in all cases, and we have demonstrated that this is a cell autonomous trait. Studies in mouse models have suggested that signaling strength from the BCR influences maturing B cell fate during differentiation. However, interpretation of the data is complex, with some reports suggesting that lower signaling strengths promote MZ cell development (36), whereas others find that stronger signals are important (37). High strength signals have been reported to support B1 B cell pathways (30).
B cells from fraction A (prepro-B cells) to fraction B (early pro-
portion and number of B cells in fractions B–D. This suggests
the Klf3 knockout mice, there is a noticeable reduction in both the
fraction A cells in wild-type and Klf3 knockout mice. However, in
shown).

significant changes in expression for these factors (data not

mouse models (6–8) have revealed that both Klf2 and Klf3 are required for

B cell development, with the ratio of these two factors influencing B cell

FIGURE 9. Klf2 and Klf3 may function in a regulatory network during

B cell development, with the ratio of these two factors influencing B cell

The reduction in MZ and peritoneal cavity B1 B cell numbers in

the absence of Klf3 suggests that it may influence cell fate deci-

dions downstream of the BCR by affecting signaling strength. It is

possible that loss of Klf3 reduces BCR signaling strength, leading
to impaired MZ and B1 B cell development in the spleen of Klf3
null mice. This interpretation is consistent with the relatively minor
effects on FO B cell development in the Klf3 null spleen and the
increase in recirculating mature B cells in the Klf3 knockout bone

marrow. Indeed, our calcium mobilization assays confirm that, in
the absence of Klf3, MZ B cells do show a moderately impaired
BCR response. The reduction in B1 B cell numbers in the peri-
toneal cavity also suggests that the absence of Klf3 may restrict
BCR signaling strength, because B1 B cell differentiation is be-
lieved to be dependent on higher strengths.

Several proteins have been implicated in BCR signaling and B
cell lineage decisions. Loss of regulators of BCR signaling such as
Ly and Cd22 have been reported to lead to an increase in B1

B cells and a reduction of MZ B cells (36, 38–44). Similarly,
positive regulators of BCR signaling such as Btk appear to direct
B cell differentiation away from the MZ lineage, while promoting
the accumulation of B1 B cells (36, 45). Deletion of Cd19 and
Aiolos leads to a severe reduction in both peritoneal B1 and MZ
B cells (36, 46–48), a similar phenotype to that seen in Klf3-
deficient mice. In addition to these factors, MZ B cell de-
velopment is promoted by the cytokine BAFF, a TNF family
member with roles in B cell survival and differentiation (49).
The notch signaling pathway has also been implicated in MZ B cell
development, with a loss of notch function resulting in defective
MZ cell differentiation (50). However, inspection of our micro-
array data from sorted CD19+ splenic B cells did not reveal any
significant changes in expression for these factors (data not
shown).

In the bone marrow, we observed an equal number of Hardy
fraction A cells in wild-type and Klf3 knockout mice. However, in
the Klf3 knockout mice, there is a noticeable reduction in both the
proportion and number of B cells in fractions B–D. This suggests
that the absence of Klf3 may partially block the transition of
B cells from fraction A (prepro-B cells) to fraction B (early pro-
B cells). Once Klf3 null B cells have differentiated into early pro-
B cells, they appear able to progress normally through fractions
B–D. Indeed, a comparison of the ratio of fraction D (pre-B cells)
with fraction E (immature B cells) cells in wild-type and Klf3
knockout mice suggests that the absence of Klf3 may slightly
promote the fraction D-to-E transition. In contrast with earlier
fractions, the number of cells in fraction F is significantly in-
creased in the bone marrow of Klf3 knockout mice. This may be
because of effects on differentiation of fraction E cells and/or
changes in the retention of recirculating mature B cells in the
bone marrow (see later). We have previously observed that Klf3
knockout mice are leaner than their wild-type littermates (18).
However, a comparison of various wild-type and knockout tissues
indicated that this phenotype is predominantly due to a reduction
in fat pad size, and is therefore unlikely to explain the differences
in B cell numbers seen in Klf3 null mice.

The roles of Klf3 in early B cell, MZ B cell, and B1 B cell
differentiation are currently unclear, but the signaling pathways and
downstream targets common to both the pre-BCR and BCR offer
potential candidates for further investigation.

Klf3 and MZ B cell activation

Analysis of sorted CD19+ splenic B cells revealed that several
components of the TLR signaling pathway are significantly
downregulated in the Klf3 knockout mouse. These include a number
of TLRs (Thr6, Thr3, Thr7, and Thr8) and coreceptor
molecules (CD14 and CD36), implying that several distinct TLR
pathways are impaired. The downregulation of CD14 in Klf3 null
splenic B cells, together with the LPS-responsive TLR CD180
(RP105) (51) and the Thr4 cofactor MD-2 (52), suggests a com-
promised LPS response. To investigate this, we purified FO and
MZ B cells from wild-type and Klf3 null animals, and examined
the ability of these sorted populations to respond to LPS stimu-
lation. We found that although FO B cells are largely unaffected
by the loss of Klf3, its absence from MZ B cells led to a signifi-
cant reduction in the LPS response. We also investigated the ex-
pression of a number of TLR pathway genes in Klf3 null lymph
node B cells. In support of a role for Klf3 in TLR pathway reg-
ulation, we observed a significant decrease in expression of Thr6
and CD36 in these cells. Other TLR pathway genes, including
CD14 and MD-2, were found to be expressed at background levels
in wild-type lymph node B cells, and it was hence not possible to
assess the effect of the loss of Klf3 on their expression. In addition
to defects in the LPS response in Klf3 null MZ B cells, we also
observed impaired BCR signaling in this population. This suggests
that in vivo Klf3 knockout mice are likely to show compromised
innate and humoral immune responses, with increased suscepti-
bility to infection and disease.

Trafficking and homing of B cells in Klf3 null mice

We observed a significant increase in the proportion and number
of recirculating mature B cells (Hardy fraction F) in the bone marrow
of Klf3 knockout mice. In addition, there is also a large increase in
the number of B cells in the peripheral circulation and a loss of
normal positioning of MZ B cells. All of these observations are
consistent with Klf3 having a role in the trafficking and homing of
B cells. In further support of this, our microarray analysis of Klf3
null B cells revealed deregulation of a number of genes that play
a role in cell signaling, adhesion, and migration.

Recently, the role of Klf2 in B cell development has been ex-
amined in some detail (6–8). In the absence of Klf2, there is a
reduction in recirculating B cells in the bone marrow and a
significant increase in the number of MZ B cells in the spleen.
Furthermore, Klf2 null MZ B cells have decreased expression of
the trafficking molecules CD62L and β7 integrin (7, 8). It was also noted that, in the absence of Klf2, FO B cells showed some characteristics of MZ B cells. Interestingly, our analysis of Klf3 null splenic B cells reveals that in certain respects, the absence of Klf3 leads to an opposite phenotype. Klf3 null MZ B cells are dramatically decreased in number and show increased expression of CD62L and β7 integrin mRNA and cell surface molecules. This suggests that although the absence of Klf2 causes FO B cells to adopt some MZ B cell characteristics, loss of Klf3 may influence MZ B cells to become more FO-like. However, a reciprocal phenotype is not always seen; both Klf2 and Klf3 knockout mice have significantly less peritoneal B1 cells.

Gene expression analysis of Klf2 null B cells revealed that Klf3 expression is noticeably reduced in the absence of Klf2, suggesting that Klf2 may drive Klf3 expression in B cells (7). Although Klf2 usually functions as an activator of transcription, Klf3 is generally a transcriptional repressor. This implies that Klf2 may regulate Klf3 expression in B cells to indirectly silence genes that oppose differentiation pathways driven by Klf2. Differences in the phenotypes of the Klf2 and Klf3 knockout mice may be explained by differential gene regulation or where targets are shared (directly or indirectly) by the residual expression of Klf3 in Klf2 null B cells.

Despite B cell counts being significantly elevated in the peripheral blood of Klf3 knockout mice, we did not see a noticeable increase in B cell numbers in the spleen or lymph nodes in the absence of Klf3. High peripheral B cell counts have also been seen in peripheral blood of Klf3 knockout mice, we did not see a noticeable increase in B cell numbers in the spleen or lymph nodes in the absence of Klf3. The Journal of Immunology 5041

The absence of LT-α in lymphotoxin-α knockout mice also lack lymph nodes, whereas lymph node development appears normal in Klf3 knockout mice. Given this difference and the normal levels of LT-α expression in Klf3 null B cells (data not shown), it is unlikely that impaired LT signaling contributes to the defects seen in the absence of Klf3. Because we did not observe any changes in expression of homing genes, such as CD62L (55) in Klf3-deficient lymph node B cells, the mechanism underlying the increase in peripheral B cells remains unclear.

Klf3 is differentially expressed during B cell development and may function as a Klf regulatory network in B cells

We examined Klf3 expression in wild-type B cell populations purified from the bone marrow and spleen. We observed a progressive increase in expression as B cells mature in the bone marrow. In the spleen, we found Klf3 levels to be lowest in MZ cells, in agreement with previous data comparing gene expression in purified FO and MZ B cell populations (56). This might imply that low levels of Klf3 promote MZ cell development. However, in Klf3 knockout mice, we see fewer MZ cells, and in transgenic mice overexpressing Klf3, MZ B cell numbers are increased (23). This suggests that it is the expression of Klf3 in precursor transitional B cells that is important in the FO/MZ lineage decision. Clearly, Klf3 is not essential for MZ B cell development as mature MZ cells still develop, albeit at a significantly reduced number, in the Klf3 knockout spleen.

Evidence of Klf regulatory networks is beginning to emerge in various tissues. In erythroid cells, Klf1 promotes expression of Klf3, Klf8, and Klf10, with Klf3 also able to repress expression of Klf8 (17, 32). In the intestinal epithelium, Klf4 promotes its own expression, whereas Klf5 acts as a negative regulator of Klf4 expression (57). Reduced expression of Klf3 is seen in the skin of Klf4 knockout mice (58). Given that Klf4 has a number of roles in B cell differentiation (10, 59), it is possible that Klf4, or the related activator Klf2 (2), might function with other Klf4s in a regulatory network in B cells. Indeed, reduced expression of Klf3 has recently been demonstrated in Klf2 null B cells (7), and it has been shown that Klf2, Klf3, and Klf4 all show similar expression patterns on activation of naive B cells (21). Increased repression of the endogenous Klf3 locus has been reported in transgenic mice overexpressing Klf3 in B cells, suggesting that in addition to regulation by Klf2, Klf3 levels may be auto-regulated in B cells (23).

In support of the hypothesis of a Klf network in B cells, we find that Klf10, Klf8, and Klf12 expression are all elevated in Klf3 null B cells. Furthermore, the regulation of Klf3 by Klf2 (7) and their functional overlap in the differentiation of a number of B cell subsets, in particular, MZ B cells, suggest a biological significance for such a network, with the possibility that the ratio of these factors is important in determining B cell fate (Fig. 9).

Disclosures

The authors have no financial conflicts of interest.

References

Supplemental Figure and Table Legends:

Supplemental Figure 1: (A) Expression of β7 integrin in Klf3 null MZ B cells. For analysis of cell surface expression, splenic B cells were isolated from 8 wildtype and 6 knockout mice by magnetic bead labeling and column depletion of non-B cells. For each mouse, follicular (CD21+/CD23+) and marginal zone (CD21hi/CD23med/lo) B cells were gated and analysed for surface expression of β7 integrin. Shown are representative flow cytometry plots indicating gating of wildtype and Klf3 knockout FO and MZ B cells (upper panel), surface expression of β7 integrin in wildtype and Klf3 knockout FO and MZ B cells (middle panel), and statistical analysis of the mean fluorescence intensity of β7 integrin surface expression in wildtype and Klf3 knockout gated FO and MZ B cells (lower panel). Mice were individually analysed and error bars represent SEM. For analysis of wildtype and Klf3 knockout Itgb7 mRNA levels, MZ B cells were purified by FACS sorting of material pooled from 4 mice and RNA isolated for real time RT-PCR analysis (lower panel). The relative gene expression was normalized against 18S and the lowest expression set to 1. Real time runs were performed in triplicate and error bars show SEM. (B) **Expression of homing genes in Klf3 null LN B cells.** Real time RT PCR analysis showing expression of trafficking genes in CD19+ lymph node B cells from wildtype and Klf3 knockout mice, isolated by magnetic bead labeling and column purification. The relative expression of each gene was normalized against 18S and the lowest expression set to 1. Shown are mean data for independent purifications from 5 wildtype and 6 Klf3 knockout mice. Error bars show SEM.
Supplemental Figure 2: Sorting of FO and MZ B cell populations from wildtype and Klf3 knockout mice for LPS stimulation assays and of FO B cells for analysis of Klf expression. Splenic B cells were isolated from 3 wildtype and 3 knockout mice by magnetic bead labeling and column depletion of non-B cells. B Cells were then stained for B220, CD21 and CD23, and FACS sorted into FO and MZ populations. Following confirmation of the purity of the sorted populations, FO and MZ B cells were assayed for their response to LPS stimulation (see Figure 6). Sorted FO populations were also analysed for expression levels of various Klfs (see Figure 8).

Supplemental Table I: Key genes mediating cell-adhesion and trafficking identified by microarray analysis of splenic CD19\(^+\) B cells sorted from wildtype (n=4) and Klf3 knockout (n=4) mice at 12 weeks of age. Shown are actual fold changes (KO/WT) and the ranking of each gene in a list sorted on fold change (total number of genes 21,244). A negative fold change indicates that the gene is downregulated and in this case a rank of 1 refers to the most repressed gene in the sorted list.

Supplemental Table II: Key TLR and related genes identified by microarray analysis of splenic CD19\(^+\) B cells sorted from wildtype (n=4) and Klf3 knockout (n=4) mice at 12 weeks of age. Shown are actual fold changes (WT/KO) and the ranking of each gene in a list sorted on fold change (total number of genes 21,244). The negative fold changes indicate that the genes are downregulated and a rank of 1 refers to the most repressed gene in the sorted list.
Supplemental Figure 2:
Supplemental Table I: Klf3 regulates genes involved in cell-adhesion and trafficking

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>Rank</th>
<th>p-value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxa2</td>
<td>2.8</td>
<td>2</td>
<td><0.001</td>
<td>Adhesion and homing</td>
</tr>
<tr>
<td>L1cam</td>
<td>2.4</td>
<td>5</td>
<td><0.001</td>
<td>Cell adhesion</td>
</tr>
<tr>
<td>Pdlim1</td>
<td>2.2</td>
<td>8</td>
<td>0.001</td>
<td>Cell adhesion</td>
</tr>
<tr>
<td>Ahnak</td>
<td>1.8</td>
<td>26</td>
<td>0.007</td>
<td>Ca dependent cell-cell adhesion</td>
</tr>
<tr>
<td>Cxcr4</td>
<td>1.5</td>
<td>61</td>
<td>0.002</td>
<td>Homing of B cells to lymph nodes</td>
</tr>
<tr>
<td>CD80</td>
<td>1.5</td>
<td>89</td>
<td>0.001</td>
<td>B-T interaction</td>
</tr>
<tr>
<td>Sell (CD62L)</td>
<td>1.5</td>
<td>94</td>
<td>0.001</td>
<td>Interaction with endothelial cells</td>
</tr>
<tr>
<td>Epcam</td>
<td>1.4</td>
<td>100</td>
<td>0.008</td>
<td>Cell adhesion</td>
</tr>
<tr>
<td>CD69</td>
<td>1.4</td>
<td>102</td>
<td>0.001</td>
<td>Inhibitor of B cell exit from bone marrow</td>
</tr>
<tr>
<td>Itgb7</td>
<td>1.4</td>
<td>131</td>
<td>0.004</td>
<td>Similar to CD62L</td>
</tr>
<tr>
<td>Ccl3</td>
<td>-4.1</td>
<td>2</td>
<td>0.008</td>
<td>Chemotaxis</td>
</tr>
<tr>
<td>S1pr3</td>
<td>-2.9</td>
<td>5</td>
<td><0.001</td>
<td>B cell exit from bone marrow</td>
</tr>
<tr>
<td>Rgs13</td>
<td>-2.6</td>
<td>8</td>
<td>0.027</td>
<td>B cell responsiveness to chemokines</td>
</tr>
</tbody>
</table>
Supplemental Table II: Klf3 regulates genes involved in TLR signalling pathways

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>Rank</th>
<th>p-value</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ccl3</td>
<td>-4.1</td>
<td>2</td>
<td>0.008</td>
<td>Chemotaxis</td>
</tr>
<tr>
<td>Tlr6</td>
<td>-3.7</td>
<td>3</td>
<td><0.001</td>
<td>Lipopeptide response</td>
</tr>
<tr>
<td>CD36</td>
<td>-2.4</td>
<td>11</td>
<td>0.002</td>
<td>Tlr4-Tlr6 complex</td>
</tr>
<tr>
<td>Il-1β</td>
<td>-2.2</td>
<td>17</td>
<td>0.014</td>
<td>Proinflammatory effects</td>
</tr>
<tr>
<td>Tlr3</td>
<td>-1.8</td>
<td>35</td>
<td>0.011</td>
<td>dsRNA response</td>
</tr>
<tr>
<td>CD14</td>
<td>-1.7</td>
<td>38</td>
<td>0.024</td>
<td>LPS response</td>
</tr>
<tr>
<td>Tlr7</td>
<td>-1.6</td>
<td>56</td>
<td>0.033</td>
<td>ssRNA response</td>
</tr>
</tbody>
</table>