Mass Spectrometric Characterization of Circulating and Functional Antigens Derived from Piperacillin in Patients with Cystic Fibrosis

Paul Whitaker, Xiaoli Meng, Sidonie N. Lavergne, Sabah El-Ghaiesh, Manal Monshi, Caroline Earnshaw, Daniel Peckham, Jimmy Gooi, Steve Conway, Munir Pirmohamed, Rosalind E. Jenkins, Dean J. Naisbitt and B. Kevin Park

J Immunol 2011; 187:200-211; Prepublished online 23 May 2011;
doi: 10.4049/jimmunol.1100647
http://www.jimmunol.org/content/187/1/200

References This article **cites 46 articles**, 10 of which you can access for free at:
http://www.jimmunol.org/content/187/1/200.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Mass Spectrometric Characterization of Circulating and Functional Antigens Derived from Piperacillin in Patients with Cystic Fibrosis

Paul Whitaker,*†,1 Xiaoli Meng,†‡,1 Sidonie N. Lavergne,†§,1 Sabah El-Ghaiesh,†‡,1 Manal Monshi,†‡,1 Caroline Earnshaw,† Daniel Peckham,* Jimmy Gooi,# Steve Conway,* Munir Pirmohamed,†‡,1 Rosalind E. Jenkins,† Dean J. Naisbitt,‡ and B. Kevin Park†

A mechanistic understanding of the relationship between the chemistry of drug Ag formation and immune function is lacking. Thus, mass spectrometric methods were employed to detect and fully characterize circulating Ags derived from piperacillin in patients undergoing therapy and the nature of the drug-derived epitopes on protein that can function as an Ag to stimulate T cells. Albumin modification with piperacillin in vitro resulted in the formation of two distinct haptenation, one formed directly from piperacillin and a second in which the dioxopiperazine ring had undergone hydrolysis. Modification was time and concentration dependent, with selective modification of Lys541 observed at low concentrations, whereas at higher concentrations, up to 13 out of 59 lysine residues were modified, four of which (Lys190, Lys195, Lys432, and Lys541) were detected in patients’ plasma. Piperacillin-specific T lymphocyte responses (proliferation, cytokines, and granzyme B release) were detected ex vivo with cells from hypersensitive patients, and analysis of incubation medium showed that modification of the same lysine residues in albumin occurred in situ. The antigenicity of piperacillin-modified albumin was confirmed by stimulation of T cells with characterized synthetic conjugates. Analysis of minimally modified T cell-stimulatory albumin conjugates revealed peptide sequences incorporating Lys190, Lys432, and Lys541 as principal functional epitopes for T cells. This study has characterized the multiple haptenic structures on albumin in patients and showed that they constitute functional antigenic determinants for T cells. The Journal of Immunology, 2011, 187:200–211.

The presence of Ag-specific T cells in blood and target organs of drug-hypersensitive patients provides a robust case for their involvement in the pathogenesis of a reaction (1–6). It is thought that drugs activate T cells by covalent modification of protein generating novel antigenic determinants (2, 3, 7–9). However, the paucity of studies that define the chemistry of drug–protein binding in patients has severely restricted mechanistic studies that relate the chemistry of Ag formation to immune function. Indeed, the simple concept of the hapten hypothesis of drug hypersensitivity has been brought into question by studies that have demonstrated that drugs may activate T cells through noncovalent interactions (4, 5, 10–16).

Hypersensitivity reactions to β-lactam antibiotics remain an important clinical problem. For Ag formation, the β-lactam ring is targeted by nucleophilic lysine residues, leading to ring opening and binding of the penicilloyl group (17–19). We have developed novel mass spectrometric techniques to define unequivocally the chemistry of drug–protein conjugation in patients under physiological conditions (20–23). In this study, we report on the methods we have developed to detect and fully characterize circulating Ags derived from piperacillin and its metabolite in patients undergoing therapy. Using the same mass spectrometry (MS) methods, it was possible to characterize the nature of the drug-derived epitopes on a protein that can function as an Ag and a potential immunogen to stimulate T cells from patients with clinically characterized drug hypersensitivity. For this purpose, we have studied piperacillin hypersensitivity reactions in patients with cystic fibrosis. In these patients, i.v. antibiotics provide the cornerstone of treatment for recurrent respiratory infections and help reduce the rate of decline in lung function and overall health. The overall prevalence of clinically relevant β-lactam reactions in patients with cystic fibrosis is 26–50% (24–26). We found that the frequency of drug-specific T cells in such patients was >75%. It was therefore possible to investigate the chemistry of functional Ags formed from piperacillin and albumin not only in patients’ blood, but also in ex vivo incubations with patients’ T cells to relate the chemistry of protein modification to drug antigenicity and immunogenicity.
Materials and Methods

Reagents

A sterile i.v. preparation of Tazocin (Wyeth Pharmaceuticals) was purchased for skin testing. Histamine and saline controls, together with lancets for skin prick testing, were purchased from ALK-Abelló (Hørsholm, Denmark). The following products were purchased from Sigma-Aldrich (Gillingham, U.K.): HBSS, penicillin-streptomycin, t-glutamine, HEPES, RPMI, human AB serum, and piperacillin. Inviogen (Paisley, U.K.) provided FBS. Radiolabeled thymidine was obtained from Moravek International.

Preparation/isolation of modified human serum albumin

The time- and concentration-dependent modification of human serum albumin was investigated in vitro. Human serum albumin (66 mg/ml, 1 mM) in phosphate buffer (KH₂PO₄, 13.08 mM; K₂HPO₄, 62.27 mM [pH 7.4]) was incubated at 37˚C with piperacillin at molar ratios of piperacillin to human serum albumin of 0.01:1, 0.1:1, 1:1, 10:1, and 50:1 for 24 h and at 50:1 for 1, 24, 48, 72, and 96 h. The protein was precipitated by the addition of nine volumes of ice-cold methanol followed by centrifugation at 14,000 x g for 4 h for 15 min. The precipitation was repeated to ensure the removal of non-covalently bound drug. The concentration of human serum albumin was determined by Bradford assay (27), and aliquots were prepared in serum-free RPMI 1640 for application in T cell assays in 50 mM ammonium bicarbonate buffer (50 mM), digested with trypsin overnight again being subjected to methanol precipitation. They were reconstituted in ammonium bicarbonate buffer (50 mM), digested with trypsin overnight at 37˚C, and then desalted using C₁₈ Zip-Tips (Millipore, Watford, U.K.).

Western blotting

Aliquots of 5 μg protein were separated by electrophoresis on a 10% SDS-polyacrylamide gel and electroblotted onto nitrocellulose membrane. Nonspecific binding was blocked using Tris/saline/Tween buffer (TST; NaCl, 150 mM; Tris-HCl, 10 mM; Tween 20, 0.05% [pH 8]) containing 10% nonfat dry milk for 16 h at 4˚C. The blot was incubated with primary anti-penicillin Ab (mouse anti-penicillin mAb; AbD Serotec) diluted 1:20,000 in 5% milk/TST for 1 h, followed by incubation with HRP-conjugated anti-mouse IgG Ab (Abcam) diluted 1:10,000 in 5% milk/TST for a further 1 h. Signal was detected by ECL (Western Lightning; PerkinElmer, Boston, MA) using autoradiography film and a GS800 calibrated scanning densitometer (Bio-Rad, Hemel Hempstead, U.K.).

Patients

The medical records of 350 patients with cystic fibrosis attending the Regional Adult Cystic Fibrosis Unit in Leeds, U.K., were reviewed. Eighty-eight patients (25%) had a previous nonimmediate reaction to piperacillin. Reactions were defined as an adverse reaction occurring after at least 48 h of i.v. piperacillin. This study enrolled 28 hypersensitive patients; the reactions mainly consisted of maculopapular exanthema, fevers, urticarial eruptions, and flulike symptoms. In every case, treatment had to be discontinued, and patients received antihistamines and oral steroids when clinically indicated. Detailed information on each of the hypersensitive patients is presented in Table II.

Nine patients (five males and four females) identified as tolerant had received piperacillin without any adverse event. Blood samples were also collected from 11 healthy naive volunteers who had never received piperacillin. There were no significant differences when the tolerant and hypothetical groups were compared for age, lung function, and putum classification. Dose and treatment duration were identical in both groups. Skin and biological tests were performed when patients were clinically well and had not received i.v. antibiotics for at least 6 wk. Further blood samples were taken from the tolerant group during a course of piperacillin to characterize albumin conjugates in vivo. Written informed consent was obtained from all patients, and the study was approved by the Leeds Ethics Committee.

Lymphocyte transformation test and the generation of drug-specific T cell lines and clones

Freshly isolated PBMCs from heparinized venous blood were dispensed into a 96-well U-bottom culture plate (0.15 x 10⁶ cells/well in 200 μl culture medium [RPMI 1640 supplemented with penicillin (100 μg/ml), streptomycin (100 μg/ml), HEPES (25 mM), t-glutamine (2 mM), 10% pooled human AB serum, and transferrin (12.5 ng/ml)]). Piperacillin was first tested from 7.5 μM to 4 mM. Tetanus toxoid (0.3 μg/ml) was used as a positive control. Cell cultures were incubated in a CO₂-ventilated (5%) incubator at 37˚C for 6 d. On the fifth day, 0.5 μCi [³H]thymidine (5 Ci/mM) was added to each well. Cells were finally harvested onto filter membranes, and the amount of incorporated radioactivity was measured (counts per minute) using a β-counter (MicroBeta Trilux; PerkinElmer). Thereafter, the results were expressed as stimulation index (SI; calculated as average counts per minute in drug replicates/average counts per minute in medium replicates). An SI >2 was considered positive.

T cell lines were generated by culturing purified CD3⁺ T cells (4 x 10⁶; 1 ml per piperacillin (2 mM) and autologous irradiated PBMCs (1 x 10⁶)). IL-2 was added on day 3 to sustain the drug-specific proliferative response. Lines were restimulated with piperacillin and autologous irradiated PBMCs weekly for 4 wk prior to analysis of drug-specific proliferation and EBV transformation by ELISPOT (see below). A specific T cell clones were generated by serial dilution using established methodology (15, 16). To test the specificity of the clones, T cells (0.5 x 10⁶) were incubated with autologous EBV-transformed B cells (0.1 x 10⁶) and piperacillin (2 mM). After 48 h, [³H]thymidine (0.5 μCi) was added, and 16 h later, proliferation was measured by scintillation counting.

Analysis of the relationship between piperacillin-albumin conjugate formation and the proliferative response of PBMCs from hypersensitive patients

PBMCs (1.5 x 10⁶; 200 μl) were pulsed with piperacillin (0.25–2 mM) for 4 d. After 1 h, 1, 2, 3, and 4 d, supernatant was collected for mass spectrometric analysis of piperacillin-albumin binding. At each time point, cells were washed to remove unbound drug, suspended in drug-free medium, and dispensed into a second culture plate. On the fifth day, 0.5 μCi [³H]thymidine was added to each well for the analysis of lymphocyte proliferation.
The proliferative response of PBMCs and T cell clones to piperacillin (0.25–2 mM) and piperacillin-modified albumin (0.25–4 mg/ml) was also evaluated. The protocols used were essentially the same as described above for the parent drug, with the exception that unconjugated albumin subjected to the same extraction protocol as piperacillin-conjugated albumin was used as a control.

Cytokine/chemokine profiling

ELISPOT (IFN-γ, IL-13, and granzyme B) was used to monitor secretory profiles from piperacillin-hypersensitive patients. PBMCs (0.5 × 10⁶; 0.5 ml) were incubated with or without piperacillin (0.5–2 mM) for 48 h in Ab-coated plates prior to development.

Supernatants (25 μl) were also collected prior to the addition of [3H] thymidine for the analysis of cytokine/chemokine secretion using a Millipore multiplex assay kit (Millipore). Cytokine and chemokine concentrations (IL-1α, IL-1β, IL-4, IL-5, IL-8, IL-10, IL-13, IL-17, TNF-α, IFN-γ, eotaxin, MIP-1α, and MIP-1β) were measured using a Bio-Plex Suspension Array System (model Luminex 100) and its Bio-Plex Manager 3.0 Software (Bio-Rad).

Skin testing

Skin prick tests were performed using a previously published protocol (28) against Tazocin (piperacillin-tazobactam), histamine (10 mg/ml positive control), and 0.9% saline (negative control) to exclude a diagnosis of immediate hypersensitivity. Intravenous piperacillin preparations were used at final concentrations of 2 mg/ml and 20 mg/ml in 0.9% saline. The reagents were prepared under sterile conditions and tested on the volar forearm. Readings were performed at 20 min. A wheal ≥3 mm in diameter than the negative control was considered positive. Intradermal injections were also performed with delayed readings at 48 and 72 h for the diagnosis of nonimmediate reactions. An infiltrated erythema ≥5 mm in diameter was considered a positive reaction.

Statistics

Results were analyzed using a Mann–Whitney U test or a Wilcoxon test for paired data sets when comparing lymphocyte proliferation and cytokine concentrations. A Fisher exact test was used to compare frequencies among and between groups, and a Spearman analysis allowed nonparametric correlation analysis. A p value <0.05 was considered statistically significant.

Results

Identification and characterization of piperacillin hapten formation in vitro

Mass spectrometric analysis of piperacillin-albumin conjugates formed in phosphate buffer revealed a hapten of the predicted mass of 517 amu, which was formed from direct adduction of piperacillin (cyclized hapten [1], Fig. 1), but also a second hapten of mass 535 amu hypothesized to be formed through hydrolysis of the 2,3-dioxopiperazine ring (hydrolyzed hapten [2], Fig. 1). As shown in the tandem MS spectra of the peptide 182LDELRDEGK*AS-SAK195 modified with the cyclized hapten (Fig. 2A), the presence of the most characteristic fragmentation ions of m/z at 160 and 143 indicated the incorporation of piperacillin in this peptide. In addition, the presence of an abundant ion of m/z at 868, corresponding to the doubly charged peptide mass plus 216 (a portion associated with penicilloyl adducts of the piperacillin structure), provided further evidence that the hapten of mass of 517 amu was formed by the addition to the β-lactam ring rather than the dioxopiperazine ring. In the mass spectrum of the hydrolyzed hapten, the most characteristic fragment ions were detected at m/z of 106 and 160 (Fig. 2A). Similarly, the ion at m/z of 867.8 confirmed that the nucleophilic addition took place at the β-lactam ring, whereas the hydrolysis occurred at the 2,3-dioxopiperazine ring. In addition, an equilibration between cyclized and hydrolyzed haptenes was observed (results not shown), further confirming that the hydrolysis occurred at the 2,3-dioxopiperazine ring, as the hydrolysis of β-lactam ring is irreversible.

The masses of the modified peptides in combination with masses of the signature fragment ions enabled high-sensitivity detection of the masses of the modified peptides in combination with masses of the signature fragment ions enabled high-sensitivity detection of...
modified peptides in human serum albumin exposed to piperacillin in vitro. The cyclized and hydrolyzed forms of the piperacillin hapten were detected after 24 h at a drug/protein ratio of 50:1 at 8 out of 59 and 13 out of 59 lysine residues in human serum albumin, respectively. Modification at Lys190, Lys432, and Lys541 resulted in the strongest MRM signals, and, notwithstanding the differences in ionization efficiency, the hydrolyzed hapten was more prevalent than the cyclized (Fig. 3B, Table I shows the amino acid sequence of the modified peptides). The time and concentration dependency of the modification revealed by Western blotting was confirmed by

FIGURE 2. Mass spectrometric characterization of piperacillin haptens formed on albumin in vitro and isolated from plasma of patients undergoing piperacillin treatment. Representative MS/MS spectrum of the albumin peptide 182LDELREGKASSAK195 modified at Lys190 with the cyclized and hydrolyzed piperacillin hapten (A) and the hydrolyzed desethyl piperacillin hapten (B). Characteristic fragment ions derived from partial cleavage of the hapten are circled. C. Epitope profile showing the lysine residues of albumin modified in vivo with the cyclized and hydrolyzed piperacillin and desethyl piperacillin haptens. M, unmodified peptide mass; M*, modified peptide mass.
MRM-MS, whereas the exquisite sensitivity of the mass spectrometric approach revealed modification on Lys541 at a molar ratio of drug to protein of 0.01:1 (Fig. 3).

Modification of human serum albumin with piperacillin in vivo

Albumin was isolated from four piperacillin-exposed patients with cystic fibrosis to characterize Ag formation in vivo. To enhance the sensitivity of detection of the modified peptides, a three-dimensional LC approach was adopted that enabled the detection of the cyclized [1] and hydrolyzed [2] forms of the piperacillin hapten at Lys190. A further mass addition of 507 amu, which was associated with fragment ions of 106 and 160 amu, was detected at Lys190, Lys195, Lys432, and Lys541 (Fig. 2C), and we propose that this is the hapten formed from the desethyl metabolite of piperacillin (29) with hydrolysis of the dioxopiperazine ring. Fig. 1 shows the structure of desethyl piperacillin and the cyclized [3] and hydrolyzed [4] forms of the piperacillin metabolite-derived hapten. No desethyl cyclized hapten was detected. The possibility that the desethyl structure was formed by in-source fragmentation was ruled out, as the retention times of the peptide containing hydrolyzed and desethyl hydrolyzed Lys190 differed by 1 to 2 min during both cation exchange and reversed-phase chromatography (data not shown).

Stimulation of patient PBMCs with piperacillin, skin testing, and characterization of the major Ag formed in cell culture

PBMCs from 19 out of the 28 piperacillin-hypersensitive patients (68% sensitivity) were found to proliferate in the presence of piperacillin (Fig. 4A, Table II). The sensitivity of the assay was increased to 76% when excluding the three patients receiving oral steroids at the time of blood sampling (patients 26–28; Table II). The number of positive patients did not differ when those with and without cutaneous manifestation were compared. The lymphocyte transformation test was repeated on 10 hypersensitive patients with at least a 1-mo interval between assays. Although the strength of the proliferative response varied slightly, the number of lymphocyte transformation test-positive patients remained the same (results not shown). PBMCs from patients hypersensitive to piperacillin alone were not stimulated with other structurally related β-lactam antibiotics.
PBMCs from tolerant patients with cystic fibrosis and drug-naive volunteers were not stimulated to proliferate with piperacillin.

Skin prick tests, which are traditionally used in patients with immediate hypersensitivity (28), did not generate positive readings with piperacillin in any of the patients tested. Four out of the 28 piperacillin-hypersensitive patients had positive intradermal readings to piperacillin. Positive readings were only detected in patients with cutaneous signs and a positive lymphocyte transformation test (Fig. 4B). Patients 2 and 9 developed marked erythema and induration 24 h following injection. A biopsy of the skin reaction from patient 2 revealed epidermal basal layer vasculation, necrotic keratinocytes, and a dermal perivascular infiltration of T lymphocytes (Fig. 4C). Patients 4 and 21 showed significant induration at 48 h.

The drug-specific proliferative response was associated with the secretion of IFN-γ, IL-13, and the granulation molecule granzyme B, a key mediator of cell killing (PBMCs, Fig. 4D; T cell line, Fig. 4F). Multiplex analysis of cell-culture supernatant was performed to obtain a more global analysis of cytokines secreted from hypersensitive and tolerant patients’ PBMCs. In addition to the cytokines IFN-γ and IL-13, significantly higher levels of IL-1β (p = 0.031), IL-6 (p = 0.016), TNF-α (p = 0.012), and MIP-1α (p = 0.031) were found in cell cultures containing piperacillin-treated PBMCs from hypersensitive patients when compared with the tolerant and naive controls (Fig. 4E).

The response of PBMCs from hypersensitive patients was concentration dependent and detectable over a wide range of piperacillin concentrations (Fig. 5A). Therefore, the lymphocyte transformation test was used to explore the relationship between drug albumin binding and drug immunogenicity. Cyclized [1] and hydrolyzed [2] forms of the piperacillin hapten were detectable on albumin, and the levels of albumin binding increased progressively over 96 h (Fig. 5B). Binding was concentration dependent and observed at piperacillin concentrations that stimulate the proliferation of PBMCs from hypersensitive patients. Both piperacillin hapten (hydrolyzed and cyclized forms) were found to bind preferentially to Lys190, followed by Lys195 and Lys541 on albumin. Drug modifications were also detected at an additional five lysine residues (Lys12, Lys199, Lys432, Lys531, and Lys541) (Fig. 5C).

Identification of the key piperacillin-modified lysine residues in albumin involved in a lymphocyte proliferative response

To determine which piperacillin-modified lysine residues in albumin are the key epitopes involved in the stimulation of a lymphocyte proliferative response, PBMCs from hypersensitive patients were cultured with piperacillin (0.25–2 mM). After 1–96 h, PBMCs were washed repeatedly to remove soluble drug, suspended in culture medium, and dispensed into fresh culture plates for the remainder of the assay. Modified Lys190 and Lys432 were detectable at 2 mM after a 1-h incubation; however, the level of modification was extremely low, coinciding with a negative lymphocyte proliferative response (Fig. 6). An increase in the level of modification at Lys190 and Lys541 and an increase in the number of sites modified (Lys199, Lys432, and Lys541) at 24 h was associated with a weak proliferative response of patient PBMCs (Fig. 6). At intermediate time points (48–72 h), there was a further increase in the number of sites modified and a concentration-dependent increase in the level of modification at each site. At 72 h, piperacillin modifications were detectable at six lysine residues (Lys12, Lys199, Lys432, Lys531, Lys432, and Lys541). This correlated with the concentration-dependent proliferation of T cells from hypersensitive patients, reaching a maximum response at 2 mM. Finally, at 96 h, when the highest levels of albumin binding were detected, a maximal proliferative response was seen with each stimulatory concentration of piperacillin (0.25–2 mM). Hydrolyzed [1] and/or cyclized [2] forms of the piperacillin hapten were detected on eight lysine residues (Fig. 6C), including Lys190, Lys195, Lys432, and Lys541, which were modified with piperacillin in patients.

Stimulation of patient PBMCs and T cell clones with a synthetic piperacillin-albumin conjugate

To generate a synthetic piperacillin-albumin conjugate for use as an Ag in in vitro assays, human serum albumin was modified with piperacillin at a molar ratio of drug to protein of 50:1 for 24 h in phosphate buffer. The epitope profile is shown in Fig. 7A; this largely mirrored the profile of albumin binding detected in culture supernatant in that: 1) hydrolyzed and cyclized forms of the piperacillin hapten were detected on the eight lysine residues modified in culture; and 2) the three sites most readily detected by MRM-MS were Lys190, Lys432, and Lys541.

The synthetic piperacillin-albumin conjugate stimulated the proliferation of PBMCs and CD4+ T cell clones from hypersensitive patients (Fig. 7B).

Discussion

Although little is known about the mechanisms that lead to drug hypersensitivity reactions, several hypotheses to explain drug immunogenicity have been postulated, and one of the most popular is the hapten hypothesis. This is based on the concept that drugs form haptenic structures, compounds with a propensity to bind covalently to biological macromolecules, that modify endogenous protein to stimulate an immune response (30–32). Processed peptides derived from the modified protein are presumed to interact with MHC molecules prior to stimulating T cells through the TCR. Many drugs associated with a high prevalence of hypersensitivity reactions in humans form protein adducts; however, the absence of sufficiently sensitive bioanalytical methods to characterize functional drug–protein conjugates has effectively prohibited any attempt to study the relationship between Ag formation and immunogenicity.

We have recently developed and employed MS methods to qualify the site(s) of drug–protein conjugation (20–23). Drugs and drug metabolites bind in a dose-dependent manner to proteins such as albumin and can display different preferences for the sites of modification. In the current study, we sought to exploit these methods to investigate piperacillin hypersensitivity in patients with cystic fibrosis. Specific objectives of the project were to characterize haptenic structures on albumin and the relationship

Table I. Human serum albumin-derived tryptic peptides containing piperacillin-modified lysine residues

<table>
<thead>
<tr>
<th>Lysine Peptide</th>
<th>Cyclized Hapten</th>
<th>Hydrolyzed Hapten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 DAHK*SEVAHR</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>12 FK*DLGEBNFK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>137 K*LYTEIAS</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>162 YK*AAFTCCQADDK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>190 LDRLDEK*ASSAK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>195 ASSAK*QR</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>199 LK*CASLQK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>212 AKF*AWVAR</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>351 LAK*TDBTTLK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>432 NLGK*VQSK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>525 K*QTALVELVK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>545 ATK*EQDLK</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>545 EQDLK*AVMDFAAPVEK</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Piperacillin/albumin ratio 50:1; incubation time 24 h.

* Site of piperacillin modification.
FIGURE 4. Piperacillin-specific stimulation of PBMCs and T cell lines from hypersensitive patients. A, PBMCs from 19 hypersensitive patients were specifically stimulated with piperacillin (SI > 2). B, Positive intradermal skin test from one of four patients presenting with cutaneous signs and a strong in vitro proliferative response against piperacillin. C, A biopsy of the maculopapular reaction site. Immune stain confirmed the lymphocytic infiltrate as being almost entirely T cell in character, with a CD3+CD45RO+ phenotype (original magnification ×100). Both CD4+ and CD8+ subsets were present. D, Piperacillin-specific IFN-γ, IL-13, and granzyme B ELISPOT. The figure shows PBMCs from four hypersensitive patients stimulated with piperacillin for 48 h. E, Multiplex analysis of cytokines/chemokines secreted from hypersensitive patient PBMCs (n = 5) incubated with stimulatory concentrations of piperacillin. F, Concentration-dependent proliferation and IFN-γ secretion by a piperacillin-responsive T cell line. T cell lines were generated by repetitive stimulation of blood lymphocytes with piperacillin and irradiated autologous PBMCs in IL-2-containing medium. ●, patient 22; ○, patient 10; ■, patient 2; ▲, patient 4; ♦, patient 5.
between drug modification of protein and drug-specific lymphocyte responses, thereby determining the fundamental relationship between the chemistry of Ag formation and drug hypersensitivity.

Mass spectrometric analysis, after protein digestion, revealed that piperacillin forms multiple haptenic structures on human serum albumin in vitro. Consistent with the known chemistry of β-lactam antibiotics, we have shown that piperacillin can form adducts with lysine residues by direct opening of the β-lactam ring. However, the chemistry of Ag formation is complex. There is also a hapten formed in which the 2,3-dioxopiperazine ring has undergone hydrolysis. Thus, two distinct haptons can be formed. In principle, adducts resulting from opening of the 2,3-dioxopiperazine ring or cross-linking adducts could also be generated. However, these adducts were not detected, indicating that the β-lactam ring is more susceptible to nucleophiles than the 2,3-dioxopiperazine ring. No evidence of modification at other amino acid residues could be found. This might be because adducts resulting from piperacillin binding to other nucleophilic amino acids such as serine, histidine, and cysteine are not formed. However, such adducts might be too labile to be detected under current MS conditions. The extent of piperacillin albumin binding was dependent on incubation time at each drug concentration studied. This is important, as cystic fibrosis patients are treated by rapid infusion with high doses of drug (4 g over 20 min, three times a day), leading to a plasma maximum concentration of 0.4–0.65 mM and plasma clearance of the drug after 4.5 h (33). The concentration of human serum albumin in plasma is ∼35 g/L (0.53 mM) (34), and the molar ratio of drug to protein at maximum concentration is 0.75–1.22:1. These data indicate that conjugates would be formed in vivo, and, because the t1/2 of human serum albumin is ∼19 d (35), the modified protein is likely to accumulate over the course of the therapeutic intervention, which is usually 14 d in duration.

To characterize haptons formed in vivo, albumin was isolated from patients receiving piperacillin and subjected to affinity, cation exchange, and reverse-phase chromatography after trypsin digestion and prior to MS. In addition to the hydrolyzed and cyclized haptons of piperacillin, a further haptenic structure was detected that was derived from the desethyl metabolite of piperacillin with a hydrolyzed piperazine ring. This reveals that not all of the products of piperacillin metabolism in the liver are excreted in the bile or urine, but a significant amount is released back into the circulation.

A restricted profile of piperacillin albumin binding was detected in vitro and in vivo. At the lowest drug concentration investigated (drug/protein ratio of 0.01:1), modification of a single lysine (Lys341) could be detected (Fig. 3B). Modified Lys341 was also detected on albumin isolated from patients, alongside modification of Lys100, Lys195, and Lys342. The selective modification of lysine residues on albumin was not simply related to the pKa of individual lysine residues and therefore the reactivity of the side-chain amino group. Instead, the majority of the sites of modification were associated with Sudlow sites I and II, hydrophobic pockets in human serum albumin involved in the noncovalent interaction with endogenous ligands and drugs (21, 36, 37). This indicates that the orientation of the noncovalent interaction of drug with protein and the subsequent stabilization by hydrogen

Table II. Clinical characteristics of the hypersensitive patients

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Age (y)/Gender</th>
<th>Drug Reaction</th>
<th>Time to Reaction (d)</th>
<th>Time Since Reaction (y)</th>
<th>No. of Courses Prior to Reaction</th>
<th>LTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18/M</td>
<td>Tazocin</td>
<td>MPE/fevers</td>
<td>9</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>29/F</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>7</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>29/F</td>
<td>Tazocin</td>
<td>Fever/esosinophilia</td>
<td>7</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>26/M</td>
<td>Tazocin</td>
<td>MPE</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>29/M</td>
<td>Tazocin</td>
<td>MPE</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>24/F</td>
<td>Tazocin</td>
<td>Delayed angioedema</td>
<td>6</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>17/M</td>
<td>Piperacillin</td>
<td>Flulike illness</td>
<td>2</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>24/M</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>2</td>
<td>>5′</td>
<td>NA</td>
</tr>
<tr>
<td>9</td>
<td>23/M</td>
<td>Tazocin</td>
<td>MPE</td>
<td>11</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>30/F</td>
<td>Tazocin</td>
<td>Flulike illness</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>45/F</td>
<td>Tazocin</td>
<td>FEVERs</td>
<td>11</td>
<td>5</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>19/M</td>
<td>Tazocin</td>
<td>MPE/fever</td>
<td>2</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>22/F</td>
<td>Tazocin</td>
<td>MPE</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>21/F</td>
<td>Tazocin</td>
<td>Arthralgia</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>17/M</td>
<td>Tazocin</td>
<td>MPE</td>
<td>4</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>24/F</td>
<td>Tazocin</td>
<td>Arthralgia/MPE</td>
<td>7</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>22/M</td>
<td>Tazocin</td>
<td>Pruritus</td>
<td>5</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>28/F</td>
<td>Tazocin</td>
<td>Fever/arthralgia</td>
<td>9</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>31/F</td>
<td>Tazocin</td>
<td>Flulike illness</td>
<td>9</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>20</td>
<td>34/M</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>2</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>21</td>
<td>32/M</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>5</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>22</td>
<td>23/F</td>
<td>Tazocin</td>
<td>Fevers/unwell</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>29/M</td>
<td>Tazocin</td>
<td>Tight chest</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>18/M</td>
<td>Piperacillin</td>
<td>Urticarial rash</td>
<td>2</td>
<td>>5′</td>
<td>NA</td>
</tr>
<tr>
<td>25</td>
<td>40/M</td>
<td>Piperacillin</td>
<td>MPE/fevers</td>
<td>10</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>26a</td>
<td>29/F</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>27b</td>
<td>34/F</td>
<td>Tazocin</td>
<td>MPE</td>
<td>3</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>28a</td>
<td>35/F</td>
<td>Piperacillin</td>
<td>MPE</td>
<td>7</td>
<td>10</td>
<td>17</td>
</tr>
</tbody>
</table>

*Indicates that the exact time period since reaction is not known due to missing medical records or occurrence at another cystic fibrosis center.

†Indicates patient on long-term immunosuppressive therapy. Patients 26 and 27 were receiving hydroxychloroquine for cystic fibrosis-related arthritis. Patient 28 received long-term low-dose steroids as prophylaxis against hypersensitive bronchopulmonary aspergillosis.

+, SI 2–5; ++, SI 5–10; ++++, SI 10–20; ++++, >20; −, no response; F, female; ID, intradermal; LTT, lymphocyte transformation test; M, male; MPE, maculopapular exantheme; NT, not tested.
bonding influences which lysine residues are in close proximity with the drug and are therefore preferentially covalently modified.

Circulating piperacillin-specific lymphocytes were detected in the majority of piperacillin-hypersensitive patients with cystic fibrosis. The piperacillin-specific proliferative response was reproducible on repeated testing and dose dependent, with the highest response detected with therapeutic piperacillin concentrations that are estimated to be in the range of 0.5–1 mM. Piperacillin-specific lymphocytes were detected in hypersensitive patients with and without cutaneous symptoms, suggesting that drug-specific lymphocytes are involved in other clinical features of the disease pathogenesis (arthralgia, fevers, or flulike symptoms). The cytokine profile associated with a particular reaction determines the nature of the induced immune response (1, 38–42). Ag
stimulation of PBMCs from piperacillin-hypersensitive patients was associated with the secretion of a mixed panel of cytokines, with high levels of IFN-γ, IL-13, TNF-α, IL-1β, IL-6, and MIP-1α/β detected. IL-5 secretion, a common feature of drug reactions in non-cystic fibrosis patients (43, 44), was not seen in piperacillin-hypersensitive patients, and this may relate to the absence of eosinophilia as a clinical feature. The detection of IL-1β, TNF-α, and IL-6 in culture supernatant containing piperacillin-stimulated PBMCs from hypersensitive patients and tolerant controls (albeit to a lesser extent) are suggestive of a dendritic cell response against piperacillin, as has recently been described with amoxicillin (45, 46). In support of this argument, piperacillin-specific T cell clones do not secrete IL-1β (Sabah El-Ghaiesh, B. Kevin Park, and Dean J. Naisbitt, unpublished observations). Whether this cytokine profile is a function of the chemistry of the drug or the disease status of the patient is not
known and is an area of ongoing work. A positive granzyme B ELISPOT in patients with a positive proliferative response shows that piperacillin stimulates cytotoxic T cells and that they may play a role in the hypersensitivity reaction.

In view of the fact that the lymphocyte transformation test can be used to confirm the immunological etiology of piperacillin hypersensitivity reactions, MS methods were used to explore the chemical basis of drug antigenicity in PBMC cultures and to define that albumin conjugates are antigenic per se. Piperacillin-albumin binding at individual lysine residues was profiled with respect to incubation time, dose, and stimulation of patient PBMCs. Hydrolyzed and/or cyclized forms of the piperacillin hapten were detectable at each lymphocyte-stimulating concentration of piperacillin (Fig. 6). Modified Lys190, Lys199, Lys432, and Lys541 were detectable at 2 mM piperacillin after a 24-h incubation. The level of modification at each site was low, but coincided with a weak proliferative response. Piperacillin haptens were detectable on six lysine residues after 48–72 h, and a concentration-dependent increase in the level of modification at each site was observed. This correlated with the concentration-dependent stimulation of patient PBMCs. Analysis of minimally modified but lymphocyte-stimulatory albumin conjugates formed in culture indicate that peptide sequences around positions Lys190, Lys199, and Lys541 may be the principal functional epitopes generated in the lymphocyte transformation test. To confirm that piperacillin-albumin conjugates are indeed antigenic, a conjugate with hydrolyzed and cyclized forms of the piperacillin hapten detectable on each lysine residue modified in culture was generated under physiological conditions and shown to stimulate PBMCs and T cell clones to proliferate. These data are consistent with previous studies showing that synthetic penicillin–albumin constructs generated under forced chemical conditions can stimulate T cells (2) but crucially relate to Ags that are formed under physiological conditions. We are therefore in a position to prepare fully characterized peptide conjugates of piperacillin of physiological relevance and determine their fit into relevant MHC molecules (8).

To conclude, using mass spectrometric methods, we have defined piperacillin modifications on albumin, with respect to hapten formation and peptide epitope profile, that are able to stimulate T cells ex vivo and shown that such modifications can be detected on circulating albumin in patients receiving the drug. Drug–peptide conjugates derived from modified albumin clearly represent functional Ags for T cells and may indeed function as immunogens in patients with cystic fibrosis. However, it also possible that alternative proteins, which generate similar drug-modified peptide epitopes, may constitute the functional immunogen in the patients. A prospective clinical study of piperacillin hypersensitivity is required to explore immunological consequences of Ag formation.

![Figure 7](http://www.jimmunol.org/)
before, during, and after the development of hypersensitivity using the techniques developed in this investigational study.

Acknowledgments
We thank the nurses of the Adult Cystic Fibrosis Unit who helped to collect samples as well as all of the volunteers and patients with cystic fibrosis who participated in the project. We also thank Prof. Mark Taylor and postdoc- toral fellow Dr. Kelly Johnston (School of Tropical Medicine, University of Liverpool) for the contribution to the cytokine analysis.

Disclosures
The authors have no financial conflicts of interest.

References

