B Cell and BAFF Dependence of IFN-α—Exaggerated Disease in Systemic Lupus Erythematosus-Prone NZM 2328 Mice

Noam Jacob, Shunhua Guo, Alexis Mathian, Michael N. Koss, Simona Gindea, Chaim Putterman, Chaim O. Jacob and William Stohl

J Immunol 2011; 186:4984-4993; Prepublished online 7 March 2011;
doi: 10.4049/jimmunol.1000466
http://www.jimmunol.org/content/186/8/4984

References
This article cites 72 articles, 31 of which you can access for free at:
http://www.jimmunol.org/content/186/8/4984.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
B Cell and BAFF Dependence of IFN-α–Exaggerated Disease in Systemic Lupus Erythematosus-Prone NZM 2328 Mice

Noam Jacob,* Shunhua Guo,* Alexis Mathian,† Michael N. Koss,‡ Simona Gindea,§ Chaim Putterman,§ Chaim O. Jacob,§,* 1 and William Stohl* 1

IFN-α is a potent activator of innate and adaptive immunity, and its administration to preautoimmune (NZB×NZW)F1 mice promotes virulent systemic lupus erythematosus (SLE) disease. Given the known contributions of B cells and BAFF to SLE, we evaluated the ability of IFN-α administration to induce disease in wild-type (WT), B cell-deficient, and BAFF-deficient NZM 2328 mice. Whereas WT mice rapidly developed proliferative glomerulonephritis, marked proteinuria, and increased mortality in response to IFN-α administration, B cell-deficient mice developed neither renal pathology nor clinical disease. Moreover, BAFF-deficient mice, despite developing limited glomerular IgG and C3 deposition, also remained free of histological glomerulonephritis and clinical disease. Strikingly, similar T cell expansion and serum IgG responses were observed in adenovirus (Adv)-IFN–treated WT and BAFF-deficient mice despite their disparate pathological and clinical responses, whereas numbers of activated B cells increased in WT mice but not in BAFF-deficient mice. Nonetheless, B cell, plasma cell, and T cell infiltration of the kidneys in Adv-IFN–treated WT mice was similar to that in WT mice treated with Adv-control. Its ability to promote SLE disease in WT mice notwithstanding, IFN-α administration failed to drive the preferential expansion of CD4 + memory T cells that occurs during the natural course of disease, and glomerular infiltration of macrophages failed to associate with development of disease. These results collectively suggest that therapeutic targeting in SLE of BAFF and/or B cells in SLE could be successful even in states of IFN-α overexpression. Moreover, our results document important biological differences between IFN-α–driven and spontaneous natural SLE disease. The Journal of Immunology, 2011, 186: 4984–4993.

The clinical diagnosis of systemic lupus erythematosus (SLE) is based on a constellation of signs, symptoms, and clinical laboratory-based abnormalities. Perturbation of distinct single genes can lead to SLE-like manifestations in mice (1–6), and human linkage and association studies have identified multiple SLE susceptibility genes (7–14). Accordingly, SLE represents a collection of disorders that likely stems from a plethora of discrete etiologies and pathogenic pathways.

This inherent heterogeneity notwithstanding, certain common threads tend to run across all varieties of SLE. One of these is the IFN-α signature, defined as the preferential increase in expression of those genes upregulated by IFN-α (15–17).

Several observations support a contributory role for IFN-α in SLE. Systemic administration of IFN-α has promoted de novo SLE-like disease in several patients (18). Moreover, circulating IFN-α levels in SLE are frequently elevated (17), corticosteroid-induced remissions are paralleled by the extinguishing of the IFN-α signature (16), and the risk allele of the STAT4 gene, which codes for a transcription factor activated by IFN-α signaling, is associated with increased sensitivity to IFN-α signaling (19). In several murine SLE models, blockade of IFN-α signaling by genetic deletion of the type I IFNRE attenuates disease (20–22). Most strikingly, administration of IFN-α promotes the rapid onset of virulent clinical disease in young (preautoimmune) (NZB×NZW)F1 (BWF1) female mice but has no pathogenic effects on age- and sex-matched non-SLE–prone BALB/c mice (23).

B cells indispensably contribute to spontaneous SLE not just by autoantibody-dependent means but by autoantibody-independent means as well, as highlighted by the complete absence of SLE features in B cell-deficient MRL/Mp-lpr/lpr mice (MRL-lpr) (24) and the partial restoration of disease following genetic reconstitution of these mice with B cells incapable of secreting Ig (25). Indeed, B cell-depletion therapy in human SLE leads to clinical improvement in many patients despite limited effects on circulating autoantibodies (26–31).

BAFF also vitally contributes to SLE. BAFF-transgenic (Tg) mice that are otherwise non-autoimmune-prone develop SLE-like features, including elevated circulating titers of multiple autoantibodies and immune-complex glomerulonephritis (GN) (32–34). Furthermore, constitutive BAFF overexpression leads to accelerated glomerular pathology in mice with an incomplete diathesis to SLE (35), and SLE-like features develop in otherwise non-autoimmune–
prone BAFF-Tg mice even in the complete absence of T cells (as long as MyD88-mediated signaling is intact) (36). Conversely, treatment of BWF1 or MRL-lpr mice with a BAFF antagonist retards disease progression and improves survival (34, 37–39), and disruption of the \textit{Baff} gene in SLE-prone NZM 2328 (NZM) mice [an inbred recombinant strain derived from BWF1 mice that closely mirrors the parental SLE phenotype and shares many features with human SLE (40)] markedly attenuates development of clinical disease (41). In humans, treatment with an anti-BAFF mAb ameliorates disease activity in seropositive SLE patients (42–46).

Importantly, BAFF expression is affected by IFN-\(\alpha\). In human dendritic cell (DC) cultures, IFN-\(\alpha\) upregulates BAFF expression (47), whereas treatment of SLE patients with an anti-IFN-\(\alpha\) mAb downregulates BAFF expression (48). In both SLE-prone BWF1 mice and non-autoimmune–prone BALB/c mice, circulating BAFF levels increase following IFN-\(\alpha\) administration (23).

Given that clinical trials in human SLE have been, and are continuing to be, conducted with agents that deplete B cells or neutralize BAFF, the dependence of IFN-\(\alpha\)-driven pathogenicity on B cells or BAFF in SLE becomes a clinically important topic. The ability of IFN-\(\alpha\) to drive exaggerated disease in an SLE-prone host has previously not been tested in the context of B cell or BAFF deficiency. Moreover, the faithfulness of IFN-\(\alpha\)-driven disease to the spontaneous disease has previously not been sufficiently assessed. To address these issues, we induced IFN-\(\alpha\) overexpression through an adenovirus (Adv) construct containing murine IFN-\(\alpha\) (Adv-IFN) and studied SLE-prone NZM mice as well as NZM mice deficient in B cells (NZM.JHD), in BAFF (NZM.\textit{baff}\textleftarrow), in the type I IFNR \(-\text{\alpha}\) chain (NZM.\textit{ifnar}\textleftarrow), and in both TNFR1 and -2 (NZM.\textit{tnfr1}\textleftarrow and \textit{tnfr2}\textleftarrow).

Materials and Methods

General
All reported studies were approved by the University of Southern California Institutional Animal Care and Use Committee.

Mice
Female mice were housed in specific pathogen-free quarters. Five congenic NZM strains were used: wild-type (WT); NZM.JHD; NZM.\textit{baff}\textleftarrow; NZM.\textit{ifnar}\textleftarrow, and NZM.\textit{tnfr1}\textleftarrow and \textit{tnfr2}\textleftarrow. The generation of NZM.\textit{baff}\textleftarrow, NZM.\textit{ifnar}\textleftarrow, and NZM.\textit{tnfr1}\textleftarrow and \textit{tnfr2}\textleftarrow mice has previously been described (22, 41, 49).

To generate NZM.JHD mice, B cell-deficient JHD mice were backcrossed into NZM mice using a marker-assisted selection protocol (41, 50, 51). These markers were chosen to include those regions identified as susceptibility loci in NZM mice (52). To detect the disrupted \(JH\) gene fragment (containing a neo insert), genomic DNA extracted from mouse tail clippings was PCR-amplified for 35 cycles at 94°C for 40 s, 62°C for 40 s, and 72°C for 1 min. The primer sequences were:

\[
\begin{align*}
\text{Forward:} & \quad 5' - \text{GCCGCA TTGCA TCAGCCATGATGGA} - 3' \\
\text{Reverse:} & \quad 5' - \text{GAGGAGACGGT-CCGGGAGAGA} - 3'
\end{align*}
\]

Band sizes for the intact and disrupted gene fragments are ~200 bp and ~120 bp, respectively. A neo band was detected only in mice with a disrupted gene fragment.

IFN-\(\alpha\) treatment and clinical assessment
The rAdv vector containing murine IFN-\(\alpha\) subtype 5 under the control of the CMV promoter/enhancer (Adv-IFN) and the control Adv vector lacking the IFN-\(\alpha\) insert (Adv-control) have been previously described (23). Mice received single i.v. injections containing 1–1.5 \(\times 10^6\) viral particles (vp) of either Adv-IFN or Adv-control and were assessed for proteinuria twice weekly on a scale of 0–4+ with Albustrix assay strips (Bayer, Elkhart, IN). Severe proteinuria was defined as \(\geq 3+\) on two consecutive examinations. Blood was collected prior to Adv injection and at days 8 and 28 postinjection.

Serum IFN-\(\alpha\) determination
Serum IFN-\(\alpha\) levels were determined by ELISA (PBL Biomedical Laboratories, Piscataway, NJ) according to the manufacturer’s instructions. The lower limit of detection is 12.5 pg/ml. Samples with values \(<12.5 \text{ pg/ml}\) were arbitrarily plotted as 12.5 pg/ml.

Cell surface staining

Murai spleen mononuclear cells were stained with fluorochrome-conjugated mAb specific for murine CD3, CD4, CD8, CD44, CD62L, CD45R (B220), CD19, CD21, CD23, CD69, CD80, or CD86 (BD Pharmingen, San Diego, CA, or eBioscience, San Diego, CA) and analyzed by flow cytometry (49).

Serum total IgG and IgG autoantibody determinations
Serum levels of total IgG and IgG anti-chromatin and anti-dsDNA Abs were determined by ELISA as previously described (53, 54). Autoantibody OD values were normalized to the mean OD of serum from 5-mo-old MRL-lpr mice, the latter being arbitrarily assigned a value of 100 U/ml.

Kidney histology

Individual sections of formalin-fixed kidneys were stained with H&E and examined by light microscopy. Each section was assessed for glomerular hypercellularity, mesangial matrix expansion, interstitial cellular infiltration, and tubular atrophy or dilation.

Kidney immunofluorescence

Five-micron sections of snap-frozen kidneys were stained for total IgG deposition using FITC-conjugated goat anti-mouse IgG Abs (Southern Biotechnology Associates, Birmingham, AL), for individual IgG isotype deposition using FITC-conjugated goat anti-mouse IgG1, IgG2a, IgG2b, or IgG3 Abs (Southern Biotechnology Associates), and for C3 deposition using FITC-conjugated goat anti-mouse C3 Abs (MP Biomedicals, Solon, OH). To document infiltration of T cells, B cells, or plasma cells into the kidneys, FITC-conjugated rat anti-CD3 (BD Biosciences, San Diego, CA), PE-conjugated anti-CD20 (eBioscience), and PE-conjugated anti-CD138 (BD Biosciences) Abs were used.

Kidney immunohistochemistry

Four-micron sections of deparaffinized formalin-fixed kidneys were subjected to Ag retrieval with an Ag unmasking solution (Vector Laboratories, Burlingame, CA). The sections were then blocked with hydrogen peroxide and normal rabbit serum and stained for macrophages using rat anti-mouse Mac-2 mAb (Biolegend, San Diego, CA). Biotin-conjugated rabbit anti-rat IgG (Vector Laboratories) was used as the secondary Ab, followed by avidin–streptavidin–peroxidase complex (Vector Laboratories). Diaminobenzidine (Vector Laboratories) was used as the substrate for color development.

Statistical analysis

All analyses were performed using SigmaStat software (SSPS, Chicago, IL). Parametric testing between two matched or unmatched groups was performed by the paired or unpaired \(t\) test, respectively. Parametric testing among three or more groups was performed by one-way ANOVA. When the data were not normally distributed or the equal variance test was not satisfied, nonparametric testing was performed by the Mann–Whitney rank sum test between two groups and by Kruskal–Wallis one-way ANOVA on ranks among three or more groups. Correlations were determined by Pearson’s product-moment correlation for normally distributed interval data.

Results

\textit{NZM.JHD} mice develop neither clinical nor pathological SLE

B cell-deficient MRL-lpr mice are completely protected from development of clinical or pathological SLE (24). Nevertheless, the defect in MRL-lpr mice in CD95 (Fas)-mediated signaling and the attendant massive lymphadenopathy and expansion of B220\(^+\) CD3\(^+\)CD4\(^+\)CD8\(^–\) T cells (features typical of neither other murine SLE models nor human SLE) a priori raises the possibility that the consequences of B cell deficiency in other SLE mice may differ from those in MRL-lpr mice.
To that end, we turned to NZM mice, which phenotypically resemble human SLE more closely than do MRL-lprpr mice (40), and generated B cell-deficient NZM.JHD mice. In sharp contrast to B cell-sufficient NZM mice in which severe proteinuria begins to develop by 5 to 6 mo of age and which experience >90% mortality by 11 to 12 mo of age (41, 49, 55), NZM.JHD mice (n > 40) neither developed severe proteinuria nor died prematurely through 12 mo of age. Moreover, no glomerular pathology developed in NZM.JHD mice, in sharp contrast to the diffuse proliferative GN that develops in WT NZM mice (41, 49).

Inability of IFN-α to promote pathological or clinical disease in NZM.JHD mice

Administration of a single dose of replication-incompetent Adv-IFN (1 × 10⁹ vp), but not Adv-control, to preautoimmune (9–11 wk of age) BWF1 mice promoted rapid and virulent GN, manifested as severe proteinuria as early as 3 wk postinjection and 100% mortality by 2 mo postinjection (23). Of note, a lower single dose of the same Adv-IFN (1–2 × 10⁸ vp) led to the identical virulent clinical and pathological outcomes in preautoimmune NZM mice (22).

Development of disease consequent to overexpression of IFN-α in these mice could have been either B cell dependent or B cell independent. That is, IFN-α might drive a pathogenic pathway that directly or indirectly requires B cells, in which case overexpression of IFN-α in a B cell-deficient host would have no pathogenic ramifications. Alternatively, IFN-α might upregulate a pathogenic pathway that does not involve B cells, in which case overexpression of IFN-α in B cell-deficient hosts that are otherwise SLE-prone should elicit clinical disease and end-organ (kidney) pathology. To test these possibilities, we compared the effects of Adv-IFN in B cell-sufficient NZM and B cell-deficient NZM.JHD mice.

In accord with our previous experience (22), preautoimmune NZM mice injected with Adv-IFN rapidly developed clinical disease. Severe proteinuria developed in 50% of the mice by 6 wk postinjection, and all of the mice developed severe proteinuria by 10 wk postinjection (Fig. 1A). Mortality ensued shortly after development of severe proteinuria, with 50% of the mice dead by 7 wk postinjection and 100% of the mice dead by 12 wk postinjection (~5 mo of age; Fig. 1B). To put this into perspective, 50% mortality among unmanipulated NZM mice is not reached until ~8 mo of age, and 95% mortality is not realized until 11 to 12 mo of age (41). In contrast to the potent pathogenic effects following Adv-IFN administration, Adv-control–treated preautoimmune NZM mice failed to develop any clinical disease (Fig. 1A, 1B). Importantly, clinical sequelae also did not develop in Adv-IFN–treated (or Adv-control–treated) NZM.JHD mice.

Kidney histology paralleled the clinical findings. Adv-control–treated NZM mice showed some mesangial hypercellularity and glomerular focal and segmental hyaline thrombi (Fig. 2A), consistent with the early pathologic changes in the kidneys of these mice as the onset of clinical disease approaches. In contrast, Adv-IFN–treated mice developed florid diffuse proliferative GN, including crescents, wire loops, and interstitial inflammatory cells (Fig. 2B, 2C). In agreement with the absence of clinical disease, no glomerular or interstitial pathology was detected in NZM.JHD mice treated with Adv-IFN (or Adv-control; Fig. 2D, 2E), and, consistent with the absence of B cells, no renal IgG deposition in these mice was appreciated (data not shown).

Inability of IFN-α to promote meaningful immunopathological or clinical disease in NZM.baff⁻/⁻ mice

The most likely explanation for the inability of IFN-α to drive disease in NZM.JHD mice is that the absence of B cells extinguished any underlying pathogenic autoimmune process. To address this possibility, we turned to NZM.baff⁻/⁻ mice, which harbor B cells that, despite their low absolute numbers, do differentiate into autoantibody-producing cells and lead to serologic autoimmunity and renal immunopathology over time (41).

This extant autoimmune process notwithstanding, NZM.baff⁻/⁻ mice failed to develop overt clinical disease even by 16 wk following injection with Adv-IFN (Fig. 1A, 1B). This does not appear to be due to differential in vivo production of IFN-α by the injected Adv-IFN, because serum IFN-α levels in Adv-IFN–treated NZM.baff⁻/⁻ mice were identical to those in Adv-IFN–treated NZM mice (Fig. 1C). As expected, serum IFN-α levels were below the limit of detection in all tested Adv-control–injected mice.

In agreement with the absence of clinical disease, neither Adv-control–treated nor Adv-IFN–treated NZM.baff⁻/⁻ mice developed renal pathology (Fig. 2F, 2G). Whereas Adv-IFN–treated NZM mice uniformly developed greater glomerular IgG than did control NZM mice, only very limited glomerular IgG deposition was detected in either Adv-control– or Adv-IFN–treated NZM.baff⁻/⁻ mice (Fig. 3A–D). This dichotomy between NZM mice and NZM.baff⁻/⁻ mice uniformly held true for deposition of each of the individual IgG subclasses and C3 (Fig. 3G–I, 3M–P, 3S–V, 3Y–BB, 3EE–HH). Of note, infiltration of (CD3⁺) T cells and (CD20⁺) B cells into the renal parenchyma was uniformly substantial in both Adv-control–treated and Adv-IFN–treated NZM mice and was qualitatively similar in each (Fig. 3KK–NN) despite...
the glaring difference in development of GN (Fig. 2A–C, 2F, 2G). In contrast, infiltration of (CD138+ plasma cells in Adv-IFN–treated or Adv-control–treated NZM mice was negligible at most (Fig. 3WV–ZZ). In addition, essentially no T cell, B cell, or plasma cell infiltrates were detected in the kidneys of any of the NZM.baff−/− mice (Fig. 3MM, 3NN, 3SS, 3TT, 3YY, 3ZZ).

It remained possible that resistance of NZM.baff−/− mice to Adv-IFN was due to the absence of overt kidney pathology in these young (2 to 3 mo of age) mice at the time of Adv-IFN injection. That is, IFN-α may have required not only an underlying autoimmune process to exaggerate disease but some established end-organ (kidney) pathology as well. We therefore turned to 9-mo-old NZM.baff−/− mice in which both serological autoimmunity and kidney immunopathology had already developed (41). Kidney pathology, highlighted by prominent hyaline thrombi, was appreciated in both Adv-control– and Adv-IFN–treated mice, with glomerular hypercellularity being somewhat more prominent in the latter (Fig. 2H, 2I). Glomerular deposition of total IgG, the individual IgG subclasses, and C3 was somewhat more prominent in the latter (Fig. 2MM, 2NN, 2SS, 2TT, 2YY, 2BBB) mice that had been injected with Adv-control (A, C, E, G, I, K, M, O, Q, S, U, W, Y, AA, CC, EE, FF, KK, LL, QQ, RR, WW, XX) and NZM.baff−/− (C–F, I–L, O–R, U–X, AA–DD, GG–JJ, MM–PP, SS–VV, YY–BBB) mice in which there was significant infiltration of CD8+ and CD4+ naive cells (but not CD4+ memory cells) corresponding control mice. In fact, expansions of spleen total mononuclear cells and individual T cell subsets was not as robust in each mouse cohort, the results were pooled. Marked splenomegaly was visually obvious in both NZM and NZM.baff−/− mice that had been injected with Adv-IFN in comparison with corresponding control mice. In fact, expansions of spleen total mononuclear cells, CD3+ cells, total CD4+ cells, CD4+ naïve (CD44loCD62Lhi) cells, CD4+ memory (CD44hiCD62Llo) cells, and CD8+ cells in Adv-IFN–injected NZM.baff−/− mice were no less than the corresponding expansions in Adv-IFN–injected NZM mice (Fig. 4A–F), with the expansion of CD8+ cells in Adv-IFN–injected NZM.baff−/− mice being greater than that in the corresponding NZM mice (p = 0.008). Expansion of spleen total mononuclear cells and individual T cell subjects was not as robust in Adv-IFN–injected old NZM.baff−/− mice as in young NZM.baff−/− mice (p = 0.004 for each comparison), although expansion of CD4+ memory cells was substantially greater in the former than in the latter (p = 0.011).

To assess whether the variability in expansion of these T cell subsets was related to differential IFN-α expression, we identified four Adv-IFN–treated NZM mice and four Adv-IFN–treated NZM.baff−/− mice that had been bled on day 8 postinjection and subsequently analyzed for both lymphocyte phenotype and serum IFN-α levels. Among the former mice, numbers of CD3+, CD4+, CD8+, and CD4+ naïve cells (but not CD4+ memory cells) correlated with serum IFN-α levels (p ≤ 0.028). In contrast, no such correlations were observed among the latter mice.

In contrast to the considerable IFN-α–driven T cell expansion, serum levels of total IgG and IgG autoantibodies even at day 28.
postinjection were similar in Adv-IFN–treated 3-mo-old NZM mice or 3-mo-old NZM.baff/−/− mice as in the corresponding Adv-control–treated mice. Only in 9-mo-old NZM.baff/−/− mice was there a trend for greater serum levels of IgG anti-dsDNA Abs (Fig. 5C–E), and this trend involved each of the measured IgG subclasses (IgG1, IgG2a, IgG2b; Fig. 5F).

Although the total IgG and IgG autoantibody responses in NZM mice were not affected by treatment with Adv-IFN, the number of spleen B cells did modestly increase (p = 0.02; Fig. 5G). In contrast, no such increase was appreciated in either young or old NZM.baff/−/− mice. Moreover, the numbers of activated (CD69+/CD27−) B cells significantly expanded in Adv-IFN–treated NZM mice (p = 0.005) but not in Adv-IFN–treated NZM.baff/−/− mice (Fig. 5H). This expansion in CD69+/CD27− B cells was accompanied by a similar expansion in CD86+ B cells (p = 0.031) but not in CD80+ B cells. In addition, the dramatic reductions in follicular and marginal zone B cells that are characteristic of NZM.baff/−/− mice (41) were not affected by Adv-IFN treatment (data not shown). No correlations between serum IFN-α levels and any B cell populations were observed among either Adv-IFN–treated NZM or Adv-IFN–treated NZM.baff/−/− mice.

Failure of IFN-α to preferentially expand the activated memory CD4+ cell population

BWF1 mice undergo an ordered progression from serological autoimmunity to renal immunopathology to clinical disease as they age, with the entire process taking as long as 11 mo. This ordered progression is condensed into a much shorter time frame in young preautoimmune BWF1 mice injected with Adv-IFN (23), raising the hope that the exaggerated disease in Adv-IFN–treated mice could serve as a rapid, yet faithful, model of the natural disease. This does not appear to be the case. NZM mice undergo a virtually identical ordered progression from serological autoimmunity to renal immunopathology to clinical disease as they age. A biomarker that parallels this progression is the ratio of spleen CD4+ memory cells to spleen CD4+ naïve cells (M/N ratio). This ratio is low in clinically healthy mice but markedly rises with development of clinical disease (proteinuria). For example, in 5-mo-old healthy WT NZM mice (n = 4), the mean M/N ratio was 0.22, whereas in 9-mo-old proteinuric WT mice (n = 6), the mean M/N ratio was 1.99 (Fig. 4G; p = 0.003). In NZM.tifnra−/− mice, in which disease onset is delayed and severity is relatively mild (22), the change in M/N ratio over time was less striking, albeit still significant (p = 0.020), with the mean M/N ratio rising from 0.39 in 6-mo-old NZM.tifnra−/− mice (n = 3) to 0.95 in 12-mo-old mice (n = 3). In NZM.tifnra−/−tnfr2−/− mice, in which disease is accelerated (49), the mean M/N in proteinuric 5-mo-old mice (n = 4) was already very high (2.81).

In contrast to the association between M/N ratios and clinical disease in NZM, NZM.tifnra−/−, and NZM.tifnra−/−tnfr2−/− mice, no such associations were noted in Adv-IFN–treated mice. Even in Adv-IFN–treated NZM mice, which either had or were soon to develop lethal GN, M/N ratios remained very low and were no different from those in control WT mice.

Lack of correlation between glomerular macrophages and clinical disease among Adv-IFN–treated mice

As NZM mice age and develop their natural spontaneous disease, increasing numbers of macrophages progressively infiltrate the glomeruli. Few, if any, such cells are detectable in preautoimmune mice (3 mo of age); some cells are present in autoimmune but clinically healthy mice (6 mo of age); and many cells are present in clinically sick mice (9 mo of age) (S. Guo, W. Stohl, and C.O. Jacob, manuscript in preparation). Our observations in NZM mice are consistent with those in BWF1 mice, in which an association between activated renal macrophages and clinical disease has been reported (56).

Remarkably, no association between glomerular infiltration of macrophages and clinical disease was appreciated in Adv-IFN–treated NZM mice, treated with Adv-IFN at 2.5 mo of age and sacrificed 2 mo later (when becoming clinically sick), harbored only few macrophages in their glomeruli, which were no greater in number than those harbored by clinically healthy Adv-control–treated NZM mice (Fig. 6A, 6B). Although no glomerular...
infiltration of macrophages was appreciated in either Adv-control– or Adv-IFN–treated young (age-matched with the WT mice) NZM.

Discussion

IFN-α has, to date, garnered considerable interest as a contributing factor to SLE pathogenesis. Genetic depletion of the type I IFNR (which blocks IFN-α signaling) attenuates disease in several murine SLE models (20–22), and administration of IFN-α to preautoimmune BWF1 mice promotes the rapid onset of a highly aggressive clinical disease (23). In humans, an IFN-α signature is commonly expressed by SLE patients (15–17), and systemic administration of IFN-α has induced SLE-like disease (18). These results have prompted many investigators to consider IFN-α a viable candidate therapeutic target, and a phase I clinical trial in SLE with one anti–IFN-α mAb has already been completed (48).

These observations notwithstanding, IFN-α does not immutably contribute to SLE pathogenesis. In MRL-1pr mice, genetic depletion of the type I IFNR not only does not ameliorate disease, but also actually aggravates it (57). By implication, IFN-α may not necessarily be vital to or even contribute to development of SLE in other hosts. Thus, a more complete understanding of the permissive factors that work in concert with IFN-α to promote disease is needed.

In this light, our results unequivocally demonstrate that although administration of Adv-IFN can rapidly promote florid clinical and pathological disease in preautoimmune NZM mice, identical treatment fails to drive SLE disease in congenic B cell-deficient NZM.JHD mice. Of note, IFN-α–sufficient, B cell-deficient NZM and MRL-1pr mice are each completely resistant to the spontaneous SLE disease that their respective IFN-α–sufficient, B cell-sufficient WT counterparts develop (24), indicating that...
lifelong production of endogenous IFN-α even in an SLE-prone environment is incapable of overcoming resistance to disease imposed through the absence of B cells. It should be stressed that these observations do not prove that B cells are the actual pathogenic effectors. B cells may simply be part of a cascade of events that culminate with the generation and/or activation of some pathogenic effectors. B cells may simply be part of a cascade of events that culminate with the generation and/or activation of some pathogenic non-B cell population.

Not only does Adv-IFN treatment not promote disease in NZM. JHD mice, but Adv-IFN treatment also fails to drive SLE disease in either young NZM.baff−/− mice (in which overt renal immunopathology has not yet developed) or in old NZM.baff−/− mice (in which overt renal immunopathology has already developed). This does not represent a failure of IFN-α to effect its biological activity in BAFF-deficient hosts, inasmuch as expansion of all tested T cell subsets in Adv-IFN–treated young NZM.baff−/− mice is identical to that in age-matched Adv-IFN–treated NZM mice.

Although T cell expansion was noted in all Adv-IFN–treated mice (both WT and BAFF-deficient), the degree of expansion was variable. One possible contributing factor could have been variability in IFN-α expression following Adv-IFN injection. We measured serum IFN-α levels to document successful administration of Adv-IFN, and levels in NZM.baff−/− mice were identical to those in WT NZM mice. Of note, among the small number of Adv-IFN–treated NZM WT mice in which both day 8 serum IFN-α levels and lymphocyte profiles were determined, serum IFN-α levels correlated significantly with CD3+, CD4+, CD8+, and CD4+ naive cells, whereas no correlations were detected in Adv-IFN–treated NZM.baff−/− mice.

With regard to these results, there are several important caveats to consider. First, we did not perform comprehensive pharmacokinetic studies. Because the total integrated exposure to IFN-α in an individual host is biologically more meaningful than is the serum level at a single point in time, T cell expansion may have better correlated with (unmeasured) total integrated exposure to IFN-α over time. Second, the number of mice studied was small (n = 4 in each group), so the presence or absence of significant correlations may have reflected chance occurrences. Third, because our results are the composite of several individual experiments performed over many months, variability in T cell expansion may have reflected subtle (unmeasured) differences in the local environment, such as changes in the microbiologic profiles over time within the animal room. Fourth, differences in clinical status may have affected T cell expansion among the WT mice. We have long appreciated that spleen cell numbers in NZM mice decline as the course of their spontaneous natural SLE reaches the point of overt clinical disease (development of ascites, unkempt fur, and lethargy). Indeed, T cell numbers in Adv-IFN–treated NZM mice that were clinically very sick at the time of analysis tended to be lower than in those Adv-IFN–treated NZM mice that had not yet become as sick.

The paucity of IgG (including IgG anti-chromatin and anti-dsDNA) responses by day 28 postinjection in Adv-IFN–treated NZM mice was unexpected, in light of the greater glomerular deposition of IgG and C3 in Adv-IFN–treated NZM mice than in control NZM mice and the increases in serum total IgG levels in BWF1 mice treated with the same Adv-IFN by day 10 postinjection and the increases in serum IgG anti-dsDNA levels by day 21 postinjection (23). Importantly, the dose of Adv-IFN given to these BWF1 mice (1 × 1010 vp) was 7–10-fold greater than the dose given to our NZM mice (1–1.5 × 1010 vp), so the limited IgG responses in young NZM mice may have reflected a dose of Adv-IFN insufficiently high to promote robust IgG responses. Indeed, Adv-IFN at a dose of 3 × 109 vp (a dose closer to the one we used) did not promote either anti-nuclear or anti-dsDNA Abs in B6.Sle1.Sle2.Sle3 SLE mice despite promoting immune-complex GN (58). These findings do not exclude a pathogenic contribution from autoantibodies at later time points, but they do collectively point to an important autoantibody-independent component for IFN-α–exaggerated disease, although it remains possible that nephritogenic autoantibodies with specificities other than chromatin or dsDNA were promoted by IFN-α overexpression within the first 28 d postinjection and contributed to development of disease. This apparent uncoupling of circulating autoantibody levels from clinical disease is reminiscent of NZM.stat4−/− and NZM.stat6−/− mice in which the effects on circulating autoantibody levels were antiparallel to those on clinical disease (55).

Another point to consider is the striking degree of T cell and B cell infiltration into the kidneys of Adv-control–treated (clinically healthy) NZM mice. In mice treated in parallel with Adv-IFN, renal infiltration of T cells and B cells was qualitatively similar, but the latter mice developed a virulent clinical disease, whereas the former mice remained healthy. It may be that IFN-α somehow affects the nature or function of these infiltrating cells and thereby promotes conversion from a clinically quiescent state to a very active one. The absence of such renal T cell and/or B cell infiltration may help explain the protection of NZM.baff−/− mice from the pathogenic effects of Adv-IFN treatment.

Because IFN-α is a potent inducer of BAFF (47) and treatment of SLE patients with an anti-IFN-α mAb reduces their endogenous expression of BAFF (48), our findings support a pathogenic pathway from IFN-α to clinical disease with the vital involvement of BAFF along the way. Given that Adv-IFN administration drives similar robust T cell expansion in WT and BAFF-deficient NZM mice, the dichotomous clinical and pathological responses in these mice suggest that the role for IFN-α in IFN-α–exaggerated disease might hinge more on effects on B cells and/or the innate immune system than on T cells.

Regarding B cells, both IFN-α and BAFF upregulate the expression and sensitivity of TLR7 and TLR9 (59–63). Such signaling can promote B cell activation, proliferation, and differentiation (64), and signaling through the downstream MyD88 pathway may be especially relevant to SLE (36, 65). Moreover, TLR-
mediated signaling promotes production of IL-6 (60, 63, 66), the administration of which to BWF1 mice being capable of accelerating disease and the neutralization of which being capable of ameliorating disease (67–69). Indeed, Adv-IFN treatment promoted a modest increase in total B cells and a substantial increase in activated (CD69+ or CD86+) B cells in NZM, but not NZM.

baff−/−, mice. One possible explanation is that IFN-α-driven activation of B cells in a BAFF-sufficient environment differs from that in a BAFF-deficient environment. That is, engagement of both IFN-α and BAFF on the target B cell is required for complete activation, and the failure of activated B cells to increase in number in Adv-IFN–treated NZM* baff*−/− mice truly reflects an incomplete activation of B cells. An alternative explanation is that the marked reduction in B cells in a BAFF-deficient environment precludes detection of IFN-α–driven activation. That is, B cell activation in Adv-IFN–treated NZM* baff*−/− mice is complete, but we cannot detect it due to issues external to the activation process, such as homing to extrasplenic sites. To aid in distinguishing between these two possibilities, we are currently generating BAFF-deficient NZM mice that selectively overexpress Bcl-2 in their B cells and, therefore, harbor (near) normal numbers of B cells.

Regarding cells of the innate immune system, IFN-α promotes monocyte and immature DC activation and proliferation (70, 71). Of note, IFN-α promotes increased expression of BAFF in myeloid DCs (mDCs), which also express BAFF receptors (47, 72). When stimulated with BAFF, mDCs upregulate costimulatory molecules and produce chemokines and proinflammatory cytokines (73). Conversely, systemic BAFF antagonism reduces DC activation in Adv-IFN–treated NZM.

* baff*−/− mice that work in parallel but are largely independent of each other (Fig. 7). Development of SLE disease in NZM* ifnar*−/− mice following enforced overexpression of BAFF (e.g., by introduction of a BAFF-Tg) would point to the first alternative, whereas continued protection from disease would point to the second. Additional investigation into the cellular and molecular underpinnings of the intertwined roles played by BAFF and IFN-α is needed.

If IFN-α and BAFF each trigger a pathogenic pathway that is largely independent of the other, then therapeutic targeting of IFN-α in human SLE is highly rational. However, if BAFF is an indispensable downstream component of the pathogenic pathway triggered by IFN-α, then one may question the choice of IFN-α as an optimal therapeutic target rather than directly targeting BAFF. Post hoc analysis of a phase II trial with belimumab, an anti-BAFF mAb, in SLE demonstrated clinical benefit in the subset of patients who were seropositive (serum ANA titer ≥1:80 or elevated serum anti-dsDNA level) at the time of enrollment into the study (42, 43). Two recent phase III trials have substantiated such efficacy (44–46). From a clinical standpoint, additional investigation is sorely needed to identify those SLE patients who could benefit more from antagonism of BAFF (or B cells) versus those who could benefit more from antagonism of IFN-α.

In addition to the therapeutic implications our results may have for human SLE, our findings have important implications for experimental murine SLE models. The differences in M/N ratios between NZM mice that had developed their natural disease and those mice that had developed IFN-α–exaggerated disease were striking. Moreover, the association between glomerular infiltration of macrophages and clinical disease in the natural NZM disease is in stark contrast to the uncoupling of the two in Adv-IFN–treated NZM and NZM* baff*−/− mice. These disparities clearly demonstrate that SLE disease driven by artificial overexpression of IFN-α in a given host may not faithfully reflect all the characteristics of the SLE disease that would otherwise spontaneously develop in that same host. That is, the disease that is promoted by IFN-α overexpression in a given host may be subtly, but fundamentally, different from the natural spontaneous disease in that host. In the case of NZM mice, it appears that spontaneous disease is much more T cell-driven than is IFN-α–exaggerated disease.

Differences between the natural disease and IFN-α–exaggerated disease are not limited to NZM mice but have also been documented in the antiphospholipid syndrome-related (NZW×BXSB) F1 mouse model (75). Importantly, differences between the IFN-α–exaggerated diseases and the natural spontaneous diseases in these hosts in no way negate the likely value of the IFN-α–driven

FIGURE 7. Role for BAFF in IFN-α–driven exaggerated disease in NZM mice. *Upper half,* Overexpression of IFN-α activates mDC to increase BAFF production. This increased BAFF production further activates mDC and promotes increased B cell survival and activation, the latter leading to increased B cell responses to endogenous and/or exogenous TLR ligands. Collectively, this results in production of IL-6 and other proinflammatory cytokines and culminates in exaggerated disease. *Lower half,* Overexpression of IFN-α directly activates both mDC and B cells. Such activation does not require BAFF as an intermediary, but a distinct BAFF-driven pathway in parallel must be present for exaggerated disease to develop.
models and the insights that can be gleaned from them. Nevertheless, investigators should exercise considerable circumspection prior to extrapolating findings from IFN-α-exaggerated models to infer mechanistic pathways in the unmanipulated native hosts.

Disclosures
The authors have no financial conflicts of interest.

References

