Two Unique Human Decidual Macrophage Populations

Brandy L. Houser, Tamara Tilburgs, Jonathan Hill, Matthew L. Nicotra and Jack L. Strominger

J Immunol 2011; 186:2633-2642; Prepublished online 21 January 2011;
doi: 10.4049/jimmunol.1003153
http://www.jimmunol.org/content/186/4/2633

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/01/21/jimmunol.1003153.DC1

References
This article cites 43 articles, 14 of which you can access for free at:
http://www.jimmunol.org/content/186/4/2633.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Two Unique Human Decidual Macrophage Populations

Brandy L. Houser,* Tamara Tilburgs,* Jonathan Hill,† Matthew L. Nicotra,* and Jack L. Strominger*†

Several important events occur at the maternal–fetal interface, including generation of maternal–fetal tolerance, remodeling of the uterine smooth muscle and its spiral arteries and glands, and placental construction. Fetal-derived extravillous trophoblasts come in direct contact with maternal decidual leukocytes. Macrophages represent ~20% of the leukocytes at this interface. In this study, two distinct subsets of CD14+ decidual macrophages (dMφs) are found to be present in first-trimester decidual tissue, CD11cHIGH and CD11cLOW. Gene expression analysis by RNA microarray revealed that 379 probes were differentially expressed between these two populations. Analysis of the two subsets revealed several clusters of coregulated genes that suggest distinct functions for these subsets in tissue remodeling, growth, and development. CD11cHIGH dMφs express genes associated with lipid metabolism and inflammation, whereas CD11cLOW dMφs express genes associated with extracellular matrix formation, muscle regulation, and tissue growth. The CD11cHIGH dMφs also differ from CD11cLOW dMφs in their ability to process protein Ag and are likely to be the major APCs in the decidua. Moreover, these populations each secrete both proinflammatory and anti-inflammatory cytokines that may contribute to the balance that establishes fetal–maternal tolerance. Thus, they do not fit the conventional M1/M2 categorization.

The Journal of Immunology, 2011, 186: 2633–2642.

Ag-presenting function, macrophages may be involved in tissue remodeling through phagocytosis and secretion of extracellular matrix proteins and cytokines. Therefore, macrophages may be critical in the coordination of immune responses and tissue remodeling events that facilitate a successful pregnancy.

Various studies using model systems have categorized macrophages into different subtypes based on cell surface phenotype, cytokine production, and functional properties. Originally, the Th1/Th2 paradigm (11). Despite the nomenclature similarities, no master regulator that directs their formation has been found, emphasizing individual cell plasticity in the myeloid lineage rather than discrete cell types. Although these macrophage model systems have been useful in understanding macrophage functionality, M1/M2 macrophages have yet to be defined in tissue or in specific diseases (12).

Gene expression profiles of CD14+ dMφs compared with maternal peripheral blood (mPB) CD14+ monocytes have demonstrated that dMφs contain transcripts indicative of both an immune regulatory and tissue remodeling phenotype; therefore, dMφs were classified as resembling the M2 phenotype (13). In addition, dMφs have been shown to express receptors important for phagocytosis of degraded extracellular matrix products, (14) as well as in apoptotic cell clearance (15). Furthermore, CD14+ dMφs are not only capable of producing immunomodulatory proteins such as TGF-β, but also have the ability to produce an abundance of proinflammatory IL-6 and IL-8 when stimulated by cell lines expressing the fetal-trophoblast HLA-G homodimer (16).
and express unique gene signatures that do not allow for their classification as either M1 or M2 macrophages. Rather, these cells are decidual tissue resident macrophages that appear to have distinct functions at the maternal–fetal interface.

Materials and Methods

Blood and tissue samples
First-trimester decidural samples (gestational age: 6–12 wk) were obtained from patients undergoing elective pregnancy termination at a women’s health clinic in Boston, MA. mPB samples were collected from healthy pregnant women (gestational age: 8–12 wk). Leukocytes from mPB were purified using a Ficoll-Hypaque gradient (GE Healthcare) followed by CD14+ selection using magnetic beads (Miltenyi Biotec). Leukocytes from blood were processed in a similar manner. CD34−, CD45−, CD45−/CD11c−, HLA-DR−, CD208−, CD209−, CD33−, and CD11c− cells were then isolated according to Stratagenes Absolutely RNA Microprep Kit protocol. Purified RNA was subjected to one round of amplification and bioanalyzer (Agilent Technologies). In all but one sample, patient 5, CD11cHI dMds with >90% purity were obtained but did not affect the data set (Supplemental Fig. 1).

Microarray data analysis
Raw data were normalized with the robust multichip average algorithm implemented in the Expression File Creator module from the GenePattern software package (17). Data were visualized with the Multiplot module from GenePattern. Gene signatures were generated based on ≥1.5-fold expression across all patient samples. Correlations of coefficients were generated based on the Immunological Genomic Project (ImmGen) data base, which is composed of 160 different murine immune cell subsets using GenePattern software (18).

Quantitative real-time PCR

Amplified RNA was reverse transcribed with Stratagene’s AffinityScript Quantitative PCR cDNA Synthesis Kit and according to manufacturer’s protocol. Amplification of specific PCR products was detected using the SYBR Green system (Applied Biosystems) in duplicates and normalized to three housekeeping genes: β2-microglobulin, peptidylprolyl isomerase A, and ubiquitin. Relative quantification was performed using the Applied Biosystems’ ∆Ct method. Data were normalized with the Multiplex module from GenePattern.

Preparation of labeled RNA and microarray hybridization

Samples used were considered healthy based on pathological assessment, as well as quantity and quality of RNA and aRNA as determined using the Bioanalyzer (Agilent Technologies). In all but one sample, patient 5, CD11cHI dMds with >90% purity were obtained but did not affect the data set (Supplemental Fig. 1).

Electron microscopy

Cellular and subcellular ultrastructures were examined in a JEOL 1200EX Transmission Electron microscope (JEOL) or a Tecnai Spirit BioTWIN system (FEI), and images were recorded with an AMT 2k charge-coupled device camera (Advanced Microscopy Techniques).

Boron-dipyrromethene 493/503 staining

CD11cHI and CD11cLO CD14+ macrophages were stained at 105 cells/ml for 10 min at 4°C and then washed with 1× PBS containing 2% FBS. Cells were then stained with boron-dipyrromethene 493/503 (BODIPY-493/503) dye at a concentration of 0.1 μg/ml for 20 min at 4°C. Cells were then mounted with Vectashield mounting media (Dako) and coverslipped. Cells were imaged using the inverted Zeiss LSM510 META and analyzed using LSM software.

Phagocytosis assay

Decidual cell leukocyte cultures from a Ficoll-Hypaque gradient were plated at a density of 106 cells/ml for 16 h. After incubation, cultures were divided in half and incubated at either 4°C, as a control, or at 37°C for another 2 h. Then 1 μM of FITC-conjugated 1-μm beads (Sigma-Aldrich) were added to cultures. Beginning at time 0 and collecting every subsequent hour for 3 h, cells were harvested, fixed, and stained at 4°C.
Cultures were incubated with anti–CD14-PE, anti–CD45-PercP, and anti–CD11c-APC (BD Biosciences) for 30 min and measured on the FACS-Calibur flow cytometer (Becton Dickinson). Phagocytosis was measured in mean fluorescent units of FITC-labeled beads.

Ag processing assay

Decidual leukocytes were incubated at \(3 \times 10^6\) cells/ml for 1 h at 37˚C with the self-quenching molecule DQ-BSA (Invitrogen) or BSA-FITC (Sigma Aldrich) as a control. After incubation, cells were washed with cold buffer on ice to stop the reaction immediately. Cells were then stained with CD14, CD45, and CD11c (as previously described), and analyzed on the FACS Calibur flow cytometer (Becton Dickinson).

Results

dMφs consist of two populations that differentially express CD11c

Tissue-derived macrophages at the maternal–fetal interface are found in several unique microenvironments and are likely to perform multiple disparate functions. To assess this heterogeneity and to distinguish these macrophages from other APCs, such as dendritic cells, these tissue-derived dMφs were characterized by flow cytometry using several conventional cell surface markers. Two distinct CD45⁺CD14⁺ dMφ populations from first-trimester decidual leukocytes were identified that differentially express CD11c at either high (CD11cHI) or intermediate levels (CD11cLO) (Fig. 1A). Analysis of 12 patient samples showed a median of 20 ± 9.9% (SD) CD11cHI cells, and 68.7 ± 8.6% CD11cLO cells, from maternal peripheral CD14⁺ monocytes, as assessed by flow cytometry. A paired Student t test was used to determine statistical significance *\(p < 0.05\); **\(p < 0.01\); ***\(p < 0.001\) is. Lines indicate median percentages.

Table I. Microarray patient methods

<table>
<thead>
<tr>
<th>Gestational Age</th>
<th>MoFlo Sorting</th>
<th>Microarray</th>
<th>Quantitative RT-PCR</th>
<th>% Purity (CD11cLO:CD11cHI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 wk (1)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>96:96</td>
</tr>
<tr>
<td>8 wk (2)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>93:93</td>
</tr>
<tr>
<td>6 wk (3)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>96:95</td>
</tr>
<tr>
<td>9 wk (4)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>95:95</td>
</tr>
<tr>
<td>7 wk (5)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>96:88</td>
</tr>
<tr>
<td>7 wk (6)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>91:91</td>
</tr>
<tr>
<td>9 wk (7)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>96:95</td>
</tr>
<tr>
<td>9 wk (8)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>90:93</td>
</tr>
</tbody>
</table>

*CD11cLO only.
**CD11cHI only.
the common myelomonocytic-derived cell marker CD33, but not the hematopoietic stem cell marker CD34 or the dendritic cell markers CD208 (DC-LAMP), CD83, or DEC-205 (data not shown). To confirm that these dMφ’s (Fig. 1A) were not derived from contaminating mPB monocytes, we also analyzed first-trimester mPB CD14+ monocytes. mPB monocytes had near-absent expression of CD209 and CD206, high level of expression of HLA-DR (Fig. 1C), and an intermediate expression level of CD11c, appearing as a single relatively homogenous population (data not shown), suggesting that neither the CD11c^{HI} nor the CD11c^{LO} dMφ populations are due to peripheral monocyte contamination. Moreover, cellular morphological appearances as analyzed using May-Grünwald/Geimsa staining of the two populations in comparison with separated mPB CD14⁺ monocytes showed that CD11c^{LO} cells appeared to be a homogeneous population of highly vacuolated macrophages, whereas CD11c^{HI} cells were not vacuolated and were more heterogeneous in both size and nuclear phenotype (Supplemental Fig. 2B). Thus, CD11c^{HI} and CD11c^{LO} dMφ populations are not only distinguished by flow cytometric analysis but by their histological appearance.

CD11c^{HI} and CD11c^{LO} dMφs have distinct transcriptional profiles

To understand what genomic differences distinguish these dMφ subsets, we conducted microarray profiling on highly purified populations isolated by flow cytometry. First-trimester decidual tissue from eight patients was used to isolate CD11c^{HI} and CD11c^{LO} dMφs (Table I). Unique gene signatures for CD11c^{HI} dMφs and CD11c^{LO} dMφs were generated based on a ≥1.5-fold difference in all 8 patients that were used for the analysis generating 243 specific probes upregulated in the CD11c^{HI} dMφ population and 136 in the CD11c^{LO} dMφ population. Complete unique gene signature for both dMφ populations is presented in Supplemental Fig. 3.
ulations from all patients. Genes that did not have a 1.5-fold change in all eight patients were excluded. These commonly differentially expressed probes from CD11c\(^{HI}\) and CD11c\(^{LO}\) dM\(\phi\)s were highlighted on the combined data sets and presented as a volcano plot (Fig. 2). A volcano plot is generated based on the mean expression value of an individual probe’s fold change, and a \(p\) value is calculated on the reproducibility of these changes between the two dM\(\phi\) populations. Gene signatures were composed of 243 probes upregulated specifically in the CD11c\(^{HI}\) population (red dots) and 136 probes in the CD11c\(^{LO}\) population (blue dots). For example, genes encoding cd1c, clec5a (C-type lectin 5a), and ereg are overexpressed in the CD11c\(^{HI}\) population as compared with the CD11c\(^{LO}\). Conversely, CD11c\(^{LO}\) dM\(\phi\)s overexpress genes encoding dmd (dystrophin), unc5b, and wntb5 (for a complete gene list, see Supplemental Fig. 3). Moreover, Pearson’s correlation matrix imaged as a heat map demonstrates the unique gene differences between these two dM\(\phi\) populations (Supplemental Fig. 4). We confirmed differential expression of several genes identified by this microarray analysis using quantitative real-time PCR (Supplemental Fig. 5, Supplemental Table 1). These data suggest that CD11c\(^{HI}\) and CD11c\(^{LO}\) dM\(\phi\)s have unique and reproducible transcriptomes that could indicate varying functional potential. Raw data files can be found at the National Center for Biotechnology Information Gene Expression Omnibus database under the accession number GSE22342.

CD11c\(^{HI}\) and CD11c\(^{LO}\) dM\(\phi\)s show transcriptional differences indicative of unique functional programs

To understand what common transcriptional programs are being used by each dM\(\phi\) population, we cross-referenced the CD11c\(^{HI}\) and CD11c\(^{LO}\) gene signatures to the ImmGen database (Fig. 3) (18). The ImmGen database contains microarray data generated from hundreds of unique immune cell types. For a particular pair of genes, the database also indicates whether expression tends to be correlated (i.e., similarly upregulated or downregulated) across multiple immune cell types. Thus, suites of genes involved in common transcriptional programs across immune cells may be identified. For each dM\(\phi\) subset, we determined the coefficient of correlation from the ImmGen database. Genes that correlate closely with one another appear as red, whereas genes that do not correlate will appear as blue/black. Based on these data sets, CD11c\(^{HI}\) dM\(\phi\)s upregulate suites of genes involved in invasion, mobility, inflammatory processes including lipid metabolism, and antiapoptotic effects. Conversely, CD11c\(^{LO}\) dM\(\phi\)s upregulate gene clusters that regulate growth and development, as well extracellular communication including networking (Fig. 3C). Thus, CD11c\(^{HI}\) and CD11c\(^{LO}\) dM\(\phi\)s coordinately regulate the expression of genes that are attributable to different functional capabilities.

Neither dM\(\phi\) population corresponds to the classical M1 or M2 designation

Are these CD11c\(^{HI}\) and CD11c\(^{LO}\) dM\(\phi\)s unique gene signatures common to other previously reported macrophage-derived gene expression profiles? To answer this question, the CD11c\(^{HI}\) and CD11c\(^{LO}\) gene signatures were overlaid on published data sets using GenePattern’s multiplot visualizer tool. These data with overlays determine whether there is any differential enrichment of a particular signature between the two populations. First, comparison with the recently published microarray analysis of dM\(\phi\)s, that were termed “M2,” and maternal peripheral monocytes (13) (record GSEA10612) showed that the unique gene signature for CD11c\(^{LO}\) dM\(\phi\)s (shown as blue dots) correlated with the published dM\(\phi\)s (Fig. 4A, left side; \(p < 0.0001\)). However, the unique gene signature of the CD11c\(^{HI}\) dM\(\phi\)s (shown as red dots) did not correlate precisely with either dM\(\phi\)s or mPB monocyes but was skewed toward the mPB monocyte genotype (\(p = 0.002\)). A second overlay, data comparing in vitro differentiated blood-derived macrophages and peripheral blood monocytes (11) (record GDS2429) also showed that CD11c\(^{LO}\) dM\(\phi\)s signature tracked with the macrophages, suggesting that this population may have a more terminally differentiated phenotype (Fig. 4B; \(p < 0.0001\)). Interestingly, in a third comparison, more stringent unique gene signatures were used that include only probes that have a \(\geq 2\)-fold expression comparing CD11c\(^{HI}\) dM\(\phi\)s with CD11c\(^{LO}\) dM\(\phi\)s. In this comparison, CD11c\(^{HI}\) dM\(\phi\)s notably shared genes in common with synovial macrophages from rheumatoid arthritis patients and there was relatively little correlation with blood-derived macrophages (Fig. 4C; \(p < 0.0001\); record GSEA10500), possibly sug-
gesting that CD11c^{HI} dMφs are important mediators of inflammation or tissue remodeling.

Finally, a comparison with in vitro M1 and M2 macrophages derived by cytokine stimulation (11) demonstrated that neither CD11c^{HI} nor CD11c^{LO} dMφ population precisely correlates with these macrophage transcriptional profiles (Fig. 5A; \(p_{\text{HI}} = 0.01; \ p_{\text{LO}} = 0.006 \)). Moreover, the unique gene signatures for M1 (green) and M2 (purple) Mφs overlaid with the present data set for dMφs similarly showed minimal or no correlation (Fig. 5B; \(p_{\text{HI}} = 0.02; \ p_{\text{LO}} = 0.63 \)). Heat maps generated based on selected genes from the M1 and M2 gene signature suggests that CD11c^{HI} and CD11c^{LO} dMφs cannot be distinguished based on this classical categorization of macrophages (Fig. 5C, Supplemental Fig. 6). If there were an enrichment of either M1 or M2 in either dMφ population, then overall more genes would be upregulated (red) in one or the other heat maps. However, because this pattern does not occur, it suggests that neither dMφ population is precisely M1 nor M2.

CD11c^{HI} and CD11c^{LO} dMφs each secrete both proinflammatory and anti-inflammatory cytokines in vitro

To examine cytokine secretion by both CD11c^{HI} and CD11c^{LO} dMφs, we cultured purified populations for 16 h in either control media or media that contained 100 ng/ml LPS (L) with or without 20 ng/ml IFN-γ (L/I). Supernatants were analyzed by using either a multiplex assay or standard sandwich ELISA for M1 and M2 cytokines, and were compared with mean expression values that were derived from the normalized RNA microarray data set (Fig. 6). CD11c^{HI} dMφs constitutively expressed MIP-1β, IL-10, IL-6, TNF-α, and TGF-β, whereas IL-1β, IL-6, IL-10, and TNF-α were all significantly induced on LPS or LPS/IFN-γ stimulation. CD11c^{LO} dMφs constitutively expressed similar levels of IL-6, TNF-α, and TGF-β, as well as significantly lower levels of IL-10 and MIP-1β. The higher level of the immunosuppressive cytokine, IL-10, secreted by the CD11c^{HI} dMφs on stimulation may be particularly interesting if a natural receptor and ligand were identified that could induce it. These cells could be a major source of IL-10 at the maternal–fetal interface. Thus, both CD11c^{HI} and CD11c^{LO} dMφs constitutively secrete both proinflammatory and anti-inflammatory cytokines.

CD11c^{HI} dMφs cells contain neutral lipid bodies and CD11c^{LO} dMφs have enlarged phagolysosomes

Microarray results demonstrate that the CD11c^{HI} population upregulated a series of lipid-associated genes compared with CD11c^{LO} cells (Fig. 3B). To clarify their potential role in lipid metabolism, we sorted dMφs into CD11c^{HI} and CD11c^{LO} populations and analyzed them for the presence of lipids by BODIPY 493/503 + expression (Fig. 7A). Although the CD11c^{LO} cells are highly vacuolated, their vacuoles did not contain BODIPY + lipid bodies (Fig. 7A, panels 5 and 6), whereas ~35% of the CD11c^{HI} cells contained neutral lipid droplets (Fig. 7B). Furthermore, electron micro-

![Figure 5](http://www.jimmunol.org/DownloadedFrom)
graphs of sorted CD11c^{HI} and CD11c^{LO} dMφs confirmed lipid body accumulation in a portion of the CD11c^{HI} population, but not in the phagolysosomes of the CD11c^{LO} macrophages (Fig. 7A, panels 6 and 12). The large vacuoles in the CD11c^{LO} cells contain membranous debris and metal-like particles possibly from phagocytosis. Despite evidence of enlarged phagolysosome compartments in the CD11c^{LO} cells, phagocytic capacity on a per-cell level, as measured by fluorescent bead engulfment assays, was equivalent in the two populations (Fig. 7C). Finally, Ag-processing capacities of these two dMφ populations were distinct (Fig. 7D). Using the self-quenching DQ-BSA molecule as a substrate, we noted that CD11c^{HI} dMφs processed BSA Ags to a significantly greater extent than their CD11c^{LO} counterparts. Thus, CD11c^{HI} dMφs are much better at protein Ag processing.

Discussion

In this study, two distinct macrophage populations are shown to be present in human first-trimester decidual tissue. The two dMφ populations can be identified based on high and low expression of CD11c (CD11c^{HI} and CD11c^{LO} dMφs) and are further distinguished by expression of the phagocytic receptors CD209 (DC-SIGN) and CD206 (MMR) overexpressed on only the CD11c^{LO} dMφ subset (Fig. 1), as well as by morphological differences (Fig. 7). CD11c^{HI} and CD11c^{LO} dMφs did not differ in phagocytic capacity; however, only the CD11c^{HI} dMφs processed BSA efficiently, suggesting that it is the major APC in the decidua. Moreover, their unique gene signatures indicate divergent functions.

Macrophages have remarkable plasticity that allows them to respond efficiently to varying environmental stimuli, and mounting evidence indicates that initial classification schemes are an oversimplification of a variety of different cells including those that may differentiate in a tissue-specific manner and participate specifically in host defense, wound healing, and/or immune regulation (12). Our own extensive microarray analysis further confirms that dMφ populations are neither precisely proinflammatory (M1) nor anti-inflammatory (M2). In addition, cytokine analysis showed that both dMφ populations produce inflammatory cytokines, including TNF-α and IL-1β, as well as anti-inflammatory cytokines such as IL-10 and TGF-β, although not always to the same extent (Fig. 7). TGF-β has been shown to be produced by macrophages after phagocytosis of apoptotic cells in the presence of a proinflammatory environment (19), and is known to drive regulatory T cell and NK cell differentiation (20). CD11c^{HI} dMφs constitutively secrete IL-10, and the amount is increased near 4-fold by LPS.

FIGURE 6. CD11c^{HI} and CD11c^{LO} dMφs can each produce both proinflammatory and anti-inflammatory cytokines. Both dMφ populations were either stimulated with LPS with or without IFN-γ, or were left unstimulated for 16 h. Supernatants were collected and measured for cytokine production. All cytokines were measured using a multiplex assay except for TGF-β, in which a standard ELISA assay was used. Cytokine mRNA, as measured by microarray analysis and presented as mean expression value, is shown in the right panels of each protein cytokine profile. A nonparametric ANOVA was used for independent group statistical significance, and a paired Student t test was used to measure statistical significance between groups. *p < 0.05; **p < 0.01; ***p < 0.001. CD11c^{HI} and CD11c^{LO} dMφs are designated as either HI or LO, respectively. L/I, LPS and IFN-γ; UNS, unstimulated.
Percentage of CD11c HI cells that are BODIPY +, based on seven patient samples. compartments that do not correlate with enhanced phagocytic uptake. A

CD11cLO (CD11cHI dM

relate with M1 or M2 blood-der ived macrophages (Fig. 6).

A 4˚C control was done in concert to account for beads that could remain attached to the outside of the cell. SD between biological replicates is shown at every time point.

Beads over the course of 4 h. A 4˚C control was done in concert to account for beads that could remain attached to the outside of the cell. SD between biological replicates is shown at every time point.

Downregulate the expression of proinflammatory cytokines and inflammatory cytokine. For example, it aids in the maintenance of tolerance to human gut flora (21), whereas in decidua, it may downregulate the expression of proinflammatory cytokines and protect against inflammation-induced pathology (22).

Interestingly, both dMφ subsets are also capable of producing proinflammatory cytokines such as TNF-α and IL-1β; therefore, dMφs may contribute to increased inflammation at the fetal–maternal interface. Both TNF-α and IL-1β have been shown to be important regulators of MCP-1 (23), CSF1, and MIF (24). These cytokines have been shown to be associated with the pathology of pre-eclampsia through enhancement of IL-6 production, which contributes to endothelial dysfunction and macrophage accumulation (25). This finding seems in contrast with the notion that the fetal–maternal interface is an anti-inflammatory environment, but fits more with the hypothesis that immune activation is required to facilitate trophoblast invasion and establishment of fetal–maternal tolerance.

Complete gene analysis in comparison with published data sets shows that neither CD11cHI nor CD11cLO dMφs precisely correlate with M1 or M2 blood-derived macrophages (Fig. 6). CD11cHI dMφs do, however, have a propensity to skew with both the monocyte and inflammatory-type macrophage. Furthermore, comparison with synovial fluid macrophages from rheumatoid arthritis patients suggests that these inflammatory-type CD11cHI dMφs are not the same as M1 macrophages, although they share features that are important for in vivo induction of tissue remodeling (Fig. 5C).

Further analysis was carried out using the correlation of coefficients plot to identify clusters of related genes (Fig. 4). Genes associated with lipid metabolism are upregulated in the CD11cHI dMφs, including members of the cd1 family, olr1 (oxidized low-density lipoprotein), lpl (lipoprotein lipase), and pparγ (peroxisome proliferation-activated receptor γ). Lipids have been shown to be important mediators in the induction of inflammation (26), as well as in the production of the hormonal response (27). CD1 molecules are important in the presentation of lipid Ag moieties to both T and NK cells (28–30), and may have a large impact on macrophage mediation of inflammation. Specifically, cd1c is significantly upregulated and has been shown to be capable of present- ing lipopeptides, specifically N-terminally acylated peptides, to human T cells (28). Approximately 10% of decidual lymphocytes are T cells, and several atypical subsets like TCRab+ NKT cells, and CD4+CD8–TCRεβ have been described (31), suggesting that T cell subsets specific for CD1 molecules may be present.

CD11cHI dMφs upregulate genes associated with inflammation including trem1 (triggering receptors expressed by myeloid cell 1) and clec5A. Trem1 is an activating receptor that induces secretion of proinflammatory chemokines and cytokines, thereby amplifying an already present inflammatory stimulus (32). This receptor signals through the adapter molecule DAP12, as does CLEC5A (33). Gene pathway analyses reveal that clec5A is associated with lipid metabolism and inflammation (Fig. 4). CLEC5A has been shown to play a role in osteoclastogenesis (34) and may also play an important role in the initiation of other inflammatory responses. Clec5A, together with trem1, may be key components in inflammatory responses that require lipid-encoding genes expressed by CD11cHI dMφs. These data, together with neutral lipid body accumulation in this subset, suggest an important link among lipids, inflammation, and immune response in first-trimester decidua.

The other subset, CD11cLO dMφs, upregulate a different set of genes that are associated with extracellular matrix formation, networking and extracellular communication, and regulation of
growth. For example, dmd is an important extracellular component, emphasized by mutations that lead to muscular dystrophy. Its importance in muscle cell viability suggests a potential role for CD11c^{LO} dM_s in uterine muscle maintenance and growth and/or muscle cell remodeling during spiral artery modifications. Macrophages and macrophage-secreted factors have been shown to play a role in stimulating satellite-compartment muscle stem cells, including uterine muscle stem cells, during muscle cell regeneration in mice (35). Moreover, it is known that the uterus harbors the ability to enlarge to hold the growing fetus during pregnancy, and it is thought that stem cells now play a role in this growth (36). CD11c^{LO} dM_s may contribute to the maintenance, differentiation, and fusogenic properties of uterine muscle stem cells (37). Igf1 (insulin-like growth factor 1), a gene important for the development and functional maturation of skeletal tissues and reproductive organs, is also upregulated by the CD11c^{LO} dM_s. The Igf1 mouse knockout causes infertility (38) and the underdevelopment of muscle tissue (39). The overexpression of Igf1 by CD11c^{LO} dM_s may result in the induction of growth and maturation of muscle stem cells and uterine growth during pregnancy.

Ex vivo culture studies together with phenotypic analysis on second-trimester placental samples further indicate that CD11c^H and CD11c^{LO} dM_s are truly independent cell types in the decidua. No evidence of their interconversion was found despite inherent plasticity of macrophages (data not shown). However, these unique subsets of macrophages that have been found to upregulate different genetic programs for distinct functions share several thousand gene transcripts, cytokine secretion profiles, and phenotypic markers. Moreover, based on microarray analysis, both subsets upregulate a variety of genes that are proinflammatory and TGF-β, which has a variety of functions including its role in immune tolerance. The proinflammatory molecules include il-1β, cox1, cox2, and c1qc. Cyclooxygenase-2, an important isoform that is responsible for the conversion of arachidonic acid into inflammatory mediators such as PGs, has been shown to play a role in preterm labor, suggesting that the inhibition of the formation of PGs could lead to the maintenance of pregnancy (40). C1qc is a component of the classical complement cascade, and although most complement is produced by hepatocytes, a growing body of evidence demonstrates the importance of tissue resident macrophages producing complement components locally for regulation of opsonization, phagocytosis, and cytokine production (41). Moreover, C1q is upregulated by macrophages that also produce anti-inflammatory cytokines such as IL-10 and TGF-β (42). Importantly, complement has been shown to play a pivotal role for successful pregnancy outcomes (43), and its production by dM_s together with inflammatory mediators may be crucial for the induction of tolerance at the maternal–fetal interface.

The early decidua has previously been characterized as a place of fetal-placental development (39). The overexpression of Igf1 by CD11c^{LO} dM_s may also contribute to the balance that is necessary for tissue remodeling and growth, as well as for fetal–maternal tolerance.

Acknowledgments

We thank Drs. Diane Mathis and Christophe Benoist for support, Dr. Rod Bronson for pathology expertise, Scott Davis for help with microarray analysis, Patricia Rogers for help with cell sorting, and Dr. Leigh Guerin for discussions.

Disclosures

The authors have no financial conflicts of interest.

References

Supplemental Figure 1: Patient 5 CD11cHI dMΦs correlate with other CD11cHI patient populations. Raw mean expression values for patient 5 alone vs. all other CD11cHI patients reveal a strong correlation as indicated by the straight diagonal line of genes (gray dots). CD11cHI unique gene signature (red dots) incorporated into this analysis shows that patient 5 is not causing gene outliers.

Supplemental Figure 2: CD11cHI and CD11cLO dMΦs are morphologically distinct and can be found separately in tissue sections. A) Fresh-fixed paraffin-embedded tissue from gestational time point of 9 weeks stained with anti-CD209-Cy3 (RED) and anti-CD14-alexa488 (GREEN). White arrows emphasize CD14+CD209LO cells (40X objective). The two lower panels are single color controls. (B) May Grünwald-Giemsa staining of patient-paired CD11cHI and CD11cLO dMΦs along with separated maternal peripheral CD14+ monocytes (60X objective).

Supplemental Figure 3: Complete list of CD11cLO and CD11cHI decidual macrophage unique gene signatures based on microarray analysis. Complete unique gene signature for CD11cHI and CD11cLO dMΦs generated based upon a 1.5 fold or greater gene up regulation as compared to each other. Gene symbol along with the probe ID from the Affymetrix HU 133 2.0 Plus platform is included. Mean expression value with standard deviation (SD) is included for each signature along with the average of the mean expression value of the compared data set. A paired student's t test was used to determine statistical significance.

Supplemental Figure 4: Pearson's correlation plot of CD11cHI and CD11cLO dMΦs. Pearson's correlation of coefficients was calculated between each sample and plotted as a heatmap. A value of 1 indicates complete correlation (white boxes). As deviation increases the correlation between samples becomes <1 (blue boxes).

Supplemental Figure 5: Quantitative real-time PCR confirmation of microarray results. (A) Quantitative real-time PCR (qRT-PCR) analysis of a portion of the CD11cHI and CD11cLO dMΦs for a six different genes normalized to multiple house keeping genes. Primers that were used can be found in Supplemental Table 1. (B) Microarray results of the same 6 genes for the same set of patients shown as mean expression value.

Supplemental Figure 6: Raw Expression Values of genes for the M1 and M2 signatures for the CD11cHI and CD11cLO dMΦs. Raw expression values of each individual patient from the CD11cHI and CD11cLO dMΦ for each gene considered part of the M1 or M2 unique gene signatures. These raw expression values were utilized to generate the heat maps that are found in Figure 6C.

Supplemental Table 1: Quantitative real-time PCR primers
Supplemental Figure 1

Mean Expression value CD11c^{Hi} patient 5

Mean Expression value CD11c^{Hi} patients omitting patient 5
Supplemental Table 1: Quantitative real-time PCR primers

<table>
<thead>
<tr>
<th>Product</th>
<th>FWD</th>
<th>REV</th>
<th>Product Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD163</td>
<td>TGG CCT CTG TAA TCT GCT CA</td>
<td>GGT CAA CTT CGC CTG GTA AA</td>
<td>140</td>
</tr>
<tr>
<td>INDO</td>
<td>TTT CAC CAA ATC CAC GAT CA</td>
<td>TGC AAA CTC CTT TTG GGT CTT</td>
<td>141</td>
</tr>
<tr>
<td>Stabilin-1</td>
<td>AAT GGC ATC ATC CAT GCT CT</td>
<td>AAG CCA AGC AGT GCT CCA G</td>
<td>131</td>
</tr>
<tr>
<td>CCR7</td>
<td>GTG GTG GCT CTC CTT GTC AT</td>
<td>GCT TTA AAG TTC CGC ACG TC</td>
<td>140</td>
</tr>
<tr>
<td>LYVE-1</td>
<td>GAT TAG CCC AAA CCC CAA GT</td>
<td>CTG GAA TGC ACG AGT TAG TCC</td>
<td>128</td>
</tr>
<tr>
<td>JMJD3</td>
<td>CCC CGA CTT GTT CAA GAT GA</td>
<td>GCA GTA GTA GGC TGG CTC GT</td>
<td>139</td>
</tr>
<tr>
<td>B2M</td>
<td>TGC TGT CTC CAT GTT TGA TGT ATC T</td>
<td>TCT CGT CTC CCC ACC TCT AAG T</td>
<td>86</td>
</tr>
<tr>
<td>PPIA</td>
<td>TCT GCA CTG CCA AGA CTG AG</td>
<td>TGT CCA CAG TCA GCA ATG GT</td>
<td>148</td>
</tr>
<tr>
<td>UbC</td>
<td>ATT TGG GTC GCG GTT CTT G</td>
<td>TGC CTT GAC ATT CTC GAT GGT</td>
<td>133</td>
</tr>
</tbody>
</table>