The Human Glucocorticoid Receptor as an RNA-Binding Protein: Global Analysis of Glucocorticoid Receptor-Associated Transcripts and Identification of a Target RNA Motif

Faoud T. Ishmael, Xi Fang, Kenneth R. Houser, Kenneth Pearce, Kotb Abdelmohsen, Ming Zhan, Myriam Gorospe and Cristiana Stellato

J Immunol 2011; 186:1189-1198; Prepublished online 10 December 2010;
doi: 10.4049/jimmunol.1001794

http://www.jimmunol.org/content/186/2/1189

Supplementary Material

http://www.jimmunol.org/content/suppl/2010/12/10/jimmunol.1001794.DC1

References

This article cites 55 articles, 30 of which you can access for free at:
http://www.jimmunol.org/content/186/2/1189.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
The Human Glucocorticoid Receptor as an RNA-Binding Protein: Global Analysis of Glucocorticoid Receptor-Associated Transcripts and Identification of a Target RNA Motif

Faoud T. Ishmael,†,‡,§ Xi Fang,* Kenneth R. Houser,†,§ Kenneth Pearce,§ Kotb Abdelmohsen,§ Ming Zhan,§ Myriam Gorospe,§ and Cristiana Stellato*

Posttranscriptional regulation is emerging as a key factor in glucocorticoid (GC)-mediated gene regulation. We investigated the role of the human GC receptor (GR) as an RNA-binding protein and its effect on mRNA turnover in human airway epithelial cells. Cell treatment with the potent GC budesonide accelerated the decay of CCL2 mRNA (t1/2 = 8 ± 1 min versus 62 ± 17 min in DMSO-treated cells) and CCL7 mRNA (t1/2 = 15 ± 4 min versus 114 ± 37 min), but not that of CCL5 mRNA (t1/2=231 ± 8 min versus 266 ± 5 min) in the BEAS-2B cell line. This effect was inhibited by preincubation with an anti-GR Ab, indicating that GR itself plays a role in the turnover of these transcripts. Coimmunoprecipitation and biotin pulldown experiments showed that GR associates with CCL2 and CCL7 mRNAs, but not CCL5 mRNA. These methods confirmed CCL2 mRNA targeting by GR in human primary airway epithelial cells. Association of the GR was localized to the 5′ untranslated region of CCL2 mRNA and further mapped to nt 44–60. The collection of transcripts associated with GR, identified by immunoprecipitation of GR-mRNA complexes followed by microarray analysis, revealed 479 transcripts that associated with GR. Computational analysis of the primary sequence and secondary structures of these transcripts yielded a GC-rich motif, which was shown to bind to GR in vitro. This motif was used to predict binding of GR to an additional 7889 transcripts. These results indicate that cytoplasmic GR interacts with a subset of mRNA through specific sequences and can regulate turnover rates, suggesting a novel posttranscriptional role for GR as an RNA-binding protein. The Journal of Immunology, 2011, 186: 1189–1198.

Synthetic glucocorticoids (GC) are the mainstay in the treatment of allergic and inflammatory diseases due to their potent anti-inflammatory effect. The anti-inflammatory action arises from a complex mechanism of action in which innate and adaptive immune functions are modulated through changes in gene expression for critical immune and proinflammatory genes such as TNF-α, GM-CSF, ILs, and chemokines. When used in the treatment of allergic airway diseases such as asthma and rhinitis, the effect of GC is deemed critical due to the efficacy in inhibiting the mucosal inflammation. This effect is chiefly driven by the inhibition of epithelial-derived cytokines and chemokines that support the recruitment and activation of eosinophils and other inflammatory cells.

The mechanism of GC-mediated gene regulation entails an integrated set of modifications spanning from early signaling events to posttranscriptional processes occurring in the cytoplasm, well after transcriptional changes have been implemented. In this context, modulation of gene transcription is considered to be the central feature of GC-mediated gene regulation (3). Binding of GC to the GC receptor (GR) induces its dissociation from a cytoplasmic multimeric complex of chaperone proteins and its translocation to the nucleus, where it dimerizes and acts as a transcription factor, via binding to a GC response element within the 5′ promoter region of target genes (4, 5). Although this mechanism predominantly drives gene transactivation (6), protein–protein interaction between GR and a host of transcription factors, such as AP-1, NF-κB subunits, and members of STAT and forkhead box families, chiefly results in transcriptional inhibition of proinflammatory genes and modulation of the adaptive immune responses (3, 5).

Posttranscriptional gene regulation (PTR) has a pivotal physiological role in the immune response and in key phases of the establishment and resolution of inflammation (7). PTR regulates the rate of mRNA transport, turnover, and translation, thus ultimately determining the duration and amplitude of the elicited cellular response (8). Among these mechanisms, the control of

*Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224; †Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033; ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033; GlaxoSmithKline, Research Triangle Park, NC 27709; and §National Institute on Aging, National Institutes of Health, Baltimore, MD 21224

Received for publication June 4, 2010. Accepted for publication November 7, 2010.

This work was supported by National Institutes of Health Grant R01 AI060990-01A1 (to C.S.) and by the Academy of America of Allergy, Asthma, and Immunology/GlaxoSmithKline Fellows Career Development Award (to F.T.I.). K.A., M.Z., and M.G. are supported by the National Institute on Aging Intramural Research Program, National Institutes of Health.

The sequences presented in this article have been submitted to the Gene Expression Omnibus under accession number GSE24748.

Address correspondence and reprint requests to Dr. Cristiana Stellato or Dr. Faoud T. Ishmael, Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224 (C.S.) and Departments of Medicine and Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033 (F.T.I.). E-mail addresses: stellato@jhmi.edu (C.S.) and fishmael@hmc.psu.edu (F.T.I.).

The online version of this article contains supplemental material.

Abbreviations used in this article: ARE, adenylate-uridylate–rich element; CR, coding region; Ct, cycle threshold; GC, glucocorticoid; GEO, Gene Expression Omnibus; GO, gene ontology; GR, glucocorticoid receptor; HSP, heat shock protein; IP, immunoprecipitation; PBEC, primary bronchial epithelial cell; PTR, posttranscriptional gene regulation; RBP, RNA-binding protein; RNP, ribonucleoprotein complex; RNP-IP, immunoprecipitation of ribonucleoprotein complex; RT, room temperature; SCFG, stochastic context-free grammar; TTP, tristetraprolin; UTR, untranslated region.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1001794
mRNA turnover is critical in regulating the levels of inflammatory and immune-mediated gene expression (9–11). As a result of seemingly small changes, such as doubling in mRNA $t_{1/2}$, 100–1000-fold differences in mRNA abundance can occur (12, 13). The effect of GCs has been increasingly recognized to occur not only through transcriptional control, but also through regulation of mRNA turnover (14). Genes regulated by GCs via PTR include TNF-α, GM-CSF, COX-2, IL-4Rα, IL-6, inducible NO synthase, vascular endothelial growth factor, CCL11, CCL2, CCL7, and many others (2, 14–16).

Since their generation, mRNA molecules are carried throughout the different cellular compartments within ribonucleoprotein (RNP) complexes in dynamic association with a host of RNA-binding proteins (RBP). These regulatory factors bind to conserved regulatory cis-elements shared by subsets of transcripts and direct the bound targets either toward the ribosomal assembly for translation or toward cytoplasmic foci dedicated to translational silencing and mRNA decay, such as stress granules and P bodies (17–19). Multiple regulatory mRNA regions, defined as untranslated sequence elements for regulations, are preferentially located in the mRNA untranslated regions (UTR), particularly, but not exclusively, in the 3' UTR (10, 18, 20). The adenylyl-uridylyl–rich elements (ARE) are the most conserved untranslated sequence elements for regulations for immune genes (21), but research in the last decade has identified a growing number of additional non-ARE elements within the 5' and 3' UTR of many immune genes, such as IL-2, IL-4, and more (20, 22, 23). Whereas some RBPs, such as the ubiquitous HuR, mainly act as a positive regulator of mRNA stability, others, such as the zinc finger RBP tristetraprolin (TTP), limit the inflammatory response by accelerating the mRNA decay of its targets (24). Importantly, GC induces TTP expression, and loss of TTP significantly affects GC-mediated gene regulation in vitro (15, 25), underscoring the importance of PTR in the mechanism of anti-inflammatory action of GC.

Proteins functionally characterized as transcription factors, such as the GR, and RBPs have several features in common, such as stimulus- or ligand-induced nucleocytoplasmic shuttling function and the ability to coordinately regulate multiple genes through binding to conserved nucleic acid sequences. Some regulatory factors can bind to both DNA and RNA, thus influencing both transcription and mRNA fate. For instance, the zinc finger protein NF-90 can regulate transcription of IL-2, but can also bind to and stabilize the IL-2 mRNA (26). Recently, it was shown in rat smooth muscle cells that the GR can interact with CCL2 mRNA and that its presence in the RNP complex is necessary for its degradation to occur in a cell-free mRNA stability assay (27). This work identified a novel role of GR in mRNA turnover, but raised questions about the scope and mechanisms underlying this process.

As we have previously shown that RBPs, such as TTP, are critical for GC-mediated gene regulation, we sought to investigate whether the GR would act as an RBP in human airway epithelial cells treated with GC. According to an established paradigm, RBP can coordinateably regulate subsets of functionally related transcripts that share a common recognition motif (18). In this report, we first identified an intersection between GR and the CCL2 and CCL7 mRNAs by immunoprecipitation of RNP complex (RNP-IP) and biotin pulldown in the human airway epithelial cell line BEAS-2B. With these methods, we confirmed CCL2 mRNA association with GR in human, nontransformed airway epithelial cells as well. In the case of CCL2, the binding site was mapped to the 5' UTR of the transcript. Furthermore, we aimed at identifying the full complement of transcripts that could bind to GR using a ribonomic approach and computationally searched for a common GR recognition motif within the identified GR target transcripts. We demonstrated that the GR in human lung epithelial cells is capable of associating with ~500 transcripts, and we validated such association for a subset of them. Finally, we identified by computational analysis a novel, GC-rich motif, for which we confirmed GR association, present in the 5' UTRs of 7889 predicted mRNA targets or in the entire sequences of 25,672 predicted mRNA targets (21% of the UniGene transcript pool). These data indicate that the GR can mediate GC action beyond its nuclear functions in transcriptional gene control and that it may directly participate, via association with mRNA, in GC-mediated control of cytoplasmic posttranscriptional mechanisms of gene expression.

Materials and Methods

Cell culture

The BEAS-2B cell line is derived from human tracheal epithelium transformed by an adenovirus 12-SV40 hybrid virus (28) (American Type Culture Collection, Manassas, VA). Cell cultures were maintained in F12/DMEM (Life Technologies/Invitrogen, Frederick, MD) containing 5% heat-inactivated FCS, 2 mM l-glutamine, penicillin (100 U/ml), and streptomycin (100 mg/ml) (29). Cells were cultured at 37°C in humidified air containing 5% CO$_2$. BEAS-2B cells were used from passages 36 to 45. Human primary bronchial epithelial cells (PBEC) were isolated by pronase digestion from bronchus of cadaveric lungs, as described (29). PBECs were cultured on collagen-coated flasks and maintained in serum-free LHC-9 medium (Biofluids, Rockville, MD). Cultures of PBEC were used during the first passage only. All cells were cultured at 37°C in humidified air containing 5% CO$_2$.

Generation of biotinylated transcripts

Full-length CCL2, CCL7, and CCL5 transcripts were generated by amplifying cDNA from BEAS-2B cells using forward primers that contained a T7 RNA polymerase promoter sequence (5'-CCA AGC TTC TAA TAC GAC TCA TAG GGA GA-3') as described (30). A complete list of primers is shown in Supplemental Table I. Briefly, biotinylated transcripts were synthesized from cDNA in the presence of a 5:1 ratio of CTP to biotin-CTP using the MAXiscript in vitro transcription kit (Ambion) per the manufacturer's instructions. Fragments corresponding to 10–26, 27–43, and 44–66 were chemically synthesized with a biotin group at the 5' end (Integrated DNA Technologies).

Cell-free mRNA decay assay

BEAS-2B cells were grown to 85% confluence, treated with 10−7 M budesonide (bud) or DMSO for 3 h, and lysed with polysomal lysis buffer (100 mM KCl, 5 mM MgCl$_2$, 10 mM HEPES [pH 7], and 0.5% Nonidet P-40) for 10 min at 4°C. Assessment of decay of biotinylated RNA following incubation with protein lysate has been described previously (27, 31). Briefly, 2 μg total protein from cytoplasmic cell lysate was mixed with biotinylated RNA (1 μg) and incubated for increasing time points up to 30 min. For experiments using GR-specific Ab to inhibit transcript degradation, cytoplasmic cell lysate (2 μg) was incubated with 3 μg mouse mAb against the GR (H-300 clone, Santa Cruz Biotechnology) or rabbit IgG (Santa Cruz) for 30 min prior to the addition of biotinylated RNA. Samples were separated on a 2% agarose gel and transferred to a nylon membrane by capillary transfer. RNA was fixed to the membrane by exposure to UV light, blocked with 3% BSA (Sigma-Aldrich) in TBS-T (20 mM Tris [pH 7.4], 150 mM NaCl, and 0.1% Tween-20) for 60 min, and incubated with a 1:5000 dilution of streptavidin-HRP (GE Healthcare) for 60 min at room temperature (RT). Membranes were developed with chemiluminescence substrate and exposed to film.

RNP-IP with an anti-GR Ab

BEAS-2B cells were grown to 85% confluence and lysed by the addition of PLB supplemented with RNAse inhibitor (10 U/ul final concentration; New England Biolabs) and protease inhibitors (Complete Mini, EDTA-free; Roche) as described (25). For isolation of GR-associated transcripts, cytoplasmic lysates obtained from 1.6 × 106 cells/condition were generated as described (25) and verified to be free of nuclear contamination by Western blot analysis of cytoplasmic (β-tubulin; Santa Cruz Biotechnology) and nuclear proteins (PCNA, HNRP C1/C2; Santa Cruz Biotechnology). Cytoplasmic lysates were mixed with protein A-Sepharose beads (Sigma-Aldrich) coated with 30 μg specific GR Ab (H-300 clone) or rabbit IgG. Beads were washed three times with NT2 buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM MgCl$_2$, and 0.05% Nonidet
P-40, incubated with 20 U RNase-free DNase I (15 min at 30°C), and further incubated in 100 μl NT2 buffer containing 0.1% SDS and 0.5 mg/ml proteinase K (30 min at 55°C). RNA was extracted by the addition of acid phenol-chloroform (Ambion), followed by the addition of 3 M sodium acetate (pH 5.2) (10% v/v) and precipitation with ethanol. Isolated total RNA was treated with DNase and reverse-transcribed using Moloney murine leukemia virus reverse transcriptase and oligo(dt) primers (Applied Biosystems). Expression of gene targets was obtained using real-time quantitative PCR employing SYBR green PCR master mix (Applied Biosystems) and specific primers shown in Supplemental Table I. For global analysis of GR–mRNA interactions, 5× 105 cells/condition were lysed, and RNP complexes were immunoprecipitated as described above. Isolated RNA was reverse-transcribed and hybridized to an Illumina ref-8 v3 microarray as described (32, 33). Data were extracted with the BeadStudio software v3.4.0 (Illumina) and normalized by Z score transformation to calculate differences in signal intensities. The data were calculated from four independent experiments, and significant values were tested using a two-tailed Z test and p < 0.01. Array data were uploaded to the Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE24748). For single-gene RNP-IP, the specific association of mRNA with GR was calculated as the difference of the amounts of mRNA in the anti-GR Ab IP and the isotype-matched control Ab IP (ΔCt) and quantified as fold enrichment of mRNA in the GR IP over the control IP (2^ΔCt) as described (25).

RNA biotin pulldown

Biotinylated transcripts (1 μg) were mixed with BEAS-2B cell lysates (40 μg) for 30 min at RT in TENT buffer (10 mM Tris [pH 8], 250 mM NaCl, and 0.5% v/v Triton X-100) and incubated with streptavidin-dynabeads (Invitrogen) for 30 min as previously described (30). The beads were washed three times with cold PBS, and protein was eluted by boiling in 1% SDS for 4 min. Samples were loaded onto an 8% acrylamide gel, separated by SDS-PAGE, and analyzed by Western blot using the H-300 GR Ab.

Gel EMSA and RNA cross-linking

Gel shift assays were performed by incubating purified GR (25 ng) (34) in reaction buffer (20 mM HEPES [pH 7.4], 200 mM NaCl, 1 mM DTT, 5 mM MgCl2, 2.5% glycerol, and 0.05% NP-40) with polydeoxyinosinic-polydeoxyctydilic acid at a final concentration of 0.05 mg/ml for 5 min at RT. Biotinylated RNA (0.75 ng) was added, incubated at RT for 30 min, and the products were subjected to a native 6% polyacrylamide gel in 0.5 mM EDTA for 1 h at 100 V at 4°C. The DNA was transferred to a nylon membrane using a Transblot semidyrid transfer apparatus (Bio-Rad) at 19 V for 60 min. RNA was fixed to the membrane by exposure to UV light. The membrane was blocked and developed using the Pierce chemiluminescent nucleic acid detection module (Thermo Scientific) per the manufacturer’s instructions.

For detection of GR–mRNA interaction by cross-linking, purified GR (1.6 ng) (kindly provided by Dr. K. Pearce, GlaxoSmithKline) was mixed with each RNA oligonucleotide (2 μg) for 30 min at RT and then subjected to UV light (120 mJ/cm2). Samples were separated by SDS-PAGE on an 8% gel under denaturing and reducing conditions, and a Western blot was performed to detect GR (25).

Computational analysis

The top ~500 human transcripts enriched in the IP were used as the experimental dataset (Supplemental Table I) for the computational identification of the GR motif, as described for the identification of other RBP motifs (32, 35, 36). The transcript sequences of the experimental dataset were obtained from the recent UniGene database, and repetitive sequences were removed using RepeatMasker (http://www.repeatmasker.org). The complete, high-quality 5’ UTR sequences were selected from the dataset for further analysis. The selected sequences were first divided into 100-base-long subsequences with a 50-base overlap between consecutive sequences and were organized into 50 subdatasets. Common RNA motifs in each of the 50 subdatasets were then identified. The top 10 candidate motifs from each subdataset were selected and used to build the stochastic context-free grammar (SCFG) model, which summarizes the folding, pairing, and additional secondary structure. Next, the SCFG model of each candidate motif was used to search against the experimental 5’ UTR dataset as well as the entire UniGene 5’ UTR dataset to obtain the number of hits for each motif. The motif with the highest frequency of hits per kilobase in the experimental dataset when compared with the entire UniGene mRNA sequence database was considered to be the top GR candidate motif. The identification of the RNA motif in unaligned sequences of each subdataset was conducted using FOLDALIGN software (37), and the construct of the SCFG model and the search against the transcript dataset were conducted using the COVE and COVELS software packages (38). The motif logo was constructed using WebLogo (http://weblogo.berkeley.edu/). RNAplot was used to depict the secondary structure of the representative RNA motifs. The computation was performed using the National Institutes of Health Biowulf computer farm.

Statistical analysis

Results from cell-free RNA decay and Western blot analysis were quantified by densitometry. All data were subjected to t test analysis and, when appropriate, to ANOVA with multiple post hoc testing; p < 0.05 was used for statistical difference.

FIGURE 2. Treatment of BEAS-2B cell lysates with a specific Ab against human GR inhibits GC-mediated decay of CCL2 and CCL7 mRNAs. Nondenaturing agarose gel (representative of n = 3) of in vitro-transcribed, biotinylated human CCL2, CCL7, or CCL5 full-length mRNAs alone (lane 1, free probe [FP]) or mixed with cytoplasmic lysates of BEAS-2B cells (pretreated with budesonide [B; 10^{-7} M] or DMSO [D] for 3 h) for the indicated times. B. Densitometric measurement of the amount of mRNA at each time point; mean ± SEM, n = 3. Inset bar graphs: t1/2 of chemokine mRNA in each condition [calculated from plots in B, as Ln(t/2)/slope, indicating the time at which 50% of the initial mRNA is left], p < 0.05.
Results
GCs accelerate the decay of CCL2 and CCL7 mRNAs

We have previously shown that GCs selectively accelerate the decay of numerous transcripts that are targeted by TTP, an RBP that is induced also by GC (25). Using the transcriptional inhibitor actinomycin D, we identified CCL2 and CCL7 mRNAs as transcripts for which decay was accelerated by GC treatment, whereas the expression of the CCL5 mRNA, which does not contain AREs, was inhibited by GC without changes in $t_{1/2}$ (25). Use of transcriptional inhibitors has disadvantages, as the global blockade of gene transcription can prevent the synthesis of components necessary in mRNA decay, diminishing the observed effects on mRNA turnover. To integrate these findings, we probed the role of GR in the effect of GCs on mRNA stability using a cell-free assay (27, 31), in which we followed the degradation of labeled, full-length synthetic transcripts spanning the human CCL2, CCL7, and CCL5 mRNA after incubation with airway epithelial cell lysates (Fig. 1A). The biotinylated mRNAs were mixed with cytoplasmic lysates (2 mg) obtained from BEAS-2B cells treated with budesonide (10^{-7} M) or DMSO (diluent for budesonide) for 3 h. Samples were incubated at RT for increasing times, separated by PAGE, and mRNA was detected by streptavidin linked to HRP. Decay curves were generated based on the densitometric reading of the bands (Fig. 1B), allowing the determination of $t_{1/2}$ (Fig. 1B, bar graph insets). Compared to the DMSO-treated lysates, the GC-treated lysates significantly accelerated the decay of CCL2 mRNA ($t_{1/2} = 8 \pm 1\) min compared with $62 \pm 17\) min in DMSO-treated cells; $p < 0.05; n = 3$) and CCL7 mRNA ($t_{1/2} = 15 \pm 4\) min compared with $114 \pm 37\) min; $p < 0.05; n = 3$), but not of CCL5 mRNA ($t_{1/2} = 231 \pm 8\) min compared with $266 \pm 5\) min; $n = 3$), in agreement with data obtained using actinomycin D assay (25).

GR plays a role in CCL2 and CCL7 mRNA turnover

The results obtained with the cell-free mRNA decay assay suggested the association of regulatory proteins with mRNA. In fact, a mobility shift was observed for both CCL2 and CCL7 mRNA probes after incubation with budesonide-treated cell lysates (Fig. 1A), indicating the possible association of proteins, among which we hypothesize to be the GR. To investigate the presence of GR in this complex and its potential role in mediating the observed changes in mRNA decay, the cell-free mRNA decay assay was performed following a preincubation with a mouse mAb against the GR (Fig. 2) or an isotype control Ab. Consistent with the results shown in Fig. 1, cytoplasmic lysates from budesonide-treated BEAS-2B cells ($n = 3$) induced the degradation of CCL2 mRNA (Fig. 2A, lane B) and CCL7 mRNA (Fig. 2B, lane B). However, a 30-min preincubation of the cytoplasmic lysates with 3 mg anti-GR Ab prevented the decay of both transcripts (Fig. 2A,2B, lane B+a GR), whereas the control Ab had no effect on GC-induced
degradation (Fig. 2A, 2B, lane B+IgG). These data indicate that GR is present in the protein complex associated with the chemokine RNA and participates in the GC-induced increase in chemokine mRNA decay, as anti-GR reversed this action, possibly by blocking interactions of GR with other proteins of the mRNA degradation machinery.

Association of GR with endogenous CCL2 and CCL7 mRNAs

In light of the observed GR-mediated effect on chemokine mRNA decay, we investigated whether the GR would associate with the endogenous CCL2 and CCL7 mRNAs by RNP-IP analysis (39), similar to what we reported for TTP (25). BEAS-2B cytoplasmic lysates were verified to be free of nuclear proteins by Western blot analysis (Fig. 3A) and were incubated with the anti-GR Ab to immunoprecipitate endogenous GR–mRNA complexes or with an IgG isotype control to measure background binding (Fig. 3B). Higher levels of CCL2 mRNA were consistently detected in the GR-IP over the control-IP (Fig. 3C), with an overall statistically significant 4.1-fold enrichment of CCL2 mRNA in the GR-IP relative to the control-IP, indicating a specific association of GR with the cellular CCL2 mRNA (Fig. 3C, 3E). No enrichment of GAPDH mRNA was noted, which was expected, as this gene is known to not be a target of several other RBPs (Fig. 3C). No CCL7 mRNA was detected in the isotype IgG control-IP, likely due to low baseline expression in BEAS-2B, but CCL7 mRNA was detected in the GR-IP, indicating that this transcript also associates with GR (Fig. 3D). Importantly, no CCL5 mRNA was detected in either the transcript pool of either the GR- or control-IP (Fig. 3D) despite detectable baseline levels, in line with the previous results suggesting the absence of a direct posttranscriptional regulation of CCL5 by GC (16). We then explored whether association of GR with CCL2 would be susceptible to modulation. In BEAS-2B cells, incubation with budesonide (10−7 M for 30 min) substantially increased the enrichment of CCL2 mRNA in the GR-IP (12.0-fold versus IgG IP), whereas treatment with TNF-α (10 ng/ml for 3 h) showed a level of CCL2 mRNA still significantly lower (2.0-fold enrichment) than in the unstimulated group.

In nontransformed PBEC, CCL2 mRNA expression at baseline was at the limit of detection by real-time PCR (≥35 C_T) and therefore was not detectable in any of the IP RNA pools isolated from unstimulated and budesonide-treated cells. However, as treatment with TNF-α induced its expression, CCL2 mRNA became significantly enriched (2.5-fold) in the GR-IP versus the IgG-IP in these cells.

Interaction of GR with in vitro-transcribed CCL2 and CCL7 RNAs

We confirmed the GR–mRNA association in both BEAS-2B (n = 3) and PBEC (n = 2) by an in vitro approach using a biotin pulldown assay (30). Fig. 4A shows the detection of GR associated with the CCL2 and CCL7 transcripts, in either the absence or presence of budesonide treatment. No association of GR with CCL5 was observed, consistent with the results of the RNP-IP experiment.

Mapping of the GR–mRNA interaction site

Having established the association of GR with mRNAs in multiple independent assays, we sought to define the RNA regions involved in this interaction. Inflammatory genes are regulated posttranscriptionally mainly, but not exclusively, through 3’ UTR, ARE-mediated processes (21). In the case of rat CCL2, a GC-responsive sequence was mapped on the 5’ UTR, suggesting that this region could harbor a regulatory element involved in GR binding (31). We performed biotin pulldown experiments (n = 3) to locate the binding site of GR using the full-length CCL2 mRNA, as well as truncated transcripts containing the 5’ UTR, coding region (CR), and 3’ UTR sections (Fig. 4B). Besides the expected association with full-length CCL2 mRNA, association of GR was observed predominantly with the 5’ UTR construct, minimally with the 3’ UTR, and it was absent with the probe

![Figure 4](http://www.jimmunol.org/)
encompassing the CR. As a control, we analyzed binding of each construct with HuR, an RBP known to associate with the 3′ UTR of CCL2. As expected, HuR selectively associated with the 3′ UTR and full-length mRNA (Fig. 4B).

To further map the GR binding site within the 5′ UTR of CCL2, besides the full-length 5′ UTR (nt 1–74), we synthesized additional 5′ UTR truncations (nt 1–60, 10–74, and 10–60). As assessed by EMSA, purified (>95%) (34), rGR bound to the full-length 5′ UTR as well as to each of the specific regions (Fig. 4C); n = 3. Two bands were visible using the probe spanning the full-length 5′ UTR and those encompassing nt 1–60 and 10–74, indicating that GR may bind as a dimer. The double band is not possessed by EMSA, purified (n = 3; 1.5, indicating their specific association with GR (full array data are available at the GEO Web site as described in the Materials and Methods section). A list of the transcripts most enriched by GR co-IP is shown in Table I (full list provided in Supplemental Table II). In agreement with the enrichment of CCL2 mRNA we observed by real-time PCR, this transcript was also found to be enriched in the GR-IP array. The GR association was validated for five (out of five tested) of the most enriched targets (MTX1, MLF2, TCF3, TAF6, and CAMK2N1) and found to be statistically significant by single-gene RNP-IP analysis (Fig. 5) (n = 3; p < 0.05 compared with IgG control IP). Besides CAMK2N1, which displayed the highest enrichment, the other four targets were chosen without a Z ratio bias to better validate the range of significant enrichment. Gene ontology (GO) analysis of RBPs is their ability to associate with discrete subsets of mRNAs through shared regulatory elements in their UTRs, as demonstrated for HuR, TIA, TIAR, TTP, NF-90, and others (32, 33, 35, 36, 40). Therefore, we aimed at determining the full complement of transcripts associated with GR and to identify the sequence motif shared by the transcripts associated with the GR. To do so, RNA was isolated from a set of RNP-IP experiments using the GR and control IgG Abs (n = 4) in unstimulated BEAS-2B cells, and the global profile of GR targets was identified by hybridization of the corresponding cDNAs to an Illumina human cDNA array containing >25,000 genes. A comparison of signal in GR-IP arrays versus IgG control-IP arrays yielded 477 transcripts with Z ratios of >1.5, indicating their specific association with GR (full array data are available at the GEO Web site as described in the Materials and Methods section). A list of the transcripts most enriched by GR co-IP is shown in Table I (full list provided in Supplemental Table II). In agreement with the enrichment of CCL2 mRNA we observed by real-time PCR, this transcript was also found to be enriched in the GR-IP array. The GR association was validated for five (out of five tested) of the most enriched targets (MTX1, MLF2, TCF3, TAF6, and CAMK2N1) and found to be statistically significant by single-gene RNP-IP analysis (Fig. 5) (n = 3; p < 0.05 compared with IgG control IP). Besides CAMK2N1, which displayed the highest enrichment, the other four targets were chosen without a Z ratio bias to better validate the range of significant enrichment. Gene ontology (GO) analysis

Table I. Top GR-associated transcripts by RNP-IP (full list in Supplemental Table II)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Accession No.</th>
<th>Z Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium/calmodulin-dependent protein kinase II inhibitor 1</td>
<td>CAMK2N1</td>
<td>NM_018584.5</td>
<td>4.46</td>
</tr>
<tr>
<td>SMT3 suppressor of mif two 3 homolog 2</td>
<td>SUMO2</td>
<td>NM_001005849</td>
<td>3.95</td>
</tr>
<tr>
<td>Uncoupling protein 2</td>
<td>UCP2</td>
<td>NM_003355.2</td>
<td>3.94</td>
</tr>
<tr>
<td>Zinc finger protein 219</td>
<td>ZNF219</td>
<td>NM_016423.1</td>
<td>3.80</td>
</tr>
<tr>
<td>Myeloid leukemia factor 2</td>
<td>MLF2</td>
<td>NM_005439.1</td>
<td>3.39</td>
</tr>
<tr>
<td>Eukaryotic translation initiation factor 4H</td>
<td>EIF4H</td>
<td>NM_022170.1</td>
<td>3.36</td>
</tr>
<tr>
<td>TAF6 RNA pol II, TATA box binding protein-associated factor</td>
<td>TAF6</td>
<td>NM_005641.2</td>
<td>3.04</td>
</tr>
<tr>
<td>Hepatoma-derived growth factor (high-mobility group protein 1-like)</td>
<td>HDGF</td>
<td>NM_004494.1</td>
<td>3.04</td>
</tr>
<tr>
<td>Transcription factor 3 (E2A Ig enhancer binding factors E12/E47)</td>
<td>TCF3</td>
<td>NM_003200.1</td>
<td>3.00</td>
</tr>
<tr>
<td>Zinc finger protein 395</td>
<td>ZNF395</td>
<td>NM_003660.2</td>
<td>2.97</td>
</tr>
<tr>
<td>Cyclin-dependent kinase inhibitor 2A</td>
<td>CDKN2A</td>
<td>NM_058195.2</td>
<td>2.95</td>
</tr>
<tr>
<td>Anterior pharynx defective 1 homolog A (Caenorhabditis elegans)</td>
<td>APHA1</td>
<td>NM_001077628</td>
<td>2.94</td>
</tr>
<tr>
<td>Programmed cell death 5</td>
<td>PDCD5</td>
<td>NM_004708.2</td>
<td>2.93</td>
</tr>
<tr>
<td>Biglycan</td>
<td>BGN</td>
<td>NM_0011711.3</td>
<td>2.91</td>
</tr>
<tr>
<td>Cysteine-rich, angiogenic inducer, 61</td>
<td>CYR61</td>
<td>NM_001554.3</td>
<td>2.90</td>
</tr>
<tr>
<td>WAS family protein, member 2</td>
<td>WASF2</td>
<td>NM_006990.2</td>
<td>2.88</td>
</tr>
<tr>
<td>RAB43, member RAS oncogene family</td>
<td>RAB43</td>
<td>NM_198490.1</td>
<td>2.87</td>
</tr>
<tr>
<td>1-acetylglycerol-3-phosphate O-acyltransferase 1 (lysophosphatidic acid acyltransferase, α)</td>
<td>AGPAT1</td>
<td>NM_006411.2</td>
<td>2.85</td>
</tr>
<tr>
<td>N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1</td>
<td>NDS1T</td>
<td>NM_001543.3</td>
<td>2.84</td>
</tr>
<tr>
<td>Metallothionein 1X</td>
<td>MT1X</td>
<td>NM_005952.2</td>
<td>2.83</td>
</tr>
<tr>
<td>Acylphosphatase 1, erythrocyte (common) type</td>
<td>ACYP1</td>
<td>NM_001107.3</td>
<td>2.83</td>
</tr>
<tr>
<td>Ribosomal protein L21</td>
<td>RPL21</td>
<td>NM_000982.3</td>
<td>2.83</td>
</tr>
<tr>
<td>Neuroblastoma, suppression of tumorigenicity 1 (C. elegans)</td>
<td>NBL1</td>
<td>NM_005380.4</td>
<td>2.82</td>
</tr>
<tr>
<td>General transcription factor II, 2</td>
<td>GTF2A2</td>
<td>NM_004492.1</td>
<td>2.80</td>
</tr>
<tr>
<td>Chemokine (C-C motif) ligand 2</td>
<td>CCL2</td>
<td>NM_002982.3</td>
<td>2.77</td>
</tr>
<tr>
<td>Mindbomb homolog 2 (Drosophila)</td>
<td>MIB2</td>
<td>NM_008075.1</td>
<td>2.75</td>
</tr>
<tr>
<td>Striatin, calmodulin binding protein 4</td>
<td>STRN4</td>
<td>NM_001039877</td>
<td>2.70</td>
</tr>
<tr>
<td>Calcium binding protein P22</td>
<td>CHP</td>
<td>NM_007236.3</td>
<td>2.69</td>
</tr>
<tr>
<td>Calpain, small subunit 1</td>
<td>CAPNS1</td>
<td>NM_001749.2</td>
<td>2.68</td>
</tr>
<tr>
<td>Hypothetical protein HSPC152</td>
<td>HSPC152</td>
<td>NM_016404.1</td>
<td>2.64</td>
</tr>
<tr>
<td>Mitochondrial ribosomal protein L34</td>
<td>MRPL34</td>
<td>NM_023937.2</td>
<td>2.64</td>
</tr>
<tr>
<td>ADP-riboseylation factor 3</td>
<td>ARF3</td>
<td>NM_001659.1</td>
<td>2.63</td>
</tr>
<tr>
<td>Splicing factor 3b, subunit 4</td>
<td>SF3B4</td>
<td>NM_005850.3</td>
<td>2.62</td>
</tr>
<tr>
<td>Barrier to autointegration factor 1</td>
<td>BANF1</td>
<td>NM_003860.2</td>
<td>2.57</td>
</tr>
</tbody>
</table>
demonstrated a wide variety of functional classes of interacting transcripts, covering areas such as development, signal transduction, and metabolism (Fig. 6).

Identification of a novel GR-mRNA binding motif and of putative GR targets bearing the motif

To investigate the presence of an RNA signature motif on the transcript for GR, the ∼500 transcripts found to be specifically associated with GR were used as the experimental dataset for the computational analysis. The analysis searched for a common mRNA recognition motif among the transcript sequences of the experimentally determined genes based on both primary sequences and secondary structures, and then scanned the entire human transcriptome sequences (i.e., the UniGene database) for the putative target genes of the identified RNA signature motif of GA (see Materials and Methods). One motif spanning 27–31 nt displayed the highest frequency of hits per kilobase in the experimental dataset when compared with the entire UniGene transcript database. Evaluation of the primary and secondary structure of the motif indicates a sequence highly enriched in G and C nucleotides (78% of the signature motif), forming two contiguous loops on a short stem (Fig. 7A, 7B). Association of GR with this motif was demonstrated via biotin pulldown assay using a biotinylated oligonucleotide corresponding to the motif, which was incubated with cytoplasmic lysate from unstimulated BEAS-2B cells. GR associated with the motif sequence, the 5’ UTR of CCL2 and CCL7, but not the CCL5 5’ UTR (Fig. 7C).

Based on the structure of this motif, we conducted a search against the entire UniGene databases for identifying putative mRNA targets of GR. We first searched the 5’ UTR sequences of UniGene transcripts, given that the identification of GR is associated with the 5’ UTR of CCL2, and identified 7889 transcripts bearing the motif in their 5’ UTR (45% of the entire database). We also searched full-length transcripts and found a total of 25672 mRNAs bearing the GR motif (21% of the entire database). Table II reports a selection of the sequences, listed in full in Supplemental Table III.

Discussion
Cytoplasmic function for GR: acceleration of mRNA decay

Our data support a novel role for the GR within the cytoplasmic cell compartment as an RBP. We found that in GC-treated human airway epithelial cells, GR associates with CCL2 and CCL7 mRNA and is necessary for GC-induced acceleration of the chemokine mRNA decay. Moreover, we discovered the ability of cytoplasmic GR to associate with a discrete subset of mRNA, and we identified, through a well-tested bioinformatic analysis of the newly identified GR targets, a novel GC-rich RNA motif mediating GR association with mRNA.

FIGURE 5. Validation of GR-associated targets identified by gene array. A, Real-time PCR amplification plot (representative of n = 3) after GR (filled circles) or control (open circles) IP for CAMK2N1 and TAF6, identified as GR-associated transcripts by the GR-IP array study, and GAPDH as control. B, Bar graph represents the mean ± SEM fold GR/IgG IP enrichment for MTX1, MLF2, TCF3, TAF6, and CAMK2N1 (n = 3). *p < 0.05 compared with IgG IP. NS, NS for GAPDH.

FIGURE 6. GO analysis of GR-associated genes. The analysis was performed on the full list of 477 putative GR targets (listed in full in Supplemental Table II) identified by hybridization of unstimulated BEAS-2B cDNAs to an Illumina human cDNA array using GR-IP arrays versus IgG control-IP arrays.

FIGURE 7. Primary sequence and secondary structure of the predicted GR mRNA motif. A, Graphic logo representing the probability matrix of the GR motif showing the relative frequency of each nucleotide for each position within the motif sequence. The motif is originated from the experimental data set from the array study. B, Secondary structure of the GR motif comprising the nucleotides with highest frequency for each position within the motif shown in A. C, Biotin pulldown assay showing association of GR from unstimulated BEAS-2B cell lysates with the GR motif shown in B compared with GR association with the full-length 5’ UTR of CCL2, CCL7, and CCL5 mRNA (the latter as negative control). D, Sequence and secondary structure of the GR motif in three mRNAs from theUniGene list of putative GR targets; the corresponding RefSeq accession numbers and names are shown.
It is well established that the GRα, generated from the human GR gene by alternative splicing together with the GRβ isoform, acts as a ligand-dependent transcription factor and conveys, by transcriptional control of gene expression, the metabolic functions of the endogenous GC hormone and of the synthetic anti-inflammatory corticosteroids. Like many transcription factors and hormone receptors, the human GRs is subject to nucleocytoplasmic shuttling: in the absence of ligand, it resides mostly in the cytoplasm as part of a hetero-oligomeric complex containing heat shock proteins (HSPs) 90, 70, and 50, immunophilins, and other proteins (41). Ligand binding induces conformational changes of the protein complex, leading to disassociation and nuclear translocation of GC, where GR dimerizes and regulates gene transcription (5). Similarly to the GR, many transcription factors and hormone receptors are subject to nucleocytoplasmic shuttling, induced by cell activation or ligand binding. Importantly, several of them carry out additional roles in gene regulation while stationing in the cytoplasmic compartment. The zinc finger protein NF-90 regulates transcription of IL-2 by binding to the NFAT site as well as directing IL-2 RNA export and localization (26). Moreover, NF-90 modulates mRNA stability and translation of a specific pool of transcripts via binding to a recently identified AU-rich motif in their 3′ UTR (36, 42). Similar examples are the zinc-finger proteins YY1 and TTP as well as nucleolin, all of which regulate both transcriptional and posttranscriptional events by association with DNA and transcription factors in the nucleus, and with RNA and other components of the mRNA decay and translation while in the cytoplasm (22, 40, 43–45).

In support of potential cytoplasmic functions for GR, earlier work reported that the GR is indeed able to bind to RNA (46, 47), specifically to transfer RNA (48). More recently, Dhawan et al. (27) described in rat smooth muscle cells, using biochemical approaches also used in our study, such as cell-free decay assay and RNP-IP, that the rat GR associated with CCL2 mRNA and that its presence in the RNP complex was necessary to convey GC-mediated increased mRNA decay. Our data build upon this initial observation, providing evidence of a specific GR interaction with CCL2 mRNA using multiple, established assays (RNP-IP, biotin pulldown, EMSA, UV cross-linking; Figs. 3, 4). The differences in CCL2 mRNA enrichment in the GR-IP after GC or TNF-α indicate that this is a dynamic process, and although further studies to define quantitatively the affinity of GR to transcripts and to fully characterize the RBP function of GR are warranted, the present data strongly support the existence of an as yet uncharted mechanism of GR-mediated posttranscriptional control that could integrate with its known role in transcriptional gene regulation to deliver the full GC anti-inflammatory action.

GC-mediated chemokine mRNA decay is dependent upon GR association with discrete, non-ARE regions of the transcripts

Posttranscriptional control of gene expression by GC has been so far mainly attributed to its promotion of ARE-mediated decay by induction of genes critical for this function, such as MAPK phosphatase-1 and the RBP TTP (15, 25, 49, 50). However, our data support the hypothesis of an additional, direct effect of GC on RNA turnover. Previous studies have described GC action on mRNA stability independent from the presence of ARE. For rat CCL2, the presence of a 224-long sequence including the 5′ UTR was necessary to convey GC-mediated increased mRNA decay using a cell-free mRNA decay assay, whereas the isolated ARE-bearing 3′ UTR was dispensable (31). In agreement with these published findings, we mapped GR association for human CCL2 and CCL7 within the 5′ UTR of the mRNA. In the case of CCL2 mRNA, the region necessary for the GR association is composed
by 16 nt in position 44–60; however, it is possible that larger sequences neighboring this site are needed for the proper assembly of the functional RNP ultimately conveying the effect on mRNA decay in vivo. In fact, several lines of evidence indicate that the interaction of GR with its target transcripts occurs in the context of a larger RNP complex. First, the GR-mediated acceleration of CCL2 and CCL7 mRNA decay occurs only after GC treatment of intact cells; second, GC treatment induces an upward mobility shift in the RNP complex detected in the cell-free decay assay. These data suggest that the ligand-activated GR may function either by associating with cytoplasmic components involved in mRNA decay and functionally activating this process or by transcriptional activation of a necessary RNA-binding partner (potentially TTP), which is subsequently recruited to the CCL2 RNP complex.

Association of GR with a subset of endogenous mRNAs

Regulation of mRNA decay is coordinated by RBP in an operon-like fashion through their binding to common regulatory elements present in a discrete subset of transcripts (18). Array-based analysis of gene expression in cytoplasmic RNA was obtained by RNP-IP, which is an efficient and well-tested method to recover endogenous RNP complexes (39). Using a GR-specific Ab, we identified ~500 transcripts as significantly enriched in the GR IP, a number comparable to that observed for other RBP-bound transcript pools (32, 36). In line with the numerous studies that have used the standard RNP-IP for ribonomic analysis and reinforced by the agreement with the other assays showing GR interaction with chemokine mRNAs, the RNP-IP array data indicate that the association with CCL2 and CCL7 mRNA is part of a broader ability of the GR to interact with cytoplasmic mRNA.

The GR-associated transcripts, according to GO analysis, are mostly involved in cell metabolism and signal transduction, which are biological processes well known to be targeted by GC as part of their homeostatic functions (51). The relative lack of immune and inflammatory transcripts in the GR-associated transcript pool is not surprising, as these targets are underrepresented in unstimulated airway epithelial cells. The target profile of RBP can change upon cell stimulation (52), reflecting the induction of a different pattern of gene expression, and it will be relevant to investigate whether the GR-associated mRNA pool in cells activated by an inflammatory stimulus, such as TNF-α, is enriched in proinflammatory genes known to be antagonized by GC treatment and if cotreatment with GC triggers GR-mediated mRNA decay for those targets.

Identification of GC-rich sequence on mRNA as putative GR-binding motif

Using biotin pulldown assay, we confirmed that the GR associates with the GC-rich motif identified computationally, suggesting that the putative targets bearing this motif are likely to be regulated by the cytoplasmic function of GR. It remains to be tested if the functional role of this motif is indeed to convey acceleration of mRNA decay, as documented for CCL2 and CCL7, and whether other GR motifs can be found in genes expressed upon inflammatory cell activation. Multiple motifs have been documented for the RBP TIAR, which binds to U-rich motifs within the 3′ UTR of its targets with high affinity when conveying translational repression, whereas its low-affinity binding to a C-rich element decreases upon cellular stress (32). It is very likely that GC treatment, as well as a host of intra- and extracellular triggers could modulate the GR binding to the RNA motifs in many ways. For example, this process could be modified by stimulus-induced changes in the RBP and microRNA potentially associated with GR in the RNP complex and/or by action upon the association of GR-bound RNA with cytoplasmic foci of regulated mRNA decay and translation, such as P bodies and stress granules, where these functions are critically regulated during inflammation (17).

The GR lacks a conserved RNA-binding domain, present in other transcription factors like NF-κB and in nucleolin (53, 54). Future analysis of the GR domain interfacing with the GC-rich motif is warranted. In addition to potential RNA-binding through the GR RNA-binding domain, GR could associate to other RBP components that bind directly to RNA. Along these lines, the GR has been shown to engage in protein–protein interaction with other shuttling RBPs, such as nucleolin (55).

The identification of GR-mediated acceleration of chemokine mRNA decay and of a novel function of GR in the cytoplasmic compartment opens a new paradigm in the GC mechanism of action, so far centered on its control of gene transcription. It will be critical to fully characterize this newly identified process to understand its biological relevance in the anti-inflammatory action of GC.

Acknowledgments

We thank Kevin Becker and William Wood at the National Institutes of Health Genomics Core for assistance with analysis of array data and deposition of results in the GEO online repository.

Disclosures

The authors have no financial conflicts of interest.

References

<table>
<thead>
<tr>
<th>Primer</th>
<th>Description</th>
<th>Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL2 Forward</td>
<td>Generation of biotinylated RNA (full length and 5’UTR constructs)</td>
<td>CCA AGC TTC TAA TAC GAC TCA CTA TAG GGA GAG CAG AGA GCC AGA CGG GA</td>
</tr>
<tr>
<td>CCL2 Reverse</td>
<td>Generation of biotinylated RNA (full length and 3’UTR constructs)</td>
<td>TGT ACA AAA ATA TAT TTA TTT GGT GTA ATA GTT AC</td>
</tr>
<tr>
<td>CCL2 coding region Forward</td>
<td>Generation of biotinylated RNA (coding region construct)</td>
<td>CCA AGC TTC TAA TAC GAC TCA CTA TAG GGA GAG AAA GTC TCT GCC GCC C</td>
</tr>
<tr>
<td>CCL2 coding region Reverse</td>
<td>Generation of biotinylated RNA (coding region construct)</td>
<td>GAG TTT GGG TTT GCT TGT CC</td>
</tr>
<tr>
<td>CCL2 3’UTR Forward</td>
<td>Generation of biotinylated RNA (3’UTR construct)</td>
<td>CCA AGC TTC TAA TAC GAC TCA CTA TAG GGA GAA CAC TCA CTC CAC AAC CC</td>
</tr>
<tr>
<td>CCL7 Forward</td>
<td>Generation of biotinylated RNA</td>
<td>CCA AGC TTC TAA TAC GAC TCA CTA TAG GGA GAA GCA GAG GGG CTG AGA CC</td>
</tr>
<tr>
<td>CCL7 Reverse</td>
<td>Generation of biotinylated RNA</td>
<td>TAC AAA AAT CTA TTT TAT GTG AAA ATT TGG</td>
</tr>
<tr>
<td>CCL5 Forward</td>
<td>Generation of biotinylated RNA</td>
<td>CCA AGC TTC TAA TAC GAC TCA CTA TAG GGA GAC TGC AGA GGA TTC CTG CA</td>
</tr>
<tr>
<td>CCL5 Reverse</td>
<td>Generation of biotinylated RNA</td>
<td>TGG TTG CAT TGA GAA CTT TAA TGG</td>
</tr>
<tr>
<td>CCL2 Forward</td>
<td>qPCR detection</td>
<td>CCT TCT GTG CCT GCT GCT CAT AG</td>
</tr>
<tr>
<td>CCL2 Reverse</td>
<td>qPCR detection</td>
<td>TCT TCG GAG TTT GGG TTT GCT TGT</td>
</tr>
<tr>
<td>CCL7 Forward</td>
<td>qPCR detection</td>
<td>GCA CTT CTT TGT CGT CTG CT</td>
</tr>
<tr>
<td>CCL7 Reverse</td>
<td>qPCR detection</td>
<td>GGA CAG TGG CTA CTT TGT GTG GT</td>
</tr>
<tr>
<td>CCL5 Forward</td>
<td>qPCR detection</td>
<td>CCA TAT TCC TCG GAC ACC AC</td>
</tr>
<tr>
<td>CCL5 Reverse</td>
<td>qPCR detection</td>
<td>GGG TGA CAA AGA CGA CTG CT</td>
</tr>
<tr>
<td>GAPDH Forward</td>
<td>qPCR detection</td>
<td>TGG ACC ACC AAC TGC TTA GC</td>
</tr>
<tr>
<td>GAPDH Reverse</td>
<td>qPCR detection</td>
<td>GGC ATG GAC TGT GGT CAT GAG</td>
</tr>
<tr>
<td>MTX1 Forward</td>
<td>qPCR detection</td>
<td>ACC ACG CTT TTC ATC TGT CC</td>
</tr>
<tr>
<td>MTX1 Reverse</td>
<td>qPCR detection</td>
<td>AGG AGC AGC AGC TCT TCT TG</td>
</tr>
<tr>
<td>MLF2 Forward</td>
<td>qPCR detection</td>
<td>CTC TCT TGT ACA GGC TGA GAG G</td>
</tr>
<tr>
<td>MLF2 Reverse</td>
<td>qPCR detection</td>
<td>AGA TGC AGA GGC GAA GTC AT</td>
</tr>
<tr>
<td>TCF3 Forward</td>
<td>qPCR detection</td>
<td>GCA CTG GCC TCG ATC TAC TC</td>
</tr>
<tr>
<td>TCF3 Reverse</td>
<td>qPCR detection</td>
<td>TCG TCC AGG TGG TCT TCT ATC</td>
</tr>
<tr>
<td>TAF6 Forward</td>
<td>qPCR detection</td>
<td>GAG ATC GCA CAG GAT GCC</td>
</tr>
<tr>
<td>TAF6 Reverse</td>
<td>qPCR detection</td>
<td>CGC TCA GAT CAA CCT CCT TC</td>
</tr>
<tr>
<td>CAMK2N1 Forward</td>
<td>qPCR detection</td>
<td>GGA GCA AGC GGG TTG TTA T</td>
</tr>
<tr>
<td>CAMK2N1 Reverse</td>
<td>qPCR detection</td>
<td>TGA TTT CAT CGT GGG TAG CA</td>
</tr>
</tbody>
</table>