Large TCR Diversity of Virus-Specific CD8 T Cells Provides the Mechanistic Basis for Massive TCR Renewal after Antigen Exposure

Isabelle Miconnet, Angélique Marrau, Alex Farina, Patrick Taffé, Selena Vigano, Alexandre Harari and Giuseppe Pantaleo

J Immunol 2011; 186:7039-7049; Prepublished online 9 May 2011;
doi: 10.4049/jimmunol.1003309
http://www.jimmunol.org/content/186/12/7039

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/05/09/jimmunol.1003309.DC1

References
This article cites 53 articles, 29 of which you can access for free at:
http://www.jimmunol.org/content/186/12/7039.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Large TCR Diversity of Virus-Specific CD8 T Cells Provides the Mechanistic Basis for Massive TCR Renewal after Antigen Exposure

Isabelle Miconnet,* Angélique Marrau,* Alex Farina,* Patrick Taffé,†,§ Selena Vigano,* Alexandre Harari,*§ and Giuseppe Pantaleo*†§

Ex vivo analysis of virus-specific CD8 T cell populations by anchored PCR has shown that the CD8 TCR repertoire was less oligo-gononal (seven to nine clonotypes per individual epitope) than previously thought. In the current study, TCR diversity was investigated by assessing both the overall TCR β-chain variable regions usage as well as the CDR3 regions in ex vivo-isolated CMV- and EBV-specific CD8 T cells from 27 healthy donors. The average number of clonotypes specific to most single viral epitopes comprised between 14 and 77. Changes in the CD8 TCR repertoire were also longitudinally assessed under conditions of HIV-1 chronic infection (i.e., in patients with suppressed virus replication and after treatment interruption and Ag re-exposure). The results showed that a large renewal (≤80%) of the TRB repertoire occurred after Ag re-exposure and was eventually associated with an increased T cell recognition functional avidity. These results demonstrate that the global CD8 TCR repertoire is much more diverse (≤9-fold) than previously estimated and provide the mechanistic basis for supporting massive repertoire renewal during chronic virus infection and Ag re-exposure. The Journal of Immunology, 2011, 186: 7039–7049.

Ex vivo analysis of virus-specific CD8 T cell populations by anchored PCR has shown that the CD8 TCR repertoire was less oligo-gononal (seven to nine clonotypes per individual epitope) than previously thought. In the current study, TCR diversity was investigated by assessing both the overall TCR β-chain variable regions usage as well as the CDR3 regions in ex vivo-isolated CMV- and EBV-specific CD8 T cells from 27 healthy donors. The average number of clonotypes specific to most single viral epitopes comprised between 14 and 77. Changes in the CD8 TCR repertoire were also longitudinally assessed under conditions of HIV-1 chronic infection (i.e., in patients with suppressed virus replication and after treatment interruption and Ag re-exposure). The results showed that a large renewal (≤80%) of the TRB repertoire occurred after Ag re-exposure and was eventually associated with an increased T cell recognition functional avidity. These results demonstrate that the global CD8 TCR repertoire is much more diverse (≤9-fold) than previously estimated and provide the mechanistic basis for supporting massive repertoire renewal during chronic virus infection and Ag re-exposure. The Journal of Immunology, 2011, 186: 7039–7049.

Despite its potential diversity, several studies have shown that the TCR repertoire emerging in response to antigenic stimulation is restricted. Independently of the Ag selection process during the course of an immune response, mechanisms involved during thymic selection contribute to limit the TCR repertoire diversity (2, 3). Although the mechanisms have not been clearly established (reviewed in Refs. 4, 5), the limited pattern of epitopes recognized among the large number of potent immunogenic epitopes encoded by viruses (immunodominant epitopes) is an important factor for the limitation of the TCR repertoire diversity (6–9). Furthermore, in several situations, certain virus epitopes recruited a low number of clonotypes (reviewed in Ref. 10). This phenomenon was extensively demonstrated for the EBV- and flavivirus-derived epitopes selecting public sequences (6, 11), respectively. Crystallographic studies revealed structural constraints of TCR–pMHC interaction as responsible for the highly restricted TCR repertoire in response to these two epitopes (12, 13). It has also been proposed that successive and repetitive stimulation upon chronic infection might be responsible for TCR repertoire narrowing (14, 15). However, the idea of repertoire narrowing is not consensual either in experimental models or during HIV infection (16–18). In addition, it has been shown that the TCR repertoire directed against a particular CMV-derived epitope remained quite heterogeneous in healthy individuals (15). Along the same line, direct sequencing of the TCR β-chain by anchored PCR on ex vivo virus-specific sorted CD8 T cells revealed that two epitopes derived from EBV and CMV were recognized by CD8 T cells exhibiting a higher degree (seven to nine clonotypes) of clonotypic diversity (19, 20) indicating that the TCR repertoire during viral response might not be as restricted as thought. The variable degree of diversity of the TCR repertoire observed during chronic virus infections might be related to the experimental strategies used in various studies. Many studies have analyzed the TCR repertoire in T cell lines and/or clones obtained in vitro from a limited number of subjects (21, 22) and/or have been based on the use of an incomplete panel of anti-Vβ mAbs (14, 15, 21–23), raising the question of to what extent these data were representative of the
in vivo situation. With regard to the direct sequencing of the TCR β-chain by anchored PCR in ex vivo Ag-specific sorted cells (19, 20, 24), it is possible that the TCR repertoire diversity might be underestimated, as the degree of diversity measured will be dependent upon the extent of sequencing with the potential for preferential detection of dominant CD8 T cell clonotypes.

The primary objective of the current study was to evaluate the degree of TCR diversity of CD8 T cells specific to viruses establishing chronic infections. We have investigated CMV and EBV infections because these two viruses infect a large proportion (60–98%) of individuals and the virus-specific memory CD8 T cell responses can be readily detected ex vivo. Furthermore, we also monitored the changes of the TCR repertoire occurring over time in HIV-1–infected subjects experiencing large increments in viremia levels between, before, and after antiviral therapy interruption. To avoid the risk of culture bias, the TCR repertoire of virus-specific CD8 T cells was analyzed ex vivo in sorted virus-specific CD8 T cells using fluorescent peptide–MHC class I (pMHCI) pentamers. Because CDR3 regions are involved in the TCR interaction with pMHC complex, we focused on TCR β-chain and CDR3β variation (hereafter referred to as TRB repertoire) as a measure of the diversity of an Ag-driven TCR repertoire. To circumvent the caveats of selecting for the most represented clonotypes within Ag-specific T cell populations, CDR3β diversity was evaluated in the sorted pMHCI pentamers* virus-specific CD8 T cells within all the TCR-β–chain V regions families identified by PCR. Our results indicate that the global TRB repertoire of virus-specific CD8 T cells is greatly diverse and undergoes massive re-exposure after Ag re-exposure.

Materials and Methods

Patients

HIV-1–infected patients no. 1023, no. 1016, and no. 1042 were diagnosed with primary infection and treated with AZT plus 3TC plus LPV/RTV upon enrollment in the HIV-1 Primary Infection cohort Lausanne study (25). The patients underwent treatment interruption, and an HIV-1 viral rebound was subsequently monitored. Samples of 100 ml blood were collected at several time points after obtaining written informed consent of the patients. The study was approved by the Institutional Review Board of the Centre Hospitalier Universitaire Vaudois.

Isolation of cells and selection of samples

Blood samples were obtained from the local blood bank (Lausanne, Switzerland). Blood mononuclear cells (MNCs) were isolated from whole blood samples from healthy donors by Ficoll-Hypaque density gradient centrifugation. Samples were screened for the presence of epitope-specific CD8 T cells by flow cytometry using pMHCI pentamers (Proimmune, Oxford, U.K.) and CD3- and CD8-specific mAbs (BD Biosciences, Erembodegem, Belgium). The fluorescence was measured using an LSRII flow cytometer (BD Biosciences). Samples from HIV-1–infected patients were mapped for the presence of CD8 T cells with a panel of 194 optimal HIV-derived epitopes (26) organized in a matrix setting. Epitope mapping was confirmed by flow cytometry when pMHCI pentamer was available. Patient no. 1023 responded to four epitopes (HLA-B*0702/p24223–231–GPGHKARVL, HLA-A*0301/p1720–28–RLRPGGKK, HLA-B*0702/p16092–93–EHPDPRLQ, and HLA-B*1306/p0811–114–RQDIIDMW), patient no. 1016 to three epitopes (HLA-A*0201/p24128–135–EIYKRWII, and HLA-B*0801/p1777–78–GPRFFAY, and HLA-B*3501/p0811–114–RQDIIDMW), and patient no. 1042 to three epitopes (HLA-B*0702/p24223–231–GPGHKARVL, HLA-A*0301/p1720–28–RLRPGGKK, and HLA-A*0201/p24128–135–EIYKRWII, and HLA-B*4001/RTS–12–IETVVPKL).

Detection of IFN-γ intracellular production

Blood MNCs from HIV-1–infected patients were stimulated overnight with 1 μg/ml of the cognate peptide in the presence of 1 μg/ml GolgiPlug (BD Biosciences). Cells were washed, permeabilized, and stained with CD8–PerCP-Cy5.5, CD4–FITC, and IFN-γ–allophycocyanin (BD Pharmingen, San Diego, CA). Data were acquired on an LSRII flow cytometer. The magnitude of specific T cell response was evaluated by measuring the percentage of IFN-γ–producing CD8 T cells. A response was considered positive when the percentage of cytokine-producing cells in stimulated samples was at least 5-fold greater than that in unstimulated samples.

Functional avidity of T cell recognition

Blood MNCs from HIV-1–infected patients were stimulated overnight by serial dilutions of the cognate peptide ranging from 1 μg/ml to 1 pg/ml in the presence of 1 μg/ml GolgiPlug (BD Biosciences). The specific T cell response was evaluated by measuring the percentage of IFN-γ–producing CD8 T cells by flow cytometry as above or using the IFN-γ ELISPOT assay as previously described (27). The functional avidity of the T cell responses was assessed by determining the peptide concentration capable of inducing half-maximal responses (EC50).

Frequency of TRBV populations within Ag-specific T cells

Blood MNCs were stained with cognate pMHCI pentamers for 20 min at 4˚C, washed, and then incubated with a mixture of CD8, CD3 mAbs (BD Biosciences) and Vβ mAbs (IOTest β Mark; Beckman Coulter, Moulton, France) for 20 min at 4˚C. Data were acquired on an LSRII flow cytometer.

Cell sorting and RNA extraction

Blood MNCs were stained with cognate pMHCI pentamers for 20 min at 4˚C, washed, and then incubated with a mixture of anti-CD8, anti-CD45RA, and anti-CCR7 mAbs (BD Biosciences). CD45RA+ CCR7* naïve and pMHCI pentamers* CD8* T cells were directly sorted (FACSAria; BD Biosciences) in RLT lysis buffer (Qiagen, Hilden, Germany) containing 20 ng RNA carrier (Roche Diagnostics, Rotkreuz, Switzerland) and RNA extracted (Qiagen).

cDNA amplification, TCR spectratyping and sequencing

cDNA preparation and amplification were performed by using the Super SMART PCR cDNA Synthesis Kit according to the manufacturer’s instructions (Clontech Laboratories, Saint-Germain-en-Laye, France). Amplified cDNA was subjected to TRBV–TCR-β–chain C region (TRBC) PCR reactions using a set of twenty-four 5’ sense primers specific for the twenty-two TRBV families (28) and one 3’ antisense FAM-labelled primer specific for TRBC 5’. Amplified cDNA was then size-fractioned, and aliquots of positive samples were mixed with Genescan-500 ROX size standards and run on an ABI 3130 capillary sequencer (Applied Biosystems, Foster City, CA). To analyze further the CDR3 junction, TRBV product was purified, ligated into pGEM-T Easy Vector (Promega, Madison, WI), cloned by transformation of competent DH5α Escherichia coli, and sequenced with an M13 forward primer. The TRBV nomenclature is according to Wei et al. (29) and the international ImMunoGeneTics (IMGT) information system (http://www.imgt.org) (indicated in brackets in Figs. 2, 3, and 6). The CDR3 junction, length and sequence, was analyzed using the IMGT system.

Statistical analysis

To estimate the number of clonotypes emerging in response to the different CMV- and EBV-derived epitopes, the following analysis was performed. The data have a hierarchical structure with the individuals nested in epitopes (i.e., a two-level structure). Therefore, the hierarchical log-normal Poisson and log-normal negative binomial I and II mixture count regression models were investigated, and the best-fitting model was assessed (30, 31). Three predictive factors for the clonotype count were considered: at level one, the number of TRBV sequenced and the number of CDR3 fragments found were treated as fixed factors, whereas at level two, the epitope category was treated as a random factor. With both a frequentist and a Bayesian approach to assess proper convergence of the MCMC Bayesian algorithm (32, 33). In the Bayesian formulation, noninformative zero mean normal priors were postulated for the level one regression coefficients, and a noninformative zero mean normal prior was used for the level two random coefficient with a noninformative uniform distribution with support 1–100 hyper-prior for the SD between epitopes. The best functional form for two fixed factors was assessed using the fractional polynomials method (34). The regression model was first calibrated using the data set containing the partial number of clonotypes determined based on the partial sequencing of TRBV. Then, 95% confidence (for the mean number) and prediction intervals for the predictive number of clonotypes, given complete sequencing of TRBV as well as CD3R3 level and epitope, were calculated. The prediction intervals were calculated using the 2.5 and 97.5% quantiles of the posterior predictive distribution for the Bayesian model. The hierarchical log-normal Poisson regression model turned out to be the most appropriate as the overdispersion coefficient was found to be almost null (α = 0.02). The best functional form for TRBV was found to be
of the form $\beta_1 \times 1/TRBV^2 \times \log(TRBV) + \beta_2 \times 1/TRBV^2$, whereas it was linear for CDR3. Prediction intervals based on Chebyshev’s inequality are well known to be conservative and too large. All the calculations were performed using WinBUGS version 1.4.3 and STATA version 11.1.

Results

CDR3 length distribution analysis of TRBV transcripts derived from CMV- and EBV-specific CD8 T cells isolated from healthy subjects

According to the approach outlined in Supplemental Fig. 1, the detailed analysis of TRBV usage and CDR3 length profile for each TRBV subfamily emerging in response to CMV-derived epitopes was performed in healthy donors responding to HLA-B*0702/CMV-pp65_417–426–TPRVTTGGGAM and HLA-A*0201/CMV-pp65_495–503–NLVPMVATV (hereafter referred to as CMV_TPRVTTGGGAM and CMV_NLVPMVATV, respectively). The representative profiles obtained in three of five donors are shown in Fig. 1A. In control naive CD8 T cells, PCR amplification was obtained for each pair of TRBV–TRBC primers, and the CDR3 length patterns displayed an average of eight peaks distributed in a Gaussian-like fashion (data not shown). Although more restricted than the one observed in naive cells, the TRBV repertoire of CMV-specific CD8 T cells was diverse and heterogeneous between individuals (Fig. 1A). Thirteen to 21 and 15 to 22 TRBV subfamilies were detected in CMV_NLVPMVATV- and CMV_TPRVTTGGGAM-specific CD8 T cells, respectively, without preferential usage. Most TRBV families were composed of a lower number of CDR3 length peaks compared with naive cells (Fig. 1A and data not shown). Cumulative data presented in Fig. 1C indicated that 7–21 (median 14) and 7–22 (median 15) TRBV subfamilies were detected in CMV_NLVPMVATV- and CMV_TPRVTTGGGAM-specific CD8 T cells, respectively. Moreover, 14–54 (median 29) and 11–55 (median 22) CDR3 fragments were observed in these specific CD8 T cells, respectively.

Consistently with the pattern observed for CMV-specific CD8 T cells, similar TRBV usage and CDR3 length patterns were also observed in CD8 T cells specific to two of three EBV-derived epitopes. The TRBV repertoires of HLA-B*0801/EBV-BZFL1_190–197–RAKFKQLL (EBV_RAKFKQLL) and HLA-B*0801/EBV-BMFL1_259–267–GLCTLVAML (EBV_GLCTLVAML) specific CD8 T cells were diverse and heterogeneous between individuals (Fig. 1B). Cumulative data indicated that 9–21 (median 13) TRBV were detected in response to EBV_RAKFKQLL and 8–22 TRBV (median 15) were observed in CD8 T cells specific to EBV_GLCTLVAML (Fig. 1C). Similar to CMV-specific CD8 T cells, TRBV families detected in response to these two EBV-derived epitopes were mostly composed of a low number of CDR3 size peaks (Fig. 1B and data not shown). As for CMV-specific CD8 T cells, a higher number of total CDR3 fragments was found in response to both EBV_RAKFKQLL (15–59, median = 21) and EBV_GLCTLVAML (11–58, median = 24) (Fig. 1C).

FIGURE 1. CDR3 length distribution analysis of TRBV transcripts derived from CMV- and EBV-specific CD8 T cells isolated from healthy subjects. A and B, The CDR3 length distribution of TRBV transcripts was determined in (A) CMV- and (B) EBV-specific CD8 T cells. The CDR3 fragments found in the different TRBV subfamilies are represented by squares and their lengths indicated in amino acids. C, The cumulative data of the median number of TRBV families and CDR3 length fragments generated from 27 healthy donors with CD8 T cells specific to CMV- and EBV-derived epitopes are shown. *p < 0.05, **p < 0.005 (Kruskal–Wallis test).
Different from what was found with these two EBV-derived epitopes, the CD8 T cells specific to HLA-B*0801/EBV-EBNA3A339–347–FLRGRAYGL (EBV-FLRGRAYGL) were far more restricted (Fig. 1B). Overall, 3–8 TRBV (median 4) and 4–28 (median 5) CDR3 fragments were detected in response to this epitope in five healthy subjects (Fig. 1C). Of note, only one CDR3 size peak of 11 aa was detected in the TRBV6.1 subfamily in four of five subjects.

Clonotypic diversity in response to CMV- and EBV-derived epitopes in healthy subjects

We next assessed the clonotypic diversity of CD8 T cells specific to CMV- and EBV-derived epitopes. The large TRBV and CDR3 length diversity shown above led us to focus on several selected TRBV subfamilies. In particular, we further analyzed some TRBV families presenting CDR3 length peaks shared by different subjects. The clonotypic diversity was also assessed within a few TRBV families with a CDR3 length peaks profile more restricted to individual subjects. TRBV PCR products were cloned, and 10 clones were sequenced per each CDR3 size. This number of clones allowed us to obtain sequences representative of the TRBV population and thus suitable for determining the clonotypic diversity (Supplemental Fig. 1). Overall, a median number of 79 sequences (range 43–208) was obtained per donor responding to CMV-TPRVTGGGAM, CMVNLVPMVAT, EBV-RAFKKOLL, and EBV-GLCILVAM. Ten to 92 sequences (median 20) were obtained per donor responding to EBV-FLRGRAYGL. The sequence analysis of the TRBV subfamilies selected revealed substantial clonotypic diversity (Figs. 2, 3). Even though most TRBV families detected in response to CMV-specific epitopes presented dominant clonotypes, most TRBV families and also CDR3 length fragments were composed of more than one CDR3 junctional region (Fig. 2).

In addition, no consensus CDR3 motifs were identified, but one GSSG motif at CDR3 position 5 was observed in the TRBV14 subfamily in two subjects responding to CMV-TPRVTGGGAM. The conservation of this N-encoded sequence suggested Ag-driven selection of this clonotype. Of note, two clonotypes found in response to CMVNLVPMVAT were also found by anchored RT-PCR and sequencing of subclones in previous studies (19, 20). With regard to EBV-specific CD8 T cells, the same degree of clonotypic diversity was found for two epitopes (Fig. 3). Notably, some CDR3 motifs and even sequences were conserved between individuals responding to EBV-RAFKKOLL (Fig. 3). A partly N-encoded motif GE in the TRBV5.2 subfamily was observed in three of six subjects responding to EBV-FLRGRAYGL.

The conservation of this N-encoded sequence suggested Ag-driven selection of this clonotype. Of note, two clonotypes found in response to CMV-TPRVTGGGAM were also found by anchored RT-PCR and sequencing of subclones in previous studies (19, 20). With regard to EBV-specific CD8 T cells, the same degree of clonotypic diversity was found for two epitopes (Fig. 3). Notably, some CDR3 motifs and even sequences were conserved between individuals responding to EBV-RAFKKOLL (Fig. 3). A partly N-encoded motif GE in the TRBV5.2 subfamily was observed in three of six subjects responding to EBV-FLRGRAYGL.
clonal selection. With regard to the T cell repertoire specific to EBV GLCTLV AML, one new public clonotype was found in two donors, AV and KEL-13 (Fig. 3). Several other clonotypes defined in the current study were previously reported (19, 20). Concerning the EBV FLRGRAYGL-specific CD8 T cells, we focused on the TRBV1 subfamily shared by two individuals and, more interestingly, on the TRBV6.1 subfamily detected in four of five subjects (Fig. 3). The TRBV1 subfamily contained one CDR3 length fragment and was composed of one particular clonotype different in each individual. The TRBV6.1 subfamily was also composed of one CDR3 length fragment. This fragment was composed of one public clonotype, TRBV6.1-TRBJ2-7 CASSLGQAYEQYF, dominant and shared by the three subjects analyzed, and one codominant private clonotype in one of these three subjects. As mentioned above for CD8 T cells specific to EBV RAKFQKLL, this public clonotype was encoded by distinct nucleotide sequences within one individual (different germline-encoded amino acids underlined) and/or by non-germline sequences suggesting an Ag-driven clonal selection (Fig. 3). Of note, this public clonotype was already reported as a dominant CDR3 sequence in response to this EBV epitope (6).

We also evaluated the diversity of the TRB repertoire of high (dominant) versus low (subdominant) represented TRBV CD8 T cell populations responding to CMV and EBV epitopes and also measured the frequency of the TRBV populations within pentamer+ CD8 T cells (Fig. 4A). In most cases, the TRBV populations identified by PCR were not detected by the commercially available anti-Vβ mAbs (Fig. 4B). However, the TRBV repertoire of the totality or a fraction (≥10% of pentamer+ CD8 T cells) of dominant versus subdominant populations of Ag-specific CD8 T cells was possible in four of seven subjects. In subject no. AM35, CMV NLVPMV ATV-specific CD8 T cells were composed of 15% TRBV11, 53% TRBV13, and 30% TRBV23. In response to CMV TPVRGTGGAM, 12% of specific CD8 T cells expressed TRBV14 in subject no. AM19 and 10% in subject no. KEL12. In response to EBV GLCTLV AML, the majority of pentamer+ CD8 T cells expressed TRBV2 (76%) and 5% expressed TRBV1, TRBV13, and TRBV22. With regard to their TRB diversity, both dominant and subdominant TRB populations showed similar diversity either in terms of the number of CDR3 fragments and/or clonotypes (Fig. 4B). For instance, in subject no. AM35, the dominant TRBV1, 13, and 23 specific to CMV NLVPMV ATV had the same number of TRBV3 fragments and clonotypes compared with the subdominant TRBV1 and 5.1 populations. These results indicate that there was no bias in the TRB repertoire diversity between dominant and subdominant TRBV populations.

Estimation of TRB repertoire diversity in response to CMV- and EBV-derived epitopes

On the basis of the large data set generated by the analysis of the TRB repertoire in CMV- and EBV-specific CD8 T cells, we then explored the possibility of developing a mathematical model to

Table 3

<table>
<thead>
<tr>
<th>TRBV</th>
<th>ID</th>
<th>Junction</th>
<th>TRBE</th>
<th>TRBJ</th>
<th>CDR3 length</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>AV</td>
<td>49</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>AN7</td>
<td>2*01</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>MCL-05</td>
<td>4*02</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>AM02</td>
<td>4*07</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>TRBV</th>
<th>ID</th>
<th>Junction</th>
<th>TRBE</th>
<th>TRBJ</th>
<th>CDR3 length</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>01100</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
<td>8/30</td>
</tr>
<tr>
<td></td>
<td>041200</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
<td>17/37</td>
</tr>
<tr>
<td></td>
<td>AN20</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
<td>2/30</td>
</tr>
<tr>
<td></td>
<td>KEL-5</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
<td>6/30</td>
</tr>
<tr>
<td></td>
<td>KEL-13</td>
<td>1*01</td>
<td>1*01</td>
<td>1*01</td>
<td>11</td>
<td>2/30</td>
</tr>
</tbody>
</table>

Figure 3. CDR3 sequences of EBV BZFL1, -BMLF1, and -EBNA3A–specific CD8 T cells. CDR3 sequences were analyzed by using the IMGT system. Amino acid derived from the germline nucleotide sequences are underlined. Conserved CDR3 residues found in the current study are highlighted in yellow and clonotypes shared between different individuals indicated by an asterisk. Public clonotypes found in previous studies (19, 20) are shown in blue boxes.
predict the TRB repertoire diversity of Ag-specific CD8 T cells. For this purpose, the data on the numbers of TRBV, CDR3 fragments, and clonotypes per each sequenced TRBV were analyzed using a hierarchical regression count model. Three predictive factors for the number of clonotypes were considered. The number of TRBV and CDR3 were treated as fixed factors, and the type of epitopes was treated as random (see Materials and Methods). The average number of clonotypes was thus predicted for an individual responding to a specific Ag and presenting a given number of TRBV and CDR3 fragments (Fig. 5). The level of diversity appeared highly heterogeneous between individuals and depended on the number of TRBV (Fig. 5 and data not shown). For instance, in response to CMVNLVPMVATV, an average number of 14 clonotypes with a 95% prediction interval (PI) comprising between 6 and 23 was predicted in the subject presenting 7 TRBV, whereas an average number of 51 clonotypes was estimated in the subject presenting 21 TRBV (PI comprising between 30 and 76). Although variable, the level of TRB repertoire diversity remained elevated in response to the two CMV-derived epitopes and to EBVRAKFKQLL and EBVGLCTLVAML epitopes. In subjects responding to CMVNLVPMVATV and to CMVTPRVTGGGAM, the average number of clonotypes ranged between 14 and 51 and between 16 and 62, respectively. The average value of clonotypes carried by CD8 T cells specific to EBVRAKFKQLL and EBVGLCTLVAML epitopes comprised between 24 and 77, and 17 and 64, respectively. In agreement with what was previously reported, the TRB repertoire specific to EBVFLRGRAYGL was far more restricted with only 4 to 22 estimated clonotypes per individual.

To validate this prediction strategy, we analyzed the clonotypic distribution within all TRBV families detected in response to one epitope in three randomly selected donors. The three donors responded to CMVTPRVTGGGAM, EBVRAKFKQLL, and EBVFLRGRAYGL, and complete sequencing of the 8, 11, and 4 TRBV families specific to these epitopes was performed. As shown in Fig. 6, the number of clonotypes detected after complete sequencing in response to CMVTPRVTGGGAM and EBVRAKFKQLL was 23 and 27, respectively, whereas only 5 clonotypes were found in response to EBVFLRGRAYGL. According to the prediction strategy, an average number of 17 (PI comprising between 7 and 26), 26 (PI comprising between 14 and 39), and 7 (PI comprising between 1 and 12) clonotypes were expected in response to CMVTPRVTGGGAM, EBVRAKFKQLL, and EBVFLRGRAYGL, respectively. The actual clonotypes found by complete sequencing of the TRBV families specific to these three epitopes were thus

![Image of TCR repertoire diversity in response to viral Ags](http://www.jimmunol.org/)
contained in the prediction intervals thereby confirming the reliability of the prediction model. Overall, these data provided validation and solid support for the use of this strategy for the estimation of the TRB diversity.

Changes in the TRB repertoire after Ag re-exposure
To evaluate further the TRB repertoire diversity in chronic virus infection and the changes occurring after Ag re-exposure, we performed a longitudinal analysis of TRBV and CDR3 diversity after treatment interruption (TI) and high levels of Ag re-exposure. Patients no. 1023, no. 1016, and no. 1042 were treated with antiviral therapy at the time of primary infection. All patients spontaneously decided to stop treatment ~2 y after the initiation of antiviral therapy and agreed to be monitored for viral load, CD4 T cell counts (Fig. 7A), and a series of immunological measures (Fig. 7B–F). TI was rapidly accompanied by HIV-1 viral load rebound and concomitant drop of CD4 T cell counts (Fig. 7A). TI was also associated with an increase of the number of CD8 T cell epitopes recognized in these patients (data not shown). The analysis of the TRB repertoire diversity was performed before and after TI. It has to be emphasized that the TRB repertoire was diverse in all patients (Fig. 7B, 7C). Before TI, 18, 19, and 21 TRBV and 39, 36, and 56 CDR3 fragments were detected in patient no. 1023, no. 1016, and no. 1042, respectively. Substantial changes in the TRB repertoire were observed in the three patients after TI and Ag re-exposure (Fig. 7B, 7C). The size of the TRB repertoire was slightly increased and/or stable in patients no. 1023 and no. 1042, respectively, whereas the TRB repertoire tended to narrow in patient no. 1016, this latter being characterized by the disappearance of 55% of TRBV and 72% of CDR3 fragments upon TI (Fig. 7B, 7C). The most striking changes were, however, observed in the quality of the repertoire, defined in this article as a measure of the renewal occurring between the two time points. Taking into account the concomitant disappearance of TRBV and CDR3 fragments from the first time point and the appearance of new TRBV and CD3 fragments at the second time point, the renewal of the TRB repertoire in patient no. 1023 was 18% for TRBV and 82% for CDR3 fragments, 60 and 88% in patient no. 1016, and 21 and 56% in patient no. 1042 (Fig. 7B, 7C).

The diversity and the renewal of the TRB repertoire before and after TI were further confirmed at the level of clonotypic composition. According to the prediction strategy validated above, an average number of 36 (PI comprising between 21 and 52), 42 (PI comprising between 28 and 58), and 52 (PI comprising between 32 and 76) clonotypes were expected in response to p17SLYNTVATL, p24GPGHKARVL, and p6KELYPLTSL in patients no. 1016, no. 1023, and no. 1042, respectively. The same level of diversity was estimated after TI with an average of 17 (PI 8–26), 57 (PI 39–78), and 44 (PI 26–65) clonotypes in response to p17SLYNTVATL, p24GPGHKARVL, and p6KELYPLTSL in patients no. 1016, no. 1023, and no. 1042, respectively. The renewal of the TRB repertoire was further confirmed by assessing the clonotypic diversity of CD8 T cells specific to p24GPGHKARVL and p17SLYNTVATL epitopes in patients no. 1023 and no. 1016. For these purposes, TRBV families presenting CDR3 length peaks shared between pre-TI and post-TI samples were sequenced. Consistently with the increased diversity of TRBV and CDR3 fragments over time (Fig. 7B, 7C), large changes in clonotypes were also observed in patient no. 1023 (Fig. 7D, Supplemental Fig. 2). The clonotypic composition of 6 of 12 TRBV analyzed (Fig. 7D, Supplemental Fig. 2) was completely changed after TI. Although one dominant clonotype was maintained over time in TRBV7, the six subdominant clonotypes were replaced by eight new clonotypes, representing 37 and 62% of the clonotypic repertoire, respectively. The profiles of dominant...
and subdominant clonotypes changed in TRBV1 and TRBV24 (Fig. 7D, Supplemental Fig. 2). The clonotype profiles remained stable only in 3 of 12 TRBV sequenced (Fig. 7D, Supplemental Fig. 2). In patient no. 1016, the narrowing of the TRB repertoire after TI was confirmed at the level of the clonotypic distribution. In TRBV5-1, there was disappearance of three subdominant clonotypes, whereas six clonotypes were replaced by two new clonotypes in TRBV13 (Fig. 7D, Supplemental Fig. 3). In TRBV17, one dominant and one subdominant clonotype became codominant, and two subdominant clonotypes were replaced by a new one (Fig. 7D, Supplemental Fig. 3). No changes were observed in TRBV24 (Fig. 7D, Supplemental Fig. 3).

Changes in the functional avidity of virus-specific CD8 T cells after TI

To investigate whether the large renewal in the TRB repertoire was associated with functional changes in the CD8 T cell responses directed against viral Ags, we investigated the functional avidity of the CD8 T cells specific to p24GPGHKARVL, p17SLYNTVATL, and p6KELYPLTSL in patients no. 1023, no. 1016, and no. 1042, respectively (Fig. 7E, 7F). In two of three patients, the magnitude of HIV-1–specific CD8 T cell response, as measured by the percentage of IFN-γ–producing CD8 T cells, strongly increased after TI (i.e., 17-fold in patient no. 1016 and 3.6-fold in patient no. 1042) (Fig. 7F). No changes were observed in patient no. 1023 (Fig. 7D). Therefore, massive renewal in the CD8 T cells repertoire after Ag reexposure may be associated with substantial increase in the magnitude and in the functional avidity of the responding CD8 T cells.

Discussion

The majority of studies investigating the T cell repertoire elicited upon antigenic-specific stimulation has been based on the characterization of T cell lines and/or clones established in vitro, on a limited number of subjects, and by direct sequencing of the TCR b-chain by anchored PCR on ex vivo virus-specific sorted CD8 T cells. In this study, we have applied a multisteps strategy including 1) sorting of virus-specific pMHCI pentamer+ CD8+ T cells, 2) PCR analysis of TRBV usage within the sorted virus-specific CD8 T cells, 3) analysis of the CDR3 junction length by spectratyping, and 4) sequence analysis of CDR3 junctions in the TRBV families contained within the virus-specific CD8 T cells. We found that the global TRB repertoire emerging in response to most viral Ags studied was greatly diverse and the extent of the diversity much greater than that estimated in previous studies (19, 20). Of note, the concept of global CD8 TRB repertoire diversity reported in the current study coincides with the high CD8 TRB repertoire global diversity estimated in experimental models (35–38) and the broad range of CD8 T cell clonotypes reported in hepatitis-C–infected patients (39).
An average of seven to nine different clonotypes was previously shown in CD8 T cells specific to CMV NVPMV ATV and to EBV GLCTLV AML using anchored RT-PCR (19, 20). The global TRB repertoire measured in response to these and other epitopes derived from CMV and EBV lytic proteins in the current study had much greater diversity. The greater diversity was consistently observed by the analysis of different measures of TCR diversity. In particular, the average number of clonotypes specific to CMV- and EBV-derived lytic epitopes ranged between 14 and 77 clonotypes per single epitope. Therefore, the degree of estimated TRB diversity is 9-fold greater than that reported in previous studies (19, 20).

Combining the analysis of the CDR3 fragments with extensive sequencing of individual TRBV families, we have developed a strategy to estimate the TRB diversity without necessarily performing complete sequencing. This strategy was validated through the complete sequencing of the TRB repertoires measured in response to CMV TPRTGGGAM and EBV RAKFQKOL. Of note, this statistical model also presents the advantage to be applied to the prediction of the TRB repertoire diversity in response to any type of viral epitope. Indeed, the type of epitope was treated as random and the variability of parameters was taken into account for various virus-derived epitopes including HIV epitopes (data not shown).

The greater degree of TRB diversity in the current study compared with that of previous studies (19, 20) may result from the different experimental strategy used to determine the TRB repertoire diversity. The key difference is likely to screen the whole clonotypic distribution in TRBV families detected within one Ag-specific CD8 T cell population rather than performing direct ex vivo sequencing that may select for dominant clonotypes. This was supported by the measurement of the frequency of TRBV populations within Ag-specific T cells and by the absence of bias in TRB diversity in dominant and subdominant CD8 T cell populations. The larger diversity of the TRB repertoire shown in our study is in agreement with and helps to explain the broad range of avidities and of T cell clones recruited in response to microbial infection (40).
found in three of three subjects was in agreement with previous studies (6, 41). The presence of public clonotypes and the global restriction of repertoire cannot be only attributed to the successive and repetitive stimulations of immune cells upon chronic infection, as the above public clonotype appeared early during acute infection (41, 42). Different studies have also suggested that the structural constraints/mechanisms of the TCR–pMHC interaction (12, 13, 43, 44) and the endogenous selection of T cells (45) might play an important role in the regulation of the level of TCR diversity. With regard to the biological relevance, it has recently been reported that the number of public clonotypes within CD8 T cells responding to an epitope known as protective in SIV infection (46) was correlated with a better outcome of virus infection (47). Of note, we have also identified two novel public clonotypes in response to EBV*RAKFQKOLL and EBV*GLCTLVAML.

The TBR repertoire emerging upon HIV-1 infection was also characterized by a large diversity similar to or even greater in magnitude than that observed in response to CMV- and EBV-derived epitopes. It has recently been reported that the TCR diversity remains stable over time in controlled virus infections such as CMV (48). However, the large TCR diversity may be relevant for several reasons and particularly in chronic virus infections after repeated and high levels of Ag exposure. A larger TCR repertoire may warrant limited risk of CD8 T cell clones deletion upon chronic antigenic stimulation by providing an unlimited number of T cell clones expressing TCRs specific to the same antigenic epitope. In the current study, the longitudinal changes in the TRB repertoire in HIV-1–infected subjects support the above considerations. We have observed the occurrence of a massive renewal (i.e., ≥80% of the TRB repertoire) after treatment interruption and re-exposure to high Ag levels. A higher rate of clonotypes turnover has been shown to occur in certain HIV-specific CD8 T cell populations (49). As already suggested (49), one can speculate that the large renewal of TRB repertoire resulting from the disappearance of T cell clonotypes and the emergence of new clonotypes upon Ag exposure is due to the adaptation of the T cell repertoire to viral variation and/or to clonal senescence. Most likely, the newly appeared CD8 T cell clonotypes detected after Ag re-exposure might be recruited also from the naive pool. The massive renewal of the TRB repertoire was associated either with the persistence or with major increase in the magnitude of the CD8 T cell-specific responses.

A large TCR diversity comprising clonotypes with different avidity for the cognate epitope may also represent a mechanism for the selection of TCR clonotypes with increased avidity after repetitive Ag exposure to cope more efficiently with the re-encounter virus. Higher TCR avidity has been proposed to be critical for the control of viral infections (50–52) or subsequent infections with related pathogens (40). Of note, we have also shown that the large TRB repertoire renewal observed after treatment interruption and Ag re-exposure may be associated with the increase of functional avidity of T cell recognition. Whereas somatic hypermutation of IgS is the mechanism leading to the generation and selection of Ig-bearing B cells with greater avidity for the cognate Ag, similar mechanisms do not operate in T cells. On the basis of the results shown in this article, one may speculate that the greater TRB repertoire diversity and the massive renewal observed after Ag re-exposure provide the mechanistic basis for the generation of a large number of clonotypes. The screening of a large number of clonotypes may be necessary for the selection eventually of clonotypes with greater avidity for the cognate Ag.

It has been proposed that a highly diverse T cell repertoire able to target multiple epitopes will minimize the selection pressure driving escape mutations (53), will be more efficient to recognize a diverse range of epitope variants (54), and will be theoretically more prone to control virus variants and to confer protective antiviral immunity (53). A highly diverse TCR repertoire provides also the scientific rationale for the existence of several positive and negative regulatory mechanisms of the T cell response (55).

The estimates of the TCR diversity reported in the current study are based on the analysis of the TRB repertoire in memory CD8 T cell populations. It is highly likely that the TCR α-chain repertoire and the absence of Ag-driven selection in naive T cell populations are both factors that may sensibly increase the TCR diversity. It is therefore conceivable that the TCR diversity may even be substantially greater.

In conclusion, the current study provides new ground for better understanding TCR diversity. The greater TCR diversity may represent a mechanism for the large renewal of the TCR repertoire occurring during chronic virus infection and continuous Ag stimulation and for the selection of virus-specific CD8 T cell responses with greater avidity for the cognate Ag.

Acknowledgments
We thank Drs. Valérie Dutoit and Dietmar Zehn for helpful discussion, G. Gonzalez for excellent assistance with flow cytometry cell sorting, Ester B.M. Remmerswaal for technical help, and Mohamed Faouzi for statistical analysis. We are very grateful to Dr. Pierre-Alexandre Bart and the staff and patients of the clinics that provided blood samples.

Disclosures
The authors have no financial conflicts of interest.

References

