Colonic Eosinophilic Inflammation in Experimental Colitis Is Mediated by Ly6C
high CCR2+ Inflammatory Monocyte/Macrophage-Derived CCL11

Amanda Waddell, Richard Ahrens, Kris Steinbrecher, Burke Donovan, Marc E. Rothenberg, Ariel Munitz and Simon P. Hogan

J Immunol 2011; 186:5993-6003; Prepublished online 15 April 2011:
doi: 10.4049/jimmunol.1003844
http://www.jimmunol.org/content/186/10/5993

Supplementary Material
http://www.jimmunol.org/content/suppl/2011/04/15/jimmunol.100384
4.DC1

References
This article cites 67 articles, 30 of which you can access for free at:
http://www.jimmunol.org/content/186/10/5993.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Colonic Eosinophilic Inflammation in Experimental Colitis Is Mediated by Ly6C^{high} CCR2⁺ Inflammatory Monocyte/Macrophage-Derived CCL11

Amanda Waddell,* Richard Ahrens,* Kris Steinbrecher, † Burke Donovan,* Marc E. Rothenberg,* Ariel Munitz,*,‡ and Simon P. Hogan*

Recent genome-wide association studies of pediatric inflammatory bowel disease have implicated the 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11, with early-onset inflammatory bowel disease susceptibility. In the current study, we employed a murine model of experimental colitis to define the molecular pathways that regulate CCL11 expression in the chronic intestinal inflammation and pathophysiology of experimental colitis. Bone marrow chimera experiments showed that hematopoietic cell-derived CCL11 is sufficient for CCL11-mediated colonic eosinophilic inflammation. We show that dextran sodium sulfate (DSS) treatment promotes the recruitment of F4/80⁺CD11b⁺CCR2⁺Ly6C^{high} inflammatory monocytes into the colon. F4/80⁺CD11b⁺CCR2⁺Ly6C^{high} monocytes express CCL11, and their recruitment positively correlated with colonic eosinophilic inflammation. Phenotypic analysis of purified Ly6C^{high} intestinal inflammatory macrophages revealed that these cells express both M1- and M2-associated genes, including Il6, Cc14, Cxcl2, Arg1, Chi3l3, Ccl11, and Il10, respectively. Attenuation of DSS-induced F4/80⁺CD11b⁺CCR2⁺Ly6C^{high} monocyte recruitment to the colon in CCR2^{−/−} mice was associated with decreased colonic CCL11 expression, eosinophilic inflammation, and DSS-induced histopathology. These studies identify a mechanism for DSS-induced colonic eosinophilia mediated by Ly6C^{high}CCR2⁺ inflammatory monocyte/macrophage-derived CCL11. The Journal of Immunology, 2011, 186: 5993–6003.

The inflammatory bowel diseases (IBD) Crohn’s disease (CD) and ulcerative colitis (UC) are chronic relapsing gastrointestinal (GI) inflammatory diseases that cause substantial morbidity and decreased quality of life. Over 30 years ago, Rutgeerts and colleagues (1) observed that aphthous ulcers containing an eosinophilic infiltrate and blunted villi were the earliest endoscopic signs of recurrence in the neoterminal ileum and anastomosis following surgical resection for CD. Eosinophils usually represent only a small percentage of the infiltrating leukocytes, but their level has been proposed to be a negative

*Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; †Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229; and ‡Department of Microbiology and Clinical Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel

Received for publication November 23, 2010. Accepted for publication March 12, 2011.

This work was supported by a Crohn’s and Colitis Foundation of America Career Development Award to S.P.H. (to S.P.H.); National Institutes of Health Grant R01 AI073553 (to S.P.H.); National Institutes of Health Grant R01 AI45898 (to M.E.R.); and an American Gastroenterological Association Foundation Graduate Student Research Fellowship (to A.W.).

A.W. and S.P.H. designed and performed experiments, analyzed and interpreted data, and wrote the manuscript. B.D. performed experiments and analyzed and interpreted data. M.E.R. provided mice. K.S., R.A., and A.M. discussed experimental design and data analysis.

Address correspondence and reprint requests to Dr. Simon P. Hogan, Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229. E-mail address: simon.hogan@cchmc.org

The online version of this article contains supplemental material.

Abbreviations used in this article: BM, bone marrow; CD, Crohn’s disease; DAL, disease activity index; DSS, dextran sodium sulfate; eGFP, enhanced GFP; GI, gastrointestinal; hpf, high-power field; IBD, inflammatory bowel diseases; Mφ, macrophages; PDL1, programmed death ligand 1; PHIL, mice deficient in eosinophils; SC, stromal compartment; UC, ulcerative colitis; WT, wild-type.

Copyright © 2011 by The American Association of Immunologists, Inc. 0022-1767/11/S16.00
Although a link between CCL11 and eosinophils in IBD has been established, the cellular source of CCL11 and molecular regulation of CCL11 expression in experimental colitis is not yet delineated. In the current study, we employed a model of DSS-induced colitis, which features a pronounced CCL11-dependent eosinophilic inflammation, to decipher the molecular regulation of CCL11 in experimental colitis. Performing bone marrow (BM) chimera experiments, we show that hematopoietic cell-derived CCL11 is required for DSS-induced colonic eosinophilic inflammation. We show that DSS exposure promotes the recruitment of F4/80+CD11b+CCR2+Ly6Chigh inflammatory monocytes to the colon and that F4/80+CD11b+CCR2+Ly6Chigh colonic monocytes/macrophages (MΦs) positively correlate with colonic eosinophilic inflammation. Ablation of DSS-induced F4/80+CD11b+CCR2+Ly6Chigh monocyte recruitment was associated with decreased intestinal CCL11 expression, colonic eosinophilic inflammation, and DSS-induced histopathology. These studies demonstrate that inflammatory monocyte/MΦ-derived CCL11 drives colonic eosinophilic inflammation in experimental colitis.

Materials and Methods

Mice

Male and female, 6-8-week-old strain-, age-, and weight-matched strain-, age-, and weight-matched CCR2 knockout (C57BL/6), CCL2 knockout (BALB/c) (The Jackson Laboratory, Bar Harbor, ME), C57BL/6, BALB/c, CCL11 knockout (BALB/c) (30), CXCR1-eGFP (The Jackson Laboratory), and NzeG-enhanced GFP (eGFP) (31) mice were treated according to institutional guidelines. Male and female, 6–8-wk-old strain-, age-, and weight-matched CCR2 knockout (C57BL/6) (The Jackson Laboratory, Bar Harbor, ME), CCL2 knockout (BALB/c) (30), CX3CR1GFP/+ (The Jackson Laboratory), and NzeG-enhanced GFP (eGFP) (31) mice were used. All mice were housed under specific pathogen-free conditions and treated according to institutional guidelines.

DSS-induced colonic injury and histopathologic examination

DSS (ICN Chemicals; 40–45 kDa) was administered in the drinking water as a 2.5–5% (w/v) solution for up to 8 d. Disease monitoring and histopathologic changes in the colon were scored as previously described (14).

Immunofluorescence microscopy

Immunofluorescence analysis was performed as previously described (14, 32). In brief, frozen sections were fixed in 10% acetone for 10 min, rinsed in PBS, blocked with 3% goat serum/PBS for 2 h at room temperature, and incubated with primary Ab rat anti-mouse F4/80 (5 µg/ml; eBioscience, San Diego, CA) in 3% normal goat serum/PBS. Sections were incubated with isotype control alone in place of primary Ab as a negative control. After an overnight incubation at 4°C, sections were washed with 0.1% BSA and 0.05% Tween/PBS and incubated with goat anti-rat Alexa Fluor 594 (Invitrogen, Carlsbad, CA) for 2 h at room temperature. Slides were washed in PBS and counterstained with DAPI/Supermount G solution (Southern Biotechnology Associates, Birmingham, AL). Images were captured using a Zeiss microscope fitted with Zeiss UPlanApo lenses (×10, ×20, and ×40 magnification) and an AxioCam MRc camera and analyzed with Axioviewer version 3.1 image analysis software (Carl Zeiss, Jena, Germany). Postacquisition processing (brightness, opacity, contrast, and color balance) was applied to the entire image and accurately reflects that of the original.

ELISA

CCL11, IL-6, and TNF-α levels were measured in the supernatants using the ELISA Duo-Set kit according to the manufacturer’s instructions (R&D Systems, Minneapolis, MN).

MBP staining

Eosinophil levels were quantified by anti-MBP immunohistochemistry as previously described (33).

Punch biopsies

Colonos were excised, flushed with PBS with gentamicin (20 µg/ml), and opened along a longitudinal axis. Thereafter, 3-mm punch biopsies were excised and incubated for 24 h in a 24-well plate with RPMI 1640 supplemented with 10% FCS and antibiotics. Supernatants were collected and kept at −20°C until assessed for cytokines/chemokines by ELISA.

Real-time PCR analysis

Mouse Hprt, Ccl11, Retnla, Ch313, Arg1, Trem1, Ccl22, Ccl17, Ccl24, Ccl10, Pdgfb, Il1b, Tnf, Il6, Ccl3, and Il10 mRNA were quantified by real-time PCR as previously described (34). In brief, the RNA samples (1 µg) were subjected to reverse transcription analysis using SuperScript II reverse transcriptase (Invitrogen) according to the manufacturer’s instructions and quantified using the iQ5 multicolor real-time PCR detection system (Bio-Rad, Hercules, CA) with iQ5 software V2.0 and LightCycler FastStart DNA Master SYBR Green I (Bio-Rad). Primer sets are listed in Supplemental Table I. Gene expression was determined as relative expression on a linear curve based on a gel-extracted standard and was normalized to Hprt amplified from the same cDNA mix. Results were expressed as gene of interest/Hprt ratio.

Intestinal MΦ purification

MΦ populations from the colons of CXCR1GFP (C57BL/6) were isolated as previously described (14). In brief, the colon segment of the GI tract was removed and flushed with 20 ml Ca2+- and Mg2+-free HBSS. The colon was cut longitudinally, placed in Ca2+- and Mg2+-free HBSS containing 10% FBS/5 mM EDTA/25 mM HEPES, and shaken vigorously at 37°C for 30 min. The tissue was cut into 1-cm segments and incubated in digestion buffer containing 2.4 mg/ml collagenase A (Roche Diagnostics, Indianapolis, IN) and 0.2 mg/ml Dnase I (Roche Diagnostics) in RPMI 1640 for 45 min on a shaker at 37°C. Following incubation, the cell aggregates were dissociated by filtering through a 19-gauge needle and 70-µm filter and centrifuged at 1200 rpm for 20 min at 4°C. The supernatant was decanted and the cell pellet resuspended in 1% FBS/5 mM EDTA/PBS, and cells were incubated for 30 min with biotinylated rat anti-mouse CD11b (1 µg/ml 107 cells; BD Pharmingen, San Jose, CA) at 4°C. Cells were subsequently incubated with anti-biotin microbeads (Miltenyi Biotec, Auburn, CA) for 15 min at 4°C and purified by LS MACS column by positive selection as described by the manufacturer. In brief, 1 ml of cell suspension was added to the LS column, and the column was washed three times with 3 ml of 5 mM EDTA/1% FBS/PBS. CD11b+ cells were removed from the column using a plunger. After washing, CD11b+ selected cells were labeled with rat anti-mouse Ly5C-Alexa 647 (AbD Serotec, Raleigh, NC) and immediately sorted using an FACS Aria cell sorter (BD Biosciences, San Jose, CA) for CXCR1-eGFP and Ly5C. Purity of CXCR1+Ly5Chigh cells was >95% as assessed by flow cytometry. RNA was isolated using the Qiagen RNeasy micro kit for cDNA synthesis (Qiagen) and RT-PCR analysis was performed as described above.

Monocyte enrichment

Peripheral blood was collected in K_2EDTA tubes, and RBCs were lysed using RBC Lysing Buffer (Sigma-Aldrich, St. Louis, MO). Monocytes were enriched using the StemCell Technologies monocyte enrichment kit following the manufacturer’s protocol (StemCell Technologies). Purity was assessed by flow cytometry at >80% F4/80+CD11b+. RNA was isolated using the Qiagen RNeasy micro kit (Qiagen), and cDNA was generated for RT-PCR analysis as described above.

FACS analysis

Single-cell suspensions were washed with FACS buffer (PBS/1% FCS) and incubated with combinations of the following Abs: PE anti-mouse F4/80 (clone 3-13-A1; AbD Serotec), PE-Cy7 anti-mouse CD11b (clone M1/70; BD Pharmingen), Alexa Fluor 647 anti-mouse Ly6C (clone ER-MP20; AbD Serotec). FITC anti-mouse CD206 (MR85D3; Biologend, San Diego, CA), aliphophycocyanin anti-mouse CD11c (clone HL3; BD Pharmingen), FITC anti-mouse programmed death ligand 1 (PD1L) (clone MIIIH6; AbD Serotec), and goat anti-mouse CCR2 (polyclonal; GeneTex, Irvine, CA) following by donkey anti-goat FITC (Jackson ImmunoResearch Laboratories, West Grove, PA), and biotinylated anti-mouse TL2R (clone mTL2.7; eBioscience), followed by streptavidin-FITC (BD Pharmingen), aliphophycocyanin anti-mouse CCR3 (clone 83101; R&D Systems), and PE anti-mouse Siglec F (clone E50-2440; BD Pharmingen). The following Abs were used as appropriate isotype controls: FITC rat IgG2a (clone B29-4; BD Pharmingen), PE rat IgG2a (clone 53-67; BD Pharmingen), PE-Cy7 rat IgG2b (clone DTA-1; BD Pharmingen), and Alexa Fluor 647 rat IgG2a (clone R35-95; BD Pharmingen). Cells were analyzed on an FACSCalibur (BD Immunocytometry Systems, San Jose, CA), and analysis was performed using FlowJo software (Tree Star, Ashland, OR).

Generation of BM chimeras

BM was isolated from NzeG-eGFP (BALB/c) (31) and CCL11−/− mice (BALB/c). Lethally irradiated (two doses of 83Cs−) (475 and 475 rad, 3 h

Downloaded from http://www.jimmunol.org/ by guest on April 14, 2017
between groups. Original magnification represent the mean colonic sections from day 7 DSS-treated mice. irradiated and reconstituted with their own BM type (SC+BM+ and SC) expression of CCL11 is sufficient for DSS-induced colonic mental colitis. To assess if hematopoietic or stromal compartment interested in defining the cellular source of CCL11 in experi-

mental Fig. 1D, 1E). Following the verification of reconstitution, mice were exposed to DSS for 7 d, and colonic eosinophil inflammation was quantitated. DSS treatment of SC"BM" and SC" BM" mice induced a significant increase in colonic eosinophil levels compared with control-treated mice (Fig. 1A, 1B: SC"BM" baseline 8.0 ± 1.0 versus SC"BM" DSS 17.2 ± 2.9 eosinophils/high-power field (hpf), p < 0.05; SC" BM" baseline 3.4 ± 0.1 versus SC" BM" 13.2 ± 1.2 eosinophils/hpf, p < 0.05; n = 3 to 5 mice baseline; n = 7 to 8 mice DSS). Similarly, DSS treatment of CCL11'/' mice reconstituted with WT BM (SC" BM") induced a 3-fold increase in eosinophil recruitment in the distal colon compared with SC" BM" mice (Fig. 1A, 1B: SC" BM" baseline 12.4 ± 1.6 eosinophils/hpf versus SC" BM" baseline 3.8 ± 1.3 eosinophils/hpf; n = 3 to 4 mice per group). Eosinophils were also significantly increased in SC"BM" mice (Fig. 1B). Importantly, DSS-induced colonic eosinophilic inflammation was attenuated in CCL11'/' mice reconstituted with CCL11'/' BM (SC" BM": Fig. 1B). These data indicate that BM-derived CCL11 is sufficient to drive eosinophilic recruitment into the colon during DSS-induced colonic injury.

DSS-induced colonic injury promotes the specific recruitment of F4/80'CD11b'Ly6c' monocytes

Following our demonstration that BM-derived CCL11 expression was sufficient to reconstitute DSS-induced colonic eosinophilic inflammation, we were next interested in identifying the hema-topoietic source of CCL11 that drove DSS-induced colonic eosinophilic inflammation. We have previously demonstrated CCL11 expression in F4/80' myeloid cells within the lamina propria of
the colon of mice following 7 d of exposure to 2.5% DSS (14). We therefore assessed the relationship between myeloid cell and DSS-induced eosinophilic inflammation. First, we performed flow cytometry analysis on peripheral blood monocytes and colonic MΦs at baseline and following DSS exposure (Fig. 2A). Under homeostatic conditions, the peripheral blood was predominantly composed of F4/80⁺CD11b⁺Ly6C_{high} myeloid cells, whereas the colon consisted of F4/80⁺CD11b⁺Ly6C_{low} and F4/80⁺CD11b⁺Ly6C_{high} myeloid cells (Fig. 2A). The predominant F4/80⁺CD11b⁺Ly6C_{low} myeloid population (>80%) within the colon was CXCR1_{high}PDL1_{low}TLR-2_{low}CD206_{low}CD11c_{low}PDL1_{low} (Fig. 2B), consistent with the resident intestinal MΦ phenotype (35). DSS exposure (5 d) induced a significant influx of F4/80⁺CD11b⁺Ly6C_{high} monocytes (Fig. 2A). Notably, the increase in colonic F4/80⁺CD11b⁺Ly6C_{high} monocyte/MΦ cell numbers (control 7,497 ± 8,708 versus DSS 39,996 ± 7,190; mean ± SEM; n = 5 to 6 per group) occurred in the absence of any change in F4/80⁺CD11b⁺Ly6C_{low} MΦ levels (control 55,979 ± 12,490 versus 42,818 ± 7,190; mean ± SEM; n = 5 to 6 per group) (Fig. 2A). The infiltrating F4/80⁺CD11b⁺Ly6C_{high} myeloid population was predominantly CCR2⁺CX3CR1_{lo}TLR-2⁺CD206⁺CD11c⁺PDL1⁺ (Fig. 2B, Supplementary Fig. 2). We next assessed the colonic eosinophil population following DSS exposure. We show that eosinophils were a distinct population characterized by forward light scatter^{low} and side scatter^{high}. Eosinophil lineage was confirmed as the cells were Siglec F⁺CCR3⁺ double positive. Notably, the colonic eosinophil population was CD11b⁺, F4/80⁺, and CCR2⁺ (Fig. 2C).

Colonic Ly6C_{high} MΦs express Ccl11

To directly assess if Ly6C_{high} colonic MΦs were a source of CCL11, we purified F4/80⁺CD11b⁺Ly6C_{high} MΦs from the colon of DSS-treated mice by using CX3CR1^{eGFP/+} mice. Previous studies have demonstrated that inflammatory (Ly6C_{high}CCR2⁺ CX3CR1^{low}) and noninflammatory (Ly6C_{low}CCR2^{low} CX3CR1^{hi}) tissue MΦs can be distinguished based upon the level of CX3CR1 expression (35). Consistent with this, the resident noninflammatory F4/80⁺CD11b⁺Ly6C_{low} MΦ population of CX3CR1^{eGFP/+} mice was CX3CR1^{hi} whereas the DSS-induced colonic F4/80⁺CD11b⁺Ly6C_{high} MΦ population was CX3CR1^{low} (Fig. 2B). In conjunction, the CX3CR1^{low} cells within the colon of DSS-treated mice were found to be F4/80⁺CD11b⁺Ly6C_{high}, consistent with the infiltrating monocyte population (Fig. 3A).

Following our confirmation that CX3CR1 and Ly6C expression could distinguish between the two intestinal myeloid subpopulations, we purified CX3CR1^{low}Ly6C_{high} cells from the colons of CX3CR1^{eGFP/+} mice following DSS exposure using flow sorting (Fig. 3B). Purity of CX3CR1^{low}Ly6C_{high} cells was >95% as assessed by flow cytometry (data not shown). For compara-

FIGURE 2. DSS exposure induces the recruitment of F4/80⁺CD11b⁺Ly6C_{high} monocyte population. A, Representative flow cytometry plots of the F4/80⁺CD11b⁺Ly6C_{high} monocye/MΦ populations from the peripheral blood (top panel), colon at baseline (middle panel), and colon following DSS exposure (bottom panel). MΦ were initially gated by side scatter (SSC) versus forward light scatter (FSC) followed by F4/80⁺CD11b⁺. The double-positive cell populations from baseline and DSS-treated colons were assessed for Ly6C. B, Ly6C_{high} and Ly6C_{low} colonic MΦ expression of CCR2, CX3CR1, TLR2, PDL1, and CD206 by flow cytometry at baseline and following DSS. C, Characterization of F4/80, CD11b, Siglec F, CCR3, and CCR2 on colonic eosinophils from DSS-treated mice. Data represent the mean ± SEM of n = 5 to 6 mice per group from duplicate experiments. Significant differences (*p < 0.05) between groups.
tive analyses, we also purified blood CX3CR1low/F4/80+CD11b+Ly6Chigh monocytes from CX3CR1eGFP/+ mice at baseline and on day 5 of DSS (Fig. 4A, 4B). PCR analyses revealed no detectable Ccl11 mRNA expression in CX3CR1lowLy6Chigh peripheral blood monocytes at baseline or following DSS (Fig. 3C). Ccl11 mRNA expression was induced in the colonic CX3CR1lowLy6Chigh cells following infiltration into the colon during DSS-induced colitis (Fig. 3C). Assessment of other genes expressed by the Ly6Chigh myeloid population revealed that recruited F4/80+CD11b+Ly6Chigh MΦs had a similar phenotype to the peripheral blood population, as they were positive for Chi3l3, Trem1, Cxcl10, Tnfa, and Pdgfb mRNA transcripts with no detectable Ccl17 expression (Fig. 3C and data not shown). Interestingly, DSS exposure did not significantly influence the Ly6Chigh peripheral blood population, as we observed no significant difference in the gene profile between control and DSS-treated Ly6Chigh peripheral blood cells (Fig. 3C). However, we detected increased mRNA transcripts for Arg1, Il10, Ccl4, Il1b, Il6, Cxcl2, Retnla, and Ccl22 in the Ly6Chigh colonic population compared with the Ly6Chigh peripheral blood population (Fig. 3C).

To determine the relationship between the intestinal inflammatory F4/80+CD11b+Ly6Chigh monocytes/MΦs and eosinophil recruitment in DSS colitis, we quantified colonic F4/80+CD11b+Ly6Chigh MΦs and eosinophil levels following DSS-induced colonic injury. We found a positive correlation between numbers of colonic F4/80+CD11b+Ly6Chigh MΦs and eosinophils (Fig. 4; p < 0.005). Notably, levels of colonic F4/80+CD11b+Ly6Chigh MΦs did not correlate with colonic neutrophil (F4/802CD11bLy6G+) levels (Fig. 4). The Journal of Immunology

FIGURE 3. Colonic Ly6Chigh monocytes/MΦs express CCL11 and are a mixed M1/M2 phenotype in DSS-induced colonic injury. A, CX3CR1-eGFP expression in F4/80+CD11b+Ly6Chigh colonic monocytes/MΦs. B, Representative FACS plot of CX3CR1Ly6Chigh colonic monocyte/MΦ flow sorted on day 5 of DSS. C, cDNA was made, and gene expression of Ccl11, Il1b, Tnf, Il6, Cxcl4, Cxcl2, Arg1, Il10, Retnla, and Ccl22 was analyzed by RT-PCR. Three to four mice were pooled per sample. Peripheral blood baseline (6 samples), peripheral blood day 5 DSS (3 samples), and colon day 5 DSS (7–10 samples) monocyte/MΦ expression was analyzed. Data represent the mean ± SEM. Significant differences (*p < 0.05, **p < 0.01) between groups. ND, below limit of detection.

FIGURE 4. DSS-induced F4/80+CD11b+Ly6Chigh monocyte/MΦ levels positively correlated with colonic eosinophilic inflammation. Correlative analyses of eosinophils, neutrophils, and F4/80+CD11b+Ly6Chigh monocyte/MΦ levels in the colon following DSS exposure. Cells were gated as described in Fig. 1.
DSS-induced colonic injury recruitment of F4/80^+CD11b^ Ly6C_{high} monocytes is CCR2-dependent

We next assessed the relative contribution of F4/80^+CD11b^ Ly6C_{high} blood monocytes to DSS-induced colonic eosinophilic inflammation and colitis in CCR2^{−/−} mice, as CCR2 is important for Ly6C_{high} monocyte mobilization from the BM to the peripheral circulation and tissue inflamatory sites (36). Consistent with this, basal homeostatic levels of peripheral blood Ly6C_{high} monocytes were 6-fold lower in CCR2^{−/−} mice compared with WT mice (Fig. 5A, 5B). DSS-induced recruitment of F4/80^+CD11b^Ly6C_{high} Mφs into the colon was attenuated in CCR2^{−/−} mice (Fig. 5C, 5D). Immunofluorescence analyses of F4/80^+ cells in the colonic lamina propria of DSS-treated WT mice and CCR2^{−/−} mice revealed a loss of the large F4/80^+ infiltrate in the CCR2^{−/−} mice (Fig. 5E). This reduction was specific for Ly6C_{high} monocytes, as recruitment of F4/80^+CD11b^ cells (neutrophils) was not impaired (Fig. 5F, 5G). The reduction in intestinal Mφ levels was not due to decreased levels of homeostatic intestinal Mφs, as the levels of resident F4/80^+CD11b^Ly6C_{low} colonic Mφs were comparable between WT and CCR2^{−/−} mice (Fig. 5H, 5I). Collectively, these data indicate that homeostatic resident F4/80^+CD11b^Ly6C_{low} colonic Mφ levels are independent of CCR2, whereas F4/80^+CD11b^Ly6C_{high} monocyte recruitment to the colon during DSS-induced colitis is CCR2 dependent.

DSS-induced colonic inflammation and colitis is attenuated in CCR2^{−/−} mice

To assess the contribution of F4/80^+CD11b^Ly6C_{high} monocytes to DSS-induced colonic CCL11 expression and eosinophilia, we quantitated CCL11 and eosinophil levels in the colon of CCR2^{−/−} mice following DSS exposure. Importantly, colonic eosinophil levels and distribution at baseline were comparable between WT and CCR2^{−/−} mice, indicating no role for CCR2 in basal colonic eosinophil recruitment (Fig. 6A, 6B and data not shown). DSS treatment of WT mice induced a significant increase in colonic eosinophil levels (Fig. 6A, 6B). In contrast, there was no significant increase in eosinophil levels in DSS-treated CCR2^{−/−} mice (Fig. 6A, 6B). Notably, the reduction in colonic eosinophil levels was associated with no significant increase in colonic CCL11 levels in colonic punch biopsies from DSS-treated CCR2^{−/−} mice (Fig. 6C: WT baseline 8.7 ± 1.2 pg/ml versus WT DSS 42.4 ± 9.4 pg/ml, p < 0.05; CCR2^{−/−} baseline: 12.6 ± 3.1 pg/ml; CCR2^{−/−} DSS 31.6 ± 10.4 pg/ml, p < 0.001).

FIGURE 5. DSS-induced recruitment of F4/80^+CD11b^Ly6C_{high} monocytes in WT and CCR2^{−/−} mice. A, Flow cytometric analysis of F4/80^+CD11b^Ly6C_{high} peripheral blood monocytes in WT and CCR2^{−/−} mice. B, Quantification of percent Ly6C_{high} peripheral blood monocytes in WT and CCR2^{−/−} mice. C, Flow cytometric analysis of F4/80^+CD11b^Ly6C_{high} colonic monocytes/Mφs at baseline and following DSS in WT and CCR2^{−/−} mice. D, Quantification of Ly6C_{high} colonic Mφ numbers based on flow cytometry analysis. E, Colonic sections from WT and CCR2^{−/−} mice treated with vehicle and 2.5% DSS for 5 d were stained with either anti-F4/80 or isotype Ig and goat anti-rat Alexa Fluor 594.Slides were counterstained with nuclei stain DAPI. Images represent overlay DAPI/F480. Original magnification ×100. F, Representative flow cytometry plots of F4/80^+CD11b^ cells (neutrophils) in colon at baseline and following DSS in WT and CCR2^{−/−} mice. G, Percent F4/80^+CD11b^ in colon at baseline and following DSS in WT and CCR2^{−/−}. H, Colonic lamina propria cells were stained for flow cytometry with F4/80, CD11b, and Ly6C, and the number of triple-positive cells was examined. I, Quantification of percent of F4/80^+CD11b^ and F4/80^+CD11b^Ly6C_{high} WT and CCR2^{−/−} colonic Mφs at baseline. Data represent the mean ± SEM of n = 3 to 4 mice per group from duplicate experiments. Significant differences (*p < 0.05, **p < 0.01, ***p < 0.001) between groups.
CCR2^{−/−} DSS: 19.27 ± 4.4 pg/ml; mean ± SEM; n = 9 to 10 mice per group). These data directly implicate F4/80⁺CD11b⁺ Ly6^{Chigh} monocyte/M_Φ-derived CCL11 in the regulation of colonic eosinophilic inflammation in DSS-induced colonic injury.

To assess the effect of ablation of Ly6^{Chigh} monocyte recruitment and colonic eosinophils to DSS-induced colonic injury, we performed histopathological assessment of the colon in WT and CCR2^{−/−} mice. DSS treatment of WT mice induced crypt loss, epithelial erosion, and a large inflammatory infiltrate (Fig. 7A). The DSS-induced epithelial damage was significantly reduced in CCR2^{−/−} mice compared with WT mice (Fig. 7A, 7B; histological score of WT 15.7 ± 0.84 versus CCR2^{−/−} 7.67 ± 0.62, p < 0.001; mean ± SEM; n = 10 per group). Consistent with this observation, CCR2^{−/−} mice displayed less weight loss and delayed development of diarrhea and rectal bleeding (disease activity index [DAI]) resulting in decreased DAI score (Fig. 7C; DAI of WT 5.5 ± 0.65 versus CCR2^{−/−} 2.2 ± 0.32, p < 0.05; mean ± SEM; n = 4 per group). Attenuation of DSS-induced colitis and recruitment of F4/80⁺CD11b⁺Ly6^{Chigh} monocytes to the colon by CCR2 deficiency was associated with decreased production of proinflammatory cytokines IL-6 and TNF-α (Fig. 7D). Collectively, these studies identify that Ly6^{Chigh} colonic monocytes/M_Φs have a pathogenic role in DSS-induced proinflammatory cytokine production and histopathology and that recruitment of this cell population is mediated by CCR2-dependent pathways.

CCL2 is a CC chemokine that binds to the CCR2 receptor, and experimental data indicate that this chemokine is important in the recruitment of monocytes and M_Φs into inflamed tissues (37–39). Notably, DSS exposure induced a significant increase in colonic CCL2 protein levels (Supplemental Fig. 4A). To evaluate the relative contribution of CCL2 to DSS-induced Ly6^{Chigh} monocyte recruitment into the colon and disease pathology, we examined CCL2^{−/−} mice. Surprisingly, the levels of colonic F4/80⁺CD11b⁺ Ly6^{Chigh} monocytes in the colon of CCL2^{−/−} mice were comparable to that of strain- and weight-matched DSS-treated WT mice (Supplemental Fig. 4B, 4C). Consistent with our data, recruitment of F4/80⁺CD11b⁺Ly6^{Chigh} monocytes into the colon of CCL2^{−/−} mice was associated with DSS-induced weight loss and disease activity (Supplemental Fig. 4D), disease pathology (Supplemental Fig. 4E, 4F), and colonic eosinophil inflammation (Supplemental Fig. 4G, 4H). Assessment of Ly6^{Chigh} peripheral blood monocytes and colonic M_Φs at baseline revealed comparable levels between WT and CCL2^{−/−} mice, indicating that CCL2 does not contribute to either homeostatic resident intestinal F4/80⁺CD11b⁺Ly6^{Chigh} M_Φ levels or DSS-induced recruitment of F4/80⁺CD11b⁺Ly6^{Chigh} monocytes into the colon (Supplemental Fig. 5).

Discussion

In the current study, we have investigated the molecular regulation of CCL11 and colonic eosinophilic inflammation in an experimental mouse model of DSS-induced colitis. We demonstrate that reconstitution of CCL11^{−/−} mice with BM-derived CCL11 is sufficient for DSS-induced colonic eosinophil inflammation. We show that DSS exposure promotes the influx of F4/80⁺CD11b⁺ Ly6^{Chigh} monocytes into the colon and that recruitment of this cell population positively correlated with colonic eosinophilic inflammation. Purification of the F4/80⁺CD11b⁺Ly6^{Chigh} monocyte population revealed that these cells express a mixture of M₁- and M₂-associated genes, including *Chi3l3, Retnla, Il10, Il6, Il1b, Trem1, Cxcl2,* and *Ccl11*. Abrogation of F4/80⁺CD11b⁺Ly6^{Chigh} monocyte recruitment by genetic deletion of CCR2 was associated with decreased DSS-induced histopathology, CCL11 expression, and eosinophil recruitment. These studies identify that colonic eosinophilic inflammation in experimental colitis is mediated by Ly6^{Chigh}CCR2⁺ inflammatory monocyte/M_Φ-derived CCL11.

Flow cytometry analyses identified the presence of two distinct monocyte populations in the peripheral blood of mice characterized by F4/80⁺CD11b⁺Ly6^{Chigh} and F4/80⁺CD11b⁺Ly6^{Clow} phenotype. We show that the F4/80⁺CD11b⁺Ly6^{Chigh} population was CCR2⁺ and CX₃CRI⁺, whereas the F4/80⁺CD11b⁺Ly6^{Clow} monocytes were CCR2[−] and CX₃CRI⁺. The F4/80⁺CD11b⁺Ly6^{Clow} blood monocytes are a precursor to resident homeostatic tissue M_Φs (35). Consistent with this, under homeostatic conditions, the colon predominantly consisted of F4/80⁺CD11b⁺Ly6^{Clow} myeloid cells. Intestinal dendritic cells under homeostatic conditions also express CX₃CRI and F4/80. Analysis of CD11c expression revealed that F4/80⁺CD11b⁺Ly6^{Clow} cells consisted of 80% CD11c⁺ and 20% CD11c[−] cells, indicating the presence of homeostatic tissue M_Φs and dendritic cells within the F4/80⁺CD11b⁺Ly6^{Clow} population (Supplemental Fig. 2). The presence of an F4/80⁺CD11b⁺Ly6^{Clow}CD11c⁺ dendritic cell population may have contributed to the gene expression heterogeneity seen within this cell population. The F4/80⁺CD11b⁺Ly6^{Chigh} monocytes are an inflammatory monocyte population and rapidly recruited into tissues following inflammatory insult. Large infiltrates of Ly6^{Chigh}CX₃CRI⁺CCR2⁺ blood monocytes have been observed in the peritoneum and injured myocardium following immune stimulation (35, 40). Similarly, we observed the selective increase in the numbers of F4/80⁺CD11b⁺Ly6^{Chigh} cells within the colon following DSS exposure. Importantly, the F4/80⁺CD11b⁺Ly6^{Chigh} cells within the colon were CD11cc[−], indicating that this population did not contain a contaminating dendritic cell population (Supplemental Fig. 2). Consistent with previous investigations, we show that the recruitment of the inflammatory F4/80⁺CD11b⁺Ly6^{Chigh} monocytes/M_Φs into inflamed tissues
was dependent on CCR2 (35). Previous investigations have indicated that CCR2-dependent recruitment of this monocytic population is mediated by CCL2 (37, 41); however, the CCR2-mediated recruitment of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon was not dependent on CCL2. CCR2 is a promiscuous chemokine receptor binding multiple ligands, including CCL2, CCL8, CCL7, and CCL13 (42). Additionally, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).

The demonstration that ablation of F4/80+CD11b+Ly6Chigh monocytes/MFs into the colon in CCR2−/− mice was associated with a reduction in proinflammatory cytokines (IL-6 and TNF-α) indicates that this cell population is an important source of cytokines that drive DSS-induced intestinal inflammation and colitic disease. Consistent with this, PCR analyses of purified Ly6Chigh monocytes/MFs revealed that these cells expressed high levels of proinflammatory markers Trem1 and TLR2, but not the anti-inflammatory markers CD206 or PDL1. Similarly, CCL2, CCL8, and CCL7 have been shown to be increased in the colon in inflamed tissue from IBD patients as well as in the DSS model of colitis (43, 44).
Ccr2 and Il1b were expressed, indicating an M1-biased pattern (55). Further investigations are required to determine whether the Ly6C^{high} monocyte/MΦ population consists of multiple polarized monocyte/MΦ subsets of different phenotypes or whether the Ly6C^{high} monocyte/MΦ population is simply plastic and adapts to exogenous and endogenous stimuli within the microenvironment.

The role of monocytes/MΦs in eosinophil recruitment during chronic inflammatory responses and the relative contribution of CCL11 to this response are not yet fully delineated. Previous studies have demonstrated Ccl11 mRNA expression in MΦs in allergen-induced cutaneous biopsies in atopic patients (56) and in bronchiolitis obliterans from asthmatic patients that possess eosinophils (57). Furthermore, a recent study also demonstrated CCL11 expression in lung MΦs from rhinovirus-infected allergic mice with pulmonary eosinophilic inflammation (58). Experimental analyses employing a Nippostrongylus brasiliensis infection model have demonstrated a role for monocyte/MΦ populations in eosinophil recruitment into peritoneum. Similar to our observations, eosinophil recruitment was associated with Retinla and Chl3β monocyte/MΦ expression but was not associated with Ccl11 expression (59). We show that during colonic inflammation, CX3CR1^{Ly6C^{high}} colonic monocytes/MΦs are the primary cellular source of CCL11 and that this cell population is sufficient to mediate colonic eosinophilic inflammation. These observations suggest that DSS exposure stimulates CX3CR1^{Ly6C^{high}} colonic monocytes/MΦ² recruitment to the colon and that the recruited inflammatory monocytes/MΦs subsequently drive eosinophil infiltration via a CCL11-dependent pathway. We have previously characterized eosinophil infiltration of the colon following DSS exposure and reported that eosinophil levels begin to increase on day 5 of DSS exposure (14). Assessment of F4/80^{CD11b^{Ly6C^{high}}} and eosinophil numbers in the colon of mice 3 and 4 d following DSS exposure revealed a significant influx of F4/80^{CD11b^{Ly6C^{high}}} monocytes/MΦs prior to commencement of eosinophil recruitment (Supplemental Fig. 3). These kinetic data indicate that F4/80^{CD11b^{Ly6C^{high}}} monocytes/MΦs are strategically positioned in the colon to regulate DSS-induced eosinophil recruitment. These studies strongly suggest that CCL11 is predominantly monocyte/MΦ-derived and is important in colonic eosinophilic recruitment in experimental colitis. We have previously reported a critical role for CCL11 and not the other eotaxin family members CCL24 and CCL26 in the regulation of eosinophilic inflammation in experimental and human IBD (14). Moreover, eosinophil recruitment into the colon during experimental colitis was attenuated in Ccl11^{−/−} and not Ccl24^{−/−} mice, and elevated Ccl11 mRNA levels in lesional biopsy samples from IBD patients positively correlated with eosinophil numbers (14). Furthermore, we have previously identified CCL11^{CD68⁺} monocytes/MΦs in colonic biopsies of pediatric UC patients. The demonstration of a link between colonic eosinophilic inflammation and DSS-induced histopathology suggests a role for eosinophils in the DSS-induced colonic injury. This is consistent with previous demonstration by us and others of a partial role for eosinophils in DSS-induced epithelial histopathology (14–16, 33). Furthermore, this is supported by significant clinical evidence demonstrating increased eosinophils and eosinophil-derived granule proteins in adult UC and CD and a positive correlation between levels of eosinophils and histological score in rectosigmoidal biopsy samples from pediatric UC patients (4, 9, 14, 60, 61). We have previously published that mice deficient in eosinophils (PHIL) are partially protected from DSS-induced colitis (33). Moreover, we observed a 48% reduction in histological score between DSS-treated WT versus PHIL mice (14). Notably, in the current study, we observed a 52% reduction in histological score between DSS-treated WT versus CCR2^{−/−} mice (histological score WT DSS: 15.7 ± 0.8 versus PHIL DSS: 7.7 ± 0.6; n = 9 to 10 per group; mean ± SEM; p = 0.001; Fig. 7). The reduction in histopathology in CCR2^{−/−} mice was associated with reduced F4/80^{CD11b^{Ly6C^{high}}} monocyte/MΦ recruitment and reduced CCL11 expression and eosinophil infiltration. These data suggest that a significant component of monocyte/MΦ-mediated DSS-induced histopathology is mediated via regulation of eosinophil function.

BM chimera experiments in mice indicate that BM cell-derived CCL11 is sufficient for DSS-induced colonic eosinophilic inflammation. Moreover, CCL11^{−/−} mice reconstituted with WT BM restored eosinophil recruitment to the colon during DSS-induced colonic injury. As BM reconstitution is not selective for Ly6C^{high} monocyte-derived CCL11, we cannot rule out the contribution of other BM-derived cell populations; however, we have previously demonstrated that DSS-induced CCL11 expression in the colon was restricted to F4/80^{myeloid cells} and not F4/80[−] cells (14). Surprisingly, we observed a significant eosinophilic infiltrate in the colon following DSS exposure in WT mice reconstituted with BM from CCL11^{−/−} mice, suggesting a role for structural cell-derived CCL11 in colonic eosinophilic inflammation. We postulate that this paradoxical observation is due to the radioresistance of monocytes/MΦs and the effects of radiation on monocyte/MΦ function. Many studies have demonstrated that tissue MΦs are radioresistant (62–64). For example, in the lung, it takes >90 d for alveolar MΦs to reach ~80% reconstitution (64). Similarly, we found that Ly6C^{low} colonic MΦs only reached ~60% reconstitution at ~50 d postirradiation and that ~5% of monocytes/MΦs in the colon of DSS-treated mice were recipient-derived cells. Furthermore, irradiation has been shown to induce MΦ oxidative injury (65) as well as alter MΦ activation, which may lead to homeostatic resident MΦ involvement in eosinophil recruitment (66). We currently cannot rule out a contribution for non-BM cell-derived CCL11 to eosinophil recruitment during DSS-induced colitis; however, our previous data demonstrating CCL11 expression restricted to F4/80[−] cells in the lamina propria of the colon on day 7 of DSS exposure (14) and our observations in CCR2^{−/−} mice indicate that the CCR2-dependent Ly6C^{high} monocytes are sufficient to drive eosinophil recruitment in DSS-induced colonic injury.

Recently, a number of unique loci were identified to be associated with early-onset IBD susceptibility including the C-C motif chemokine cluster on 17q12 loci, which contains the eosinophil-specific chemokine gene CCL11 (17). Clinical and experimental data indicate: 1) a strong relationship between eosinophils and the exacerbation and severity to IBD; and 2) a pivotal role for MΦs in the augmentation of the intestinal inflammatory response associated with IBD (67). We provide evidence of a direct pathway involving Ly6C^{high} colonic monocyte/MΦ²-derived CCL11 in colonic eosinophilic inflammation and histopathology in experimental colitis. These studies provide significant rationale for the assessment of monocyte/MΦ-derived CCL11 in human IBD and the targeting of the monocyte/MΦ/CCL11 pathway as a therapeutics for the treatment and prevention of IBD.

Acknowledgments
We thank Drs. Patricia Fulkerson and Debroski Herbert and members of the Division of Allergy and Immunology and the Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children’s Hospital Medical Center for critical review of the manuscript and insightful conversations. We thank Dr. Nives Zimmermann, Victoria Sunnem, and Jeff Bailey from the Cincinnati Children’s Hospital Medical Center Comprehensive Mouse and Cancer Core facility for expertise and assistance with BM transplantation.
We thank Jamie and Nancy Lee for the generous provision of anti-MBP Ab and Dr. Klaus Matthai for the NZBx-GFP mice. We also thank Emily Stucke and Heather Osterfeld for animal husbandry and Shawna Hottinger for editorial assistance and manuscript preparation.

Disclosures

The authors have no financial conflicts of interest.

References

Supplementary figure S1. Generation of BM chimeras. Representative flow cytometry plots of peripheral blood chimerism of A, monocytes and B, eosinophils, at 3 weeks post-irradiation. C, Representative flow cytometry plots of MLN chimerism of CD4⁺ T cells at 5-9 weeks post-irradiation. D, Representative flow cytometry plots of chimerism of BM-derived subsets in the colon at 7 weeks post-irradiation. E, Quantification of percent donor-derived cells in the colon at baseline and following DSS treatment. Data represents the mean ± SEM of n = 3-4 mice per group. MΦ’s, macrophages.

Supplementary figure S2. CD11c expression on colonic F4/80⁺CD11b⁺Ly6C⁽ʰⁱʰ⁾ and Ly6C⁽⁻³⁾ monocyte/macrophage (MΦ) populations. A, Representative flow cytometry plots of the F4/80⁺CD11b⁺Ly6C⁽ʰⁱʰ⁾ and Ly6C⁽⁻³⁾ monocyte/MΦ populations from the colon at baseline (Top panel) and colon following DSS exposure (bottom panel). MΦ were initially gated by SSC vs FSC followed by F4/80⁺ and CD11b⁺. The double-positive cell populations from baseline and DSS-treated colons were assessed for Ly6C. B, Percentage of CD11c⁺ F4/80⁺CD11b⁺Ly6C⁽ʰⁱʰ⁾ and Ly6C⁽⁻³⁾ MΦ populations in the colon at baseline and following DSS. Data represents the mean ± SEM of n = 3-4 mice per group.

Supplementary figure S3. Levels of F4/80⁺CD11b⁺Ly6C⁽ʰⁱʰ⁾ monocyte/macrophages (MΦs) and eosinophils in the colon populations. A, Quantification of Ly6C⁽ʰⁱʰ⁾ colonic MΦ numbers in the colon on day 0, 3 and 4 of DSS exposure. Colonic lamina propria cells were stained for flow cytometry with F4/80, CD11b and Ly6C, and the number of triple-positive cells were quantitated. B, eosinophils were identified by FSC and SSC (as described in Figure 2C).
Data represents the mean ± SEM of n = 3-4 mice per group per time point. Significant differences (*p<0.05; and **p<0.01) between groups. Ns, not significant.

Supplementary figure S4. DSS-induced disease pathology in WT and CCL2−/− mice.

A, CCL2 was quantified from supernatants from punch biopsies of WT mice over the course of DSS-induced colitis. B, Flow cytometric analysis of F4/80+CD11b+Ly6Chigh colonic macrophages (MΦs) at baseline and following DSS in WT and CCL2−/− mice. C, Quantification of Ly6Chigh colonic MΦ numbers based on flow cytometry analysis. D, Percent weight loss and diarrhea/rectal bleeding score during the course of DSS treatment. E, Representative sections from baseline and day 7 of DSS were H and E stained. F, Histological score of sections of baseline and DSS-induced WT and CCL2−/− mice. G, Colonic sections from baseline and DSS-treated mice (day 7, 2.5%) were stained for MBP, and eosinophil levels were quantified, H. Data represents the mean ± SEM of n = 3-4 mice per group from duplicate experiments. B, Significant differences compared to WT baseline (*p<0.05; **p<0.01). (A, C, F and H) Significant differences (*p<0.05; ***p<0.001) between groups. Magnification of photomicrographs is x100.

Supplementary figure S5. CCL2−/− mice have normal Ly6Chigh monocyte recruitment to the colon.

A, Flow cytometric analysis of F4/80+CD11b+Ly6Chigh peripheral blood monocytes in WT and CCL2−/− mice. B, Quantification of percent Ly6Chigh peripheral blood monocytes in WT and CCL2−/− mice. C, Colonic lamina propria cells were stained for flow cytometry with F4/80, CD11b and Ly6C, and the number of double- and triple-positive cells was examined. D,
Quantification of percent F4/80$^+$CD11b$^+$ and F4/80$^+$CD11b$^+$Ly6C$^{\text{high}}$ colonic macrophages (MΦs) in WT and CCL2$^{−/−}$ mice at baseline.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer Sequence 5' - 3'</th>
<th>BP product</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIl1b Fwd</td>
<td>TTGACGGACCCCAAAAGAT</td>
<td>74</td>
</tr>
<tr>
<td>l1b Rev</td>
<td>GAAGCTGGATGCTCTCATCTG</td>
<td></td>
</tr>
<tr>
<td>l6 Fwd</td>
<td>GCTACCAAAACTGGATATAAATCAGGA</td>
<td>77</td>
</tr>
<tr>
<td>l6 Rev</td>
<td>CCAGGTAGCTATGGTAATCCAGAA</td>
<td></td>
</tr>
<tr>
<td>Tf Fwd</td>
<td>CTGTAGCCCACTGCACGAGC</td>
<td>96</td>
</tr>
<tr>
<td>Tf Rev</td>
<td>TTGAGATCCATGCGGTGG</td>
<td></td>
</tr>
<tr>
<td>Ccl3 Fwd</td>
<td>TCTGTCACTCTGCTCAACATCA</td>
<td>112</td>
</tr>
<tr>
<td>Ccl3 Rev</td>
<td>CGGGGTGTCGCTCCCATAC</td>
<td></td>
</tr>
<tr>
<td>Ccl4 Fwd</td>
<td>GCCCTCTCTCTCTCTTGCT</td>
<td>73</td>
</tr>
<tr>
<td>Ccl4 Rev</td>
<td>GAGGTCAGCCGCAATTC</td>
<td></td>
</tr>
<tr>
<td>Cxcl10 Fwd</td>
<td>GCTGCCGTCATTATTCTGC</td>
<td>111</td>
</tr>
<tr>
<td>Cxcl10 Rev</td>
<td>TCTCACTGGCCGTCATC</td>
<td></td>
</tr>
<tr>
<td>Cxcl2 Fwd</td>
<td>AAAATCATCCAAAAAGATACTGAACAA</td>
<td>91</td>
</tr>
<tr>
<td>Cxcl2 Rev</td>
<td>CTGTAGGTCATTATTCTGC</td>
<td></td>
</tr>
<tr>
<td>Pdgfb Fwd</td>
<td>CGGCTGTGACTAGAAGTCC</td>
<td>61</td>
</tr>
<tr>
<td>Pdgfb Rev</td>
<td>GAAGCTGAGCGTCTTGC</td>
<td></td>
</tr>
<tr>
<td>Ccl17 Fwd</td>
<td>TGCTTCTGGGACTTTTCTG</td>
<td>93</td>
</tr>
<tr>
<td>Ccl17 Rev</td>
<td>GAAATGGCCTCTTGAGCAGA</td>
<td></td>
</tr>
<tr>
<td>Ccl22 Fwd</td>
<td>TCTTGCTGTGCAATTCCAGA</td>
<td>92</td>
</tr>
<tr>
<td>Ccl22 Rev</td>
<td>GAGGTCAGCCGACATCC</td>
<td></td>
</tr>
<tr>
<td>Il10 Fwd</td>
<td>GAAGCATGGCCGAGAATCA</td>
<td>125</td>
</tr>
<tr>
<td>Il10 Rev</td>
<td>TGCTCAGCTGCCTTGCTTT</td>
<td></td>
</tr>
<tr>
<td>Trem1 Fwd</td>
<td>GAGCTTGAGGAGGATGAAGGCG</td>
<td>335</td>
</tr>
<tr>
<td>Trem1 Rev</td>
<td>CAGATGGATGAGGATGAGG</td>
<td></td>
</tr>
<tr>
<td>Ccl11 Fwd</td>
<td>CACGGTCACTTCCTCCACTCT</td>
<td>92</td>
</tr>
<tr>
<td>Ccl11 Rev</td>
<td>TGCCGGATCTCTGGTACTGTCCA</td>
<td></td>
</tr>
<tr>
<td>Arg1 Fwd</td>
<td>GAATCTGCATGGGCAACC</td>
<td>72</td>
</tr>
<tr>
<td>Arg1 Rev</td>
<td>GAATCTGGATACATCTGGAAACC</td>
<td></td>
</tr>
<tr>
<td>Chi3l3 Fwd</td>
<td>GAACACTGAGCTAAAATCTTCCTG</td>
<td>75</td>
</tr>
<tr>
<td>Chi3l3 Rev</td>
<td>GAGACCAGCTGGCAAGGC</td>
<td></td>
</tr>
<tr>
<td>Retnla Fwd</td>
<td>CCCTCCACTGTAACGAGACTC</td>
<td>94</td>
</tr>
<tr>
<td>Retnla Rev</td>
<td>CACACCCAGTACGACCTAC</td>
<td></td>
</tr>
<tr>
<td>Hprt Fwd</td>
<td>CAGACTGAAGAGCTATTGGTAATG</td>
<td>119</td>
</tr>
<tr>
<td>Hprt Rev</td>
<td>CCAGTGTCAATTATATCTCCAC</td>
<td></td>
</tr>
</tbody>
</table>

Waddell et al, Supplementary Table I
Waddell et al, Supplementary Figure 3

A

Ly6Chi M\textsubscript{φ}s

Cell number

Day
0 3 4

B

Eosinophils

Cell number

Day
0 3 4

ns ns

** *
Waddell et al, Supplementary Figure 4

A

CCL2

Pg/mL

Day of DSS treatment

B

WT

CCL2−/−

SSC

CD45

F4/80

Ly6C

FSC

WT baseline

WT DSS

CCL2−/− baseline

CCL2−/− DSS

D

Percent initial body weight

Day of DSS treatment

E

Histological score

WT

CCL2−/−

F

Histological score

Histological score

WT baseline

WT DSS

CCL2−/− baseline

CCL2−/− DSS

G

Eosinophil levels

WT

CCL2−/−

CCL2−/−

Eosinophils/HFP

DSS

DSS