The Role of Germline Promoters and I Exons in Cytokine-Induced Gene-Specific Class Switch Recombination

Wesley A. Dunnick, Jian Shi, Victoria Holden, Clinton Fontaine and John T. Collins

J Immunol 2011; 186:350-358; Prepublished online 3 December 2010; doi: 10.4049/jimmunol.1003108

http://www.jimmunol.org/content/186/1/350

Supplementary Material

http://www.jimmunol.org/content/suppl/2010/12/01/jimmunol.1003108.DC1

References

This article cites 34 articles, 22 of which you can access for free at:

http://www.jimmunol.org/content/186/1/350.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
The Role of Germline Promoters and I Exons in Cytokine-Induced Gene-Specific Class Switch Recombination

Wesley A. Dunnick,* Jian Shi,* Victoria Holden,*† Clinton Fontaine,* and John T. Collins*

Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exon for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for the γ1 germline transcripts can direct robust IL-4–induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is ~1% the wild-type level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons. The Journal of Immunology, 2011, 186: 350–358.

C
tlass switch recombination (CSR) moves a rearranged VDJ exon from physical and functional association with the Cα coding regions to association with Cγ, Cε, or Cκ coding regions. CSR is induced as a consequence of Ag-driven B cell differentiation in vivo and can be induced in tissue culture by a combination of B cell activators (CD40 ligation, mimicking T cell help, or LPS, via TLRs) and cytokines (1, 2). An activated B cell has the potential to undergo CSR to multiple H chain genes. This decision is important, as different H chain genes encode different effector functions and thus dictate how different microbes are processed once Ab is bound. In murine B cells, the combination of B cell activators and cytokines determines to which H chain gene CSR will occur. For example, LPS plus IL-4 directs CSR to the γ1 gene, and LPS plus IFN-γ directs CSR to the γ2a gene (3–5).

CSR is preceded by germline transcription of only the H chain gene to which CSR is directed (6, 7). Germline transcription is initiated at a I exon upstream of the switch region (the region of DNA in which the CSR deletion begins or ends) and proceeds through the switch region and C-region coding exons. The promoter regions of these germline transcripts include the appropriate transcription factor binding sites (1, 2). For example, nearly all promoter regions for germline transcripts include LPS- or CD40 ligation-responsive NF-κB sites, the promoter region for γ1 germline transcripts includes Stat6 binding sites, and the promoter region for γ2a germline transcripts includes motifs that resemble IFN-regulatory factor binding sites. It is widely hypothesized that the promoter regions for germline transcripts dictate the cytokine-specific induction of both germline transcription and CSR (1, 2). Consistent with this idea, deletion of the promoter region and I exon, or most of the I exon and donor splice site, does eliminate CSR to the corresponding H chain gene (8–10). In addition, substitution of the germline promoter with a constitutive promoter allows cytokine-independent CSR to the corresponding H chain gene (10–12). Deletion and substitution experiments establish that sequences within the promoter regions/I exons are critical for CSR; those sequences could include the transcription start sites, transcription factor binding sites that attract the activation-induced cytidine deaminase, and other potential functions. However, deletion and substitution experiments do not test if these sequences encode the cytokine induction of CSR. Furthermore, investigations of cytokine-regulated, gene-specific CSR have focused almost exclusively on the promoter/I exons, ignoring other parts of the H chain genes. In fact, a series of experiments testing the role of the switch region, culminating in the replacement of one switch region for another, suggests that some gene-specific CSR may be directed by the switch regions themselves (13). We asked if the promoter regions/I exons, moved into the context of potential regulatory elements in another H chain gene, could direct cytokine-regulated gene-specific CSR. We swapped the promoter regions and I exons for γ1 and γ2a within a transgene for the entire murine H chain C-region locus. If the promoter region plus I exon dictates gene-specific recombination, we expected the promoter/Iγ2a region to direct IFN-γ–induced CSR to Cy1 and the promoter/Iγ1 region to direct IL-4–induced CSR to Cy2a.

Materials and Methods

Transgenic mice

The starting artificial bacterial chromosome (BAC) was named ARS/Igh81 (Fig. 1A, line 1). ARS/Igh81 has two copies of the chicken β-globin insulator and a NotI restriction site inserted 3 kb 5’ of the VDJH2 exon, 4-bp insertion in Iγ1 and a 4-bp insertion in Iγ2a, and a Flag tag inserted three codons 5’ of the carboxyl terminus of the secreted version of the γ2a H chain. This BAC was targeted three times to 1) delete 2.1 kb of the promoter/Iγ1 region, 2) substitute 1.8 kb of the promoter/Iγ1 region for the promoter/Iγ2a region, and 3) substitute 2.2 kb of the promoter Iγ2a region

Received for publication September 17, 2010. Accepted for publication October 24, 2010.

This work was supported by National Institutes of Health Grant AI076057. Core support was provided to the University of Michigan Cancer Center by Grant CA46592 from the National Institutes of Health.

Address correspondence and reprint requests to Wesley A. Dunnick, 6746A Medical Science Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109. E-mail address: wesadunn@umich.edu

The online version of this article contains supplemental material.

Abbreviations used in this paper: ARS, arsonate; B, BamHI; BAC, artificial bacterial chromosome; CSR, class switch recombination; E, EcoRI; End, endogenous; I, intervening (germline transcript exon); K, KpnI; Tg, transgenic; WT, wild type.

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1003108
for the promoter/I1 region. In all three targetings, fragments containing the 5′ and 3′ homology regions for each targeting vector were sequenced to verify that no additional point mutations were introduced into the BAC during homologous recombination. When various fragments were brought together, their relative orientation was confirmed by at least two independent restriction digests. Targeting sequences were moved into pSV1. RecA (14) using Sall sites flanking the targeting sequences in an intermediate vector.

For construction of ARS/Igh56, with a 2.1-kb deletion of the promoter/I1 region (Fig. 1A, line 2), a targeting vector was produced with a HindIII/BamHI fragment (from the HindIII site to 600 bp of residue 1 to residue 542 in D7834— the sequence of the BALB/c γM-γ2b-γ2a region) joined to a BamHI fragment (from 2690 to 3407) in the physiologic orientation. Moving this fragment into ARS/Igh81 deleted 2.1 kb of the promoter/I1 region flanked by BamHI sites. For construction of ARS/Igh24, with a replacement of the promoter/Iγ2a region (gray box and thick line) with the promoter/Iγ1 region (black box and thick line; Fig. 1A, line 3), the 5′ homology region was amplified using 5′-GTACAGGTCGCTCCCGAGTGACCCATG-3′ (D783444 residues 41107–41034, with mutations, as indicated in lower-case letters, to create a Sall site) and 5′-GCTGGAATTCCTCTGTGTAACAGGCTTCTAG-3′ (42184–42156, with mutations, as indicated in lower-case letters, to create a BamHI site). This 3′ homology region was amplified using 5′-GGATCCGTGACTAGAGAATGAGG-3′ (44004–44022, with a mutation, as indicated with lower-case letter, to create a BamHI site) and 5′-ggccggccGATACGGCTCTTGAGACTTACCACCC-3′ (resides 42025–42102, with residues added, as indicated in lowercase letters, to create a Sall site). These homology regions were brought together in the physiological orientation with a single, engineered BamHI site in between them. The promoter/Iγ1 region-containing 1.8-kb BamHI fragment was inserted, in the same gene orientation, into the BamHI site. Moving this targeting vector into ARS/Igh56 replaced the promoter/Iγ2a region with the promoter/Iγ1 region. For construction of ARS/Igh66, with a replacement of promoter/Iγ1 with promoter/Iγ2a (Fig. 1A, line 4), a fragment containing the promoter/Iγ2a region was amplified using 5′-CTTCCAGGATGGTACCTCTATCGACACAG-3′ (resides 42186–42208, with mutations, as indicated in lower-case letters, to create a BamHI site) and 5′-CCTGGATCCACACCGCATCTCTAG-3′ (resides 44459–44436, insertion, as indicated with lower-case letter, to create a BamHI site). This fragment was moved after a partial BamHI digest into the BamHI site in the middle of the targeting vector used to construct ARS/Igh56 and delete the promoter/Iγ1 (described earlier). Moving the resulting targeting vector into ARS/Igh24 replaced the promoter/Iγ1 with promoter/Iγ2a.

The ARS/Igh66 BAC was digested with NotI, and the 230-kb insert fragment (with loss of both the vector and a 6-kb NotI fragment at the 5′ end of the BAC) was purified and injected into C57BL6/6 SJL F2 embryos. Mouse founder cells were back-crossed two or three times to C57BL6 mice. One line of transgenic mice (line 57) was produced and shown to lack the transgenic γ1 gene, and so it was not analyzed further. All work with mice was approved and monitored by the University of Michigan (Ann Arbor, MI) Committee on Use and Care of Animals.

Analysis of CSR

Resting splenic B cells were prepared from spleens of transgenic and C57BL/6 mice using a magnetic bead-based kit (No. 130-090-862; Miltenyi Biotec, Auburn, CA) that depletes CD43-, CD4-, and Ter119-expressing cells. For RNA analysis, B cells were cultured at 1 million per milliliter in RPMI 1640 supplemented with 10% FBS, penicillin, streptomycin, glutamine, and 20 μM 2-ME. The following additions were made in various combinations: 25 μg/ml LPS (L7261; Sigma-Aldrich, St. Louis, MO), 100 μg/ml anti-CD40 (2G12) cells/ml, 35 ng/ml recombinant murine IL-4, or 100 U/ml recombinant murine IFN-γ. RNA was prepared by incorporation of [32P]dATP during the reaction as described (16). Chimeric IfyCγ2a transcripts were amplified using primers and detected by incorporation of [32P]dATP during the reaction as described (16). Chimeric IfyCγ2a transcripts were amplified using primers and detected by incorporation of [32P]dATP during the reaction as described (16).

Results

Construction of an H chain locus BAC with a promoter/Iγ1 exon swap

We used a 230-kb transgene that includes a knocked-in VDJ exon (encoding anti-ARS activity; Ref. 17), the coding regions for all eight murine H chain C genes, and the entire 3′ enhancer region (Fig. 1A). Both germline transcription and CSR of the transgenic locus are regulated by B cell activators and cytokines like that of the endogenous locus (16). Because the transgene is derived from strain 129 DNA (Ighb) and we bred the transgene onto the C57BL/6 background (Ighb), we distinguished the transgene from the endogenous H chain genes by multiple restriction site polymorphisms. We demonstrated Ig expression by the transgene from Ig expression of the endogenous genes by allele-specific Abs (IgG1) or by a Flag epitope we inserted into the carboxyl terminus of the secreted form of IgG2a. Using targeted homologous recombination in Escherichia coli (14), we replaced 2.2 kb of the γ2a promoter region and I exon with a 1.8-kb BamHI fragment that includes the γ1 promoter region and I exon. We also replaced 2.1 kb of the promoter/Iγ1 region with the 2.2-kb fragment from the γ2a gene. We included the I exons in this swap because the only Stat1 binding site (IFN-γ responsive) in the γ2a gene is at the 3′ end of the Iγ2a exon. In addition, the I exon and/or its donor RNA splice site have been implicated in the regulation of CSR (10, 18, 19). By a series of Southern blots, we verified the structure of the BAC with the promoter/Iγ1 exon swap, with no obvious additional rearrangements or deletions (Fig. 1B). For example, probe “a” hybridizes to the 6.6-kb EcoRI fragment that includes the promoter/Iγ2a in ARS/Igh81 and in ARS/Igh56 (Fig. 1C, second set of panels, lanes 1 and 2). Hybridization to the promoter/Iγ2a fragment is lost when this fragment is replaced by promoter Iγ1 in ARS/Igh24 (cross-hybridization to the 6.6-kb EcoRI fragment with the promoter/Iγ2b sequences remains; Fig. 1C, second set of panels, lane 3). Because probe “a” is part of the promoter/Iγ2a fragment, it moves to the γ1 gene in ARS/Igh66.

The introduction of an EcoRI site results in hybridization to a 12 kb fragment in the γ1 gene (Fig. 1C, second set of panels, lane 4). As a second example, probe “b” (from the γ1 gene) hybridizes to a 16-kb EcoRI wild-type fragment (Fig. 1C, middle panel, lane 1). Due to the 2.1-kb promoter/Iγ1 deletion, the hybridizing fragment is 14 kb in ARS/Igh56 and ARS/Igh24 (Fig. 1C, middle panel, lanes 2 and 3). The insertion of promoter/Iγ2a brings an EcoRI site into the γ1 gene, and so probe “b” hybridizes to a 4.4-kb fragment in ARS/Igh66 (Fig. 1C, middle panel, lane 4). Eight combinations of other digests and probes provided further confirmation of the structure of ARS/Igh66 (Fig. 1C, 1D).

We analyzed four lines of transgenic mice with the promoter/Iγ1 exon swap, named 46, 55, 78, and 79. By examining the transgene content for 12 DNA segments along the transgene, we verified that all four lines had one or two complete copies of the H chain transgene (Supplemental Fig. 1). We also found that the four lines of transgenic mice produced abundant B cells, and that, like other ARS/Iγh transgenes (16), allelic exclusion of the endogenous genes was more than 95% complete (Supplemental Fig. 2). Expression from the transgenic γ2b gene (which is representative of expression from the transgenic γ3 and α genes) for these lines is presented in Supplemental Fig. 3.

Expression of chimeric germline transcripts

B cells with the ARS/Igh66 transgene (Fig. 2A) would be expected to express chimeric IfyCγ2a and Iγ2aCγ1 germline transcripts. We examined the expression of these chimeric germline transcripts by RT-PCR. We have previously determined that γ1 germline tran-
scripts, in B cells with a wild-type ARS/Igh transgene, are expressed from both the transgene and germline endogenous \(\gamma 1 \) genes (16). In that study, we determined that germline transcripts from the two types of genes are expressed in parallel by digestion of PCR products with a restriction enzyme that allows us to distinguish germline transcripts of the endogenous genes and transgenes (16). In samples from line 820, with a wild-type ARS/Igh transgene (Fig. 2B, top left panel), undigested PCR products of germline transcripts (“Ig1Cg1”) from the endogenous and transgenic \(\gamma 1 \) genes migrate together (Fig. 2B, top row of panels). However, because transgenes with the promoter/\(\gamma 1 \) exon swap cannot produce transgenic Ig1Cy1 transcripts, all of the transcripts for lines 46, 55, 78, and 79 in the top row of panels of Fig. 2B are derived from the endogenous genes.

Endogenous \(\gamma 1 \) germline transcripts are induced by LPS plus IL-4 and CD40L plus IL-4 and induced somewhat by CD40 ligation alone (Fig. 2B, top panels; Ref. 15). Ig1Cy2a transcripts from the transgenes with the promoter/\(\gamma 1 \) exon swap (20, 21) are expressed in parallel to the endogenous Ig1Cy1 germline transcripts (compare the top panels and second set of panels of Fig. 2B). The chimeric transcripts are not expressed in B cells with a wild-type transgene (line 820). The parallel expression of endogenous and line 820 transgenic \(\gamma 2a \) germline transcripts is directly demonstrated in the left-most panel in the third set of Fig. 2B, as the transgenic product migrates a little slower than the endogenous product, due to a single 4-bp insertion in the transgenic Ig2a (16). This slower-migrating transgenic product is not detected in the four lines with the promoter/\(\gamma 1 \) exon swap, as they cannot be expressed; only the product of the endogenous Ig2a genes is detected in lines 46, 55, 78, and 79. Both endogenous and line 820 transgenic \(\gamma 2a \) transcripts are induced by LPS plus IFN-\(\gamma \) (albeit modestly), by CD40L alone, and by CD40L plus IFN-\(\gamma \) (third row of panels, Fig. 2B). However, in the context of the transgenic \(\gamma 1 \) gene, Ig2aCy1 germline transcripts are induced well only by CD40L plus IFN-\(\gamma \) (bottom row of panels). As expected, Ig2aCy1 chimeric transcripts are not detected in RNA
germline transcripts of the endogenous was first adjusted to be approximately equal for expression of transgenic VDJC

from B cells bearing a wild-type (no promoter/I exon swap) transgene (line 820). Thus, chimeric germline transcripts are expressed, and their induction is, to a large extent, dictated by the promoter region/I exon. The notable exception is that the promoter/I exon region is a poor inducer of CD40L-induced germline transcriptions in the context of the γ1 gene.

The promoter/Iγ1 dictates robust IL-4 induction of Cy2a postswitch transcripts

We tested CSR of the ARS/Igh66 transgene in tissue culture in two ways. First, we tested expression of transgene-specific VDJCγ1 or VDJCγ2a transcripts by RT-PCR. To equalize cDNA samples from various induction regimens for total transgene expression, we adjusted the amount of cDNA so that transgenic VDJCγ expression was approximately equal (Fig. 3A, 3B, bottom panels).

In Supplemental Fig. 4A, we present a comparison of VDJCμ RNA expression to RNA expression of a housekeeping gene, HPRT. Like the chimeric Iγ1Cγ2a germline transcripts, transgenic VDJCγ2a transcripts are induced by IL-4 (Fig. 3A, top row of panels). For comparison, we also tested the expression of IμCγ1 transcripts. Even though the excluded endogenous genes may have no in-frame VDJ exon, they will switch their H chain genes and express IμCγ transcripts (22). Apparently, the majority of the IμCγ1 transcripts derive from the endogenous genes, as they follow the well-documented IL-4 induction (Fig. 3A, fourth panel from the top), as do postswitch VDJCγ1 transcripts from the wild-type H chain transgenes in lines 820 and 336 (Fig. 3B, third panel from the top).

The promoter/Iγ2a is a poor inducer of Cy1 postswitch transcripts

Postswitch IμCγ2a transcripts from endogenous genes (Fig. 3A, second set of panels from the top), or VDJCγ2a transcripts from wild-type transgenes (Fig. 3B, top set of panels), are induced modestly by LPS plus IFN-γ relative to LPS alone or LPS plus IL-4. As we reported, the CD40L expressed by insect cells is a potent inducer of CSR to γ2a (much stronger than anti-CD40 Abs; Ref. 23), and so we observe as much or more IμCγ2a transcripts in CD40L alone or in CD40L plus IFN-γ compared with that in LPS plus IFN-γ (Fig. 3A, second set of panels). This expression pattern is not transferred by insertion of the γ2a promoter/I exon into the γ1 gene; expression of the chimeric Iγ1 is poor, regardless of induction regimen (Fig. 3A, third row of panels from the top). Occasionally we observed good induction of postswitch VDJCγ1 transcripts in B cells treated with CD40L plus IFN-γ (e.g., line 79 in Fig. 3A), but this was the exception.

To characterize better the induction of the VDJCμ transcripts, under control of the promoter Iγ2a region, we first normalized several samples for approximately equal expression of VDJCμ (Fig. 4A, second and third rows of panels). We compared the RT-PCR products from transgenes with the promoter swap and those from a dilution series of VDJCγ1 cDNA from a wild-type transgene (line 820). The quantity of VDJCγ1 PCR products from transgenes with the promoter swap was equal to or less than a 125-fold dilution (0.8%) of the cDNA from the wild-type transgene. Hence, comparing samples with equal transgenic VDJCμ expression, γ1 expression from transgenes with the promoter swap...
directed to the transgenic Cy1 gene driven by the γ2a promoter; a more complex recombination event between the transgenic and endogenous locus is preferred. Alternatively, it is a formal possibility that these molecules derive from a trans splicing event between the transgenic VDJCγ transcripts and the endogenous germline transcripts (24, 25). However, because these two types of transcripts are also found in B cells with the wild-type transgene, one might expect to find the same trans-spliced transcripts in wild-type cells. This latter prediction is not confirmed (Fig. 4D, lane 1).

These results suggest that the induction of γ1 postswitch transcripts, if directed by the promoter/Iγ2a region, is regulated by IFN-γ. To perform an independent test of this idea, we amplified VDJCγ postswitch transcripts from various cDNA samples with a primer that hybridized to both Cy1 and Cy2a. We distinguished VDJCγ1 from VDJCγ2a products by digestion with MboI (Fig. 4C). This approach does not distinguish transgenic and endogenous VDJCγ because the PCR ends in CH1, 5′ of the MboI polymorphism in CH2. Whereas the approach in Fig. 3 and Fig. 4A tests the absolute amount of VDJCγ1 transcripts, this experiment tests the amount of combined transgenic and endogenous VDJCγ1 relative to the amount of VDJCγ2a in the same sample. As expected, with induction of B cells with wild-type transgenes by CD40L or CD40L plus IFN-γ, there are more VDJCγ2a products than VDJCγ1 products (Fig. 4C, lanes 12–14). In cDNA from B cells with the transgenic promoter/I exon swap (46, 55, and 79), more VDJCγ1 products appear after induction with IFN-γ than after induction with IL-4 (Fig. 4C, compare lanes 3, 6, 8, 11, 16, and 19 with lanes 2, 5, 7, 10, 15, and 18). From the results in Fig. 4, B we know that the vast majority of these IFN-γ-induced VDJCγ1 products are derived from the transgene. Consistent with the results in Fig. 3, in B cells with the promoter/I exon swap, most of the products are VDJCγ2a after induction with IL-4 (Fig. 4C, lanes 2, 5, 7, 10, 15, and 18). Even though some of these samples include VDJCγ1 products derived from the endogenous Cγ genes (Fig. 4B), the amount of these VDJCγ1 products is very small compared with the VDJCγ2a products induced by IL-4 from the chimeric γ2a gene (e.g., Fig. 4C, lane 7). Therefore, even though the levels of γ1 postswitch transcripts in transgenes with the promoter/I exon swap are very small, their expression is IFN-γ dependent.

We considered the possibility that CSR to the chimeric γ1 gene is inefficient due to poor germline transcription. We devised an RT-PCR that would measure the quantity of chimeric Iγ2aCγ1 transcripts by a direct comparison with the endogenous Iγ2aCγ2a germline transcripts, which should be at the same levels in all transgenic cells. As we have reported (23), transgenic, wild-type Iγ2aCγ2a (Iγb allele) germline transcripts are more abundant (8.6-fold for line 820 and 15-fold for line 336) than endogenous (Iγb allele) germline transcripts (Fig. 4D). In contrast, the chimeric Iγ2aCγ1 germline transcripts are slightly reduced in quantity (0.8-fold) compared with endogenous transcripts in the same cells (Fig. 4D, lanes 46 and 55). Therefore, germline transcripts from the promoter/Iγ2a, in the context of the γ1 gene, are present at only 5–10% of the level of wild-type germline transcripts, which may explain, in part, why CSR to the chimeric gene is inefficient.

CSR as measured by secreted protein

We also tested CSR in tissue culture by expression of transgene-specific IgG1+ or Flag-tagged IgG2a. The results reproduced the expression pattern of postswitch transgenic VDJCγ transcripts.
described earlier. Transgenic IgG1α (in wild-type lines 820 and 336) or total IgG1 (in C57BL/6 nontransgenic B cells) was induced by LPS plus IL-4 or CD40L plus IL-4 but not by B cell activators alone or with IFN-γ. Transgenic Flag-tagged IgG2a (wild-type ARS/Igh transgenes) or IgG2c (C57BL/6) was induced by IFN-γ (Fig. 5). In the mice with the swap of promoter/Iγ1 and promoter/Iγ2a, transgenic IgG2a secretion was now induced by IL-4, in apparently greater quantities than from wild-type transgenes. (Note that we have presented the transgenic IgG2a expression data for the ARS/Igh66 mice next to the transgenic IgG1α

FIGURE 4. Promoter/Iγ2a induces small amounts of IFN-γ–induced CSR to the γ1 gene. A, Quantitative comparison of VDJCγ1 expression. Samples were first balanced for VDJμ expression (lower panels) and then tested for VDJCγ1 expression. cDNA from wild-type line 820 was tested in four 5-fold dilutions. B, Expression of transgenic VDJ1 with endogenous Cγ1. VDJCγ1 RT-PCR products were digested with MboI. The endogenous Cγ1 gene has an extra MboI site in CH2. C, Induction of CSR to γ1 by IFN-γ. Postswitch VDJCγ1 transcripts were amplified using a primer that hybridizes to both Cγ1 and Cγ2a. VDJCγ1 and VDJCγ2a were then distinguished by digestion with MboI (up or down arrows) as illustrated below the lanes. The vertical gray lines note that these data were derived from three independent RT-PCR experiments: one using the cDNA from line 46 cells activated with CD40L, with or without cytokines, one using cDNA from line 79 cells, and one using cDNA from the other samples. D, Reduced amount of Iγ2aCγ2a transcripts in B cells with the promoter/I exon swap. Germline transcripts were amplified using an Iγ2a primer and a primer that hybridizes to both Cγ1 and Cγ2a. Transgenic Iγ2aCγ2a products migrate slower than the endogenous Iγ2aCγ2a products due to a single 4-bp insertion in the transgenic Iγ2a exon. End, endogenous; Tg, transgenic.

FIGURE 5. Analysis of secreted Ig expression. Resting splenic B cells from the indicated transgenic mice were cultured with various combinations of LPS, CD40L-expressing insect cells, IL-4, and IFN-γ. A–C, Supernatant fluids from these cultures were tested by ELISAs specific for transgenic IgG1 (A, B), transgenic IgG2a (A, B), total IgG1 (C), or total IgG2c (C). Data are presented as the means of three or four replicates from one set of cultures with SD error bars. Lines 336, 46, and 55 were tested in the same experiment; C57BL/6 and lines 820, 78, and 79 were tested in different experiments, perhaps accounting for the overall lower Ig expression in lines 336, 46, and 55. D, Transgenic Flag+ IgG2a produced by T-depleted splenocytes from line 46. The left six bars and the right six bars are from two independent experiments.
expression data for the wild-type mice, and vice versa. The scales are also very different for the wild-type and promoter/I exon swap mice.) B cells from wild-type lines 336 and 820, cultured with LPS or CD40L and IFN-γ, secreted 1.3 to 32.5 U of transgenic IgG2a. B cells from transgenic mice with the promoter/I exon swap, cultured with activators and IL-4, secreted from 33.4 to 264 U of transgenic IgG2a. Line 46 cells cultured with LPS plus IL-4 secreted only 2.8 U of transgenic IgG2a in the experiment in Fig. 5A but in two experiments with T-depleted splenocytes secreted 218 and 311 U of transgenic IgG2a after culture with LPS plus IL-4 (Fig. 5D). In mice where the γ2a promoter/I exon drives expression of the Cγ1 gene, transgenic IgG1 expression was very low (near the negative control levels) and barely induced by CD40L plus IFN-γ. B cells from line 79, cultured with activators and IL-4, reproducibly secreted transgenic IgG1, but these amounts were less than 15% that of wild-type transgenic B cells.

The data presented in Figs. 3–5 are summarized in Fig. 6.

Discussion
The murine γ1 gene, induced by IL-4, is the most robustly activated γ H chain gene. With optimal induction, more B cells switch to γ1 surface expression than to γ2a expression (26, 27). In general, more IgG1 is secreted than IgG2a after B cell induction in vitro (5). Although it is difficult to compare Northern blots with different probes, or different RT-PCR reactions, it is apparent that γ1 germline transcripts are more abundant than γ2a germline transcripts (28). In Fig. 6, we summarize the data presented in Figs. 3–5 by pooling data for mice with the same transgenic construct and treated with the same cytokine. (The individual data points leading to Fig. 6 can be found in Supplemental Table I.) This summary indicates that the 1.8-kb promoter/γ1 fragment we transferred to the transgenic γ2a gene carried with it the expression characteristics associated with the endogenous γ1 gene. The transgenic γ2a expression, in transgenes where it is controlled by the γ1 promoter/I exon, is equal to (as estimated by RT-PCR of mRNA) or greater than (as estimated by secreted IgG2a) the expression of the wild-type γ2a gene (Fig. 6A). The discrepancy in the expression level of γ2a gene expression may lie in differences between the two assays. Compared with ELISA, the semiquantitative RT-PCR is less responsive to changes in the range 2- to 4-fold because the signal is proportional to the log of the mRNA concentration. Also, the intrinsic inaccuracy of the ratio of two band densities of RT-PCR products is more than the inaccuracy of the amount of IgG2a secreted in a culture. At a minimum, the chimeric γ2a gene is expressed at levels similar to the wild-type γ2a gene and is now induced by IL-4, not IFN-γ (Fig. 6C). These results suggest that any regulatory elements in the large (8 kb) γ1 switch region (13, 29) play a relatively minor role in IL-4–induced CSR to γ1 relative to elements in the promoter/I exon.

In stark contrast, when transferred to the γ1 gene, the γ2a promoter/I exon directs expression of the γ1 gene that is <1% that of a wild-type transgenic γ1 gene (Fig. 6B). In B cells with the promoter swap, even though the absolute level of induction of the γ1 H chain gene by IFN-γ is small, the specificity of the induction compared with that by IL-4 (Fig. 6D) or compared with the induction of the γ2a gene by IFN-γ (Fig. 6E) is substantial. Transgenic line 79 was

FIGURE 6. Summary of H chain gene expression and regulation. In A–C, two bars are shown for each transgenic construct for a given cytokine treatment. The filled bar of each pair presents cDNA expression data (scale on the left y-axis), and the open bar of each pair presents secreted Ig data (scale on the right y-axis). The mean (with SEM bars if three or more samples were included) was determined by pooling data for all lines with the same transgenic construct from both LPS and CD40L cultures. The number of data points used is shown below each bar. Statistical significance is shown by a line above two bars and an asterisk: Mann-Whitney two-tailed test. *p < 0.02. A. Level of expression of the γ2a gene. Normalized γ2a expression was calculated as the density (from ImageQuant analysis) of the VDJcγ2a band divided by the density of the VDJcγ1 fragment for individual cDNA samples (from Supplemental Fig. 4). Data were pooled from only those cultures with the appropriate cytokine added for maximal expression, as indicated below each pair of bars. The primary data for IgG2a secretion is found in Fig. 5A. B. Level of expression of the γ1 gene, calculated as in A. The primary data are found in Figs. 4A and 5. C. Cytokine regulation of γ2a gene expression. IL-4 induction ratios were calculated as the VDJcγ2a band density/VDJcγ4 band density from cultures with activator plus IL-4 divided by the VDJcγ2a band density/VDJcγ4 band density from cultures with LPS or CD40L only (primary data in Fig. 3). IFN-γ induction ratios were calculated similarly. IL-4 and IFN-γ induction ratios for secreted IgG2a were calculated by dividing the expression level in activator plus cytokine by the expression level in activator only (primary data in Fig. 5). D. Cytokine regulation of γ1 gene expression. For various mice with the same transgenic construct, the ratio of transgenic VDJcγ1 to total VDJcγ1 expression was calculated from fragment densities in Fig. 4B. Means were determined for a wild-type transgene (with IL-4) and for transgenes with the promoter/I exon swap (both IL-4 and IFN-γ). E. IFN-γ induction of γ1 gene expression. For various mice with the same transgenic construct, the ratio of transgenic VDJcγ1 to VDJcγ2a expression was calculated from fragment densities in Fig. 4C. Means were determined for a wild-type transgene (with IFN-γ) and for transgenes with the promoter/I exon swap (both IL-4 and IFN-γ). WT, wild type.
exceptional in that B cells expressed some transgenic IgG1a after activation with both IL-4 and IFN-γ (Figs. 3, 4). This may be due to an unusual transgene to transgene joint. Analysis of the transgene structure in line 79 revealed one truncated copy of the transgene that joined sequences near the γh hinge exon to the 3’ end of another transgene copy in a tail to tail configuration (Supplemental Fig. 5). This junction would bring the 3’ enhancers closer to transgenic γ1 gene, without any intervening H chain genes to compete with the 3’ enhancers, resulting in significant and atypical expression.

There are at least three potential reasons why the promoter/Iγ2a fails to activate CSR to the γ1 gene, whereas the promoter/γ1 transfers robust CSR to the γ2a gene. First, the γ1 promoter may be intrinsically stronger. The γ1 promoter/I exon may carry its relatively strong promoter/enhancer elements (30). Consistent with the intrinsic strength of the γ1 promoter, the γ1 gene is affected the least of any H chain gene by deletions of various 3’ enhancers (31–33).

Second, whereas many of the regulatory elements for the γ1 gene may be concentrated in its promoter/I exon, normal expression of the γ2a gene may be the result of a collaboration of many elements, some of which lie outside the 2.2-kb promoter/Iγ2a fragment we transferred to the γ1 gene. Whatever regulation is encoded by the 2.2-kb promoter/Iγ2a fragment cannot interact with putative regulatory elements in the γ1 gene; the chimeric γ1 gene is essentially not expressed. In regard to these two potential factors, strength of the γ1 promoter/I exon and concentration of regulatory elements in the γ1 promoter/I exon, we would speculate that γ1 is the exceptional gene and that other H chain genes are more like γ2a. This would predict that cytokine-induced, gene-specific CSR to γ3, γ2b, ε, and α would be regulated by a combination of disperse, and individually less potent, elements. Third, a change in linear distance, or gene order, relative to the 3’ regulatory region may affect the use of the two promoter/I exons. The promoter/I exon swap moves the γ1 promoter/I exon closer to the 3’ enhancer region, whereas it moves the γ2a promoter/I exon further away from the 3’ enhancers. On the one hand, chromosome looping within the H chain locus must, to some extent, override any effect of linear distance (34). On the other hand, mutations in H chain genes can alter the expression of upstream genes; the 3’ enhancers have some preference for the most proximal, strong promoter (12, 33). The rearrangement of the strong γ1 promoter to the more 3’ enhancer-proximal γ2a gene may [like insertions of other strong promoters (33)] inhibit CSR to more upstream genes. Because the γ1 promoter is active after CD40 ligation (15), it may “absorb” all of the 3’ enhancer activity, preventing induction of the γ2a promoter by CD40L alone. When B cells are treated with CD40L plus IFN-γ, the γ1 promoter is relatively less active, which may allow some interaction of the 3’ enhancers with the γ2a promoter in the context of the Cy1 gene (Figs. 2B, 4B, 4C). It is noteworthy that the activity of the chimeric promoter/Iγ2a-Cy1 gene is similar to that of the wild-type promoter/Iγ2a-Cy2a gene in a transgene with a 3’ enhancer deletion; germline transcription is reduced to 5–10% that of wild type, and CSR is reduced to ~1% that of wild type (16, 35).

Acknowledgments

We thank Dr. Cheong-Hee Chang for insightful comments on the manuscript. We acknowledge Wanda Filipiak, Galina Gavrilina, and Maggie Van Keuren for preparation of transgenic mice, as well as the Transgenic Animal Model Core of the Biomedical Research Core Facilities at the University of Michigan, Ann Arbor.

Disclosures

The authors have no financial conflicts of interest.

