Intra- and Intercompartmental Movement of γδ T Cells: Intestinal Intraepithelial and Peripheral γδ T Cells Represent Exclusive Nonoverlapping Populations with Distinct Migration Characteristics

Vijaykumar Chennupati, Tim Worbs, Xiaosun Liu, Frano H. Malinarich, Susanne Schmitz, Jan D. Haas, Bernard Malissen, Reinhold Förster and Immo Prinz

J Immunol 2010; 185:5160-5168; Prepublished online 24 September 2010; doi: 10.4049/jimmunol.1001652

http://www.jimmunol.org/content/185/9/5160

Supplementary Material http://www.jimmunol.org/content/suppl/2010/09/24/jimmunol.1001652.DC1

Why *The JI*?

- **Rapid Reviews! 30 days*** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References This article cites 62 articles, 31 of which you can access for free at:

http://www.jimmunol.org/content/185/9/5160.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts

The *Journal of Immunology* is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852

Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.

Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Intra- and Intercompartmental Movement of \(\gamma\delta\) T Cells: Intestinal Intraepithelial and Peripheral \(\gamma\delta\) T Cells Represent Exclusive Nonoverlapping Populations with Distinct Migration Characteristics

Vijaykumar Chennupati,* Tim Worbs,* Xiaosun Liu,*1 Frano H. Malinarich,*2 Susanne Schmitz,* Jan D. Haas,* Bernard Malissen,† Reinholf Förster,* and Immo Prinz*

Unlike the \(\sim 1\%\) of \(\gamma\delta\) TCR-positive T cells being regularly present in blood and secondary lymphoid organs (peripheral \(\gamma\delta\) T cells), \(\sim 50–60\%\) of small intestinal intraepithelial lymphocytes (iIELs) in the mouse express the \(\gamma\delta\) TCR (\(\gamma\delta\) iIELs). In this study, we investigated the overlap and exchange of \(\gamma\delta\) iIELs and \(\gamma\delta\) T cells found in peripheral secondary lymphoid organs. Using two-photon laser-scanning microscopy, we found \(\gamma\delta\) T cells within peripheral lymph nodes to be highly motile, whereas \(\gamma\delta\) iIELs were characterized by a locally confined scanning behavior. Our results implied a strict separation of peripheral \(\gamma\delta\) T cells and \(\gamma\delta\) iIELs. Nevertheless, \(\gamma\delta\) iIELs could be efficiently regenerated from bone marrow-derived precursors in irradiated or T cell-deficient adult mice. However, outside the intestinal epithelium, survival of \(\gamma\delta\) iIELs was very poor. In CCR9-deficient mice, homing of \(\gamma\delta\) iIELs was impaired, but did not lead to an accumulation of \(\gamma\delta\) iEL-like cells in the periphery. Conversely, in situations in which specific \(\gamma\delta\) iIEL niches were empty, adoptive transfer of isolated \(\gamma\delta\) iIELs led to a sustained engraftment of transferred \(\gamma\delta\) iIELs in the intestinal epithelium for at least 100 d. Furthermore, we demonstrated by heterotopic intestinal transplantation experiments that an exchange of \(\gamma\delta\) iIELs only rarely happens in the steady state of adult mice. We therefore conclude that peripheral versus intestinal intraepithelial \(\gamma\delta\) T cells are exclusive, nonoverlapping populations that virtually do not exchange with each other. The Journal of Immunology, 2010, 185: 5160–5168.

Intraepithelial lymphocytes in the small intestine of the mouse consist of \(\sim 50–60\%\) \(\gamma\delta\) TCR-expressing T cells (\(\gamma\delta\) intestinal intraepithelial lymphocytes [iIELs]). \(\gamma\delta\) iIELs are specialized T cells that ensure the homeostasis of the intestinal epithelium (1–3) and protect against intestinal inflammation (4–8). Recent studies have shown that \(\gamma\delta\) iIELs are involved in restricting the mucosal penetration of symbiotic microbiota (9) and in the preservation of epithelial tight junctions during intestinal infection (10, 11).

Received for publication May 20, 2010. Accepted for publication August 23, 2010.

This work was supported by Deutsche Forschungsgemeinschaft Grants PR727/2-1 and SFB621-A14 (to LP) and Deutsch-Französische Hochschule/Université française G2RFA Grant 104-07-II. V.C. is supported by Hannover Biomedical Research School.

Address correspondence and reprint requests to Dr. Immo Prinz, Hannover Medical School, Institute for Immunology, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany. E-mail address: Prinz.Immo@mh-hannover.de

The online version of this article contains supplemental material.

Abbreviations used in this paper: DETC, dendritic epidermal T cell; EGFP, enhanced GFP; iIEL, intestinal intraepithelial lymphocyte; LN, lymph node; MLN, mesenteric LN; PLN, peripheral LN; WT, wild type.

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00
clonal peripheral γδ T cells. Whereas the majority of γδ iIELs develop perinatally (38) and show a biased TCR repertoire comprising a major proportion of Vγ7 TCR (31, 39–41), still approximately one-third of the γδ iIELs display polygonal Vγ7 TCR. It therefore still remains an open question whether gut γδ iIELs actually recirculate and exchange with γδ T cells in other compartments, or represent a separate exclusive lineage of γδ TCR-positive T lymphocytes.

In the current study, we investigated the interstitial motility as well as the trafficking behavior of peripheral γδ T cells and γδ iIELs. With the aid of two-photon laser-scanning microscopy, we visualized genetically labeled peripheral and intestinal γδ T cells of TcrdH2BeGFP mice (42) and found a strikingly different migration pattern. Furthermore, we show that γδ iIELs can be regenerated in adult mice in situations where specific γδ iIEL niches are available, which is in accordance with previous reports. However, the survival of γδ iIELs outside the intestinal epithelium was very poor, suggesting a lack of soluble niches for those cells. This conclusion applies also to CCR9-deficient mice, in which proper homing of γδ iIELs was impaired, but did not lead to a compensatory accumulation of γδ iIEL-like cells in the periphery. Although adoptive transfer of isolated γδ iIELs was able to reconstitute empty intestinal γδ iIEL niches, we found by performing heterotopic intestinal transplantation experiments that such an intercompartmental trafficking of γδ iIELs does rarely happen in the steady state. We thus conclude that peripheral and intestinal intraepithelial γδ T cells are exclusive populations and are virtually nonexchanging with each other.

Materials and Methods

Mice

Six- to 10 wk-old mice were used throughout the study, and all mice were on C57BL/6 background. TcrdH2BeGFP mice have been described elsewhere (42). C57BL6 mice were purchased from Charles River Laboratories (Sulzfeld, Germany). For two-photon scanning microscopy, F1 offspring from homozygous TcdH2BeGFP mice crossed with C57BL6/Tcrd−/− mice (43) were used to exclude any potential GFP+ T cells. TcrdH2BeGFP × Ccr9−/−, C57BL6/Rag2−/−γc−/−, Ccr9−/−γc−/−, Tcrd−/− (44) mice were bred at the central animal facility of Hannover Medical School in individual ventilated cages, under specific pathogen-free conditions. All experiments were carried out in accordance with institutional guidelines approved by the Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit.

Antibodies

Abs directed against αβ TCR (clone H57-597) and CD8α (clone 53-6.7) were purchased from ebmBioScience (San Diego, CA). Abs against TCR γδ (clone GL3) and TCR 66.3/2 (clone 8F4H7B7) were obtained from BD Pharmingen (San Diego, CA). Abs directed against Vγ7 (clone F2.67) and Vγ4 (clone 49.2) were provided by P. Pereira (Pasteur Institute, Paris, France), and anti-CD8β (clone RMD8) was provided by E. Kremmer (München, Germany). The rat anti-mouse CCR9 (clone 7E7-1-1) was produced with rat hybridoma cell lines (45). Rat and mouse sera were purchased from AbD Serotec (Oxford, U.K.) and Invitrogen (Carlsbad, CA), respectively.

Two-photon microscopy

For intraval imaging of H2BeGFP+ γδ T cells within villi of the small intestine, mice were anesthetized with an initial i.p. injection of 100 mg/kg ketamine and 1 mg/kg medetomidine. After median incision of the abdominal skin and peritoneum, a small intestinal loop was carefully exteriorized without compromising mesenterial blood or lymph vessels. Lying on its left side, the animal was placed on a custom-built heated preparation stage allowing the immobilization of the mesenterial flank of the intestinal loop in a lateral cavity using tissue adhesive (Abbott Laboratories, Abbott Park, IL). The intestinal loop was then opened longitudinally along the antimesenterial flank using an electrocautery (Harvard Apparatus, Hollis-ton, MA). Particular care was taken to preserve intestinal blood supply, and the undisturbed perfusion of the intestinal villi was documented after completion of imaging by i.v. injection of FITC-dextran (Sigma-Aldrich, St. Louis, MO). The interior of the intestinal loop was carefully flushed with and subsequently submerged in fresh prewarmed normal saline. A thermocouple was placed next to the opened intestinal loop to monitor local temperature, which was maintained at 36.5 ± 1˚C throughout imaging. Two-photon laser-scanning microscopy was performed with an upright Leica DM LFS microscope equipped with a ×20 0.95NA water immersion objective (Olympus, Melville, NY) and a pulsed Ti:Sa infrared laser (MaiTai, Spectra-Physics, Santa Clara, CA) tuned to 858 nm. Enhanced GFP (EGFP) fluorescence and tissue autofluorescence were detected with non-descanned detectors fitted with 535/50 and 610/75 band path filters, respectively.

To analyze the intranodal migration of T lymphocytes, peripheral lymph nodes (PLNs: inguinal, axillary, and brachial lymph nodes [LNs]) were explanted 24 h after the adoptive transfer of 10× TREMA-matched MACS-purified CD8+ γδ T cells (purity >95%), immobilized in a custom-built imaging chamber (46) using a tissue adhesive (Abbott Laboratories), and superfused with oxygenated (95% O2/5% CO2) RPMI 1640 medium (Invitrogen) containing 1% penicillin/streptomycin and 25 mM HEPES. Imaging was performed on a TriM Scope (LaVision Biotec, Bielefeld, Germany) equipped with an upright microscope (BX51; Olympus) fitted with a ×20 0.95 NA water immersion objective (Olympus) and a pulsed Ti:Sa infrared laser (MaiTai HP; Spectra-Physics), tuned to 865 nm for optimal excitation of EGFP and TAMRA. EGFP and TAMRA fluorescence were detected with nondescanned detectors fitted with 525/50 and 580/60 band path filters, respectively. To generate time-lapse series, Z-stacks of 10–20 images with 4- to 5-μm spacing were acquired every 15–45 s. Visualization and data analysis of two-photon imaging data were performed, as described (47), using Imaris (Bitplane, Zurich, Switzerland). Only tracks with a duration >90 s were included in the analysis.

Isolation of iIELs

iIEL isolation was carried out as described previously, with some modifications (48). In brief, gut content was flushed out with cold PBS (+3% FCS), and Peyer’s patches and mesenteric fat tissue were removed. Intestines were opened longitudinally and washed in cold PBS (+3% FCS) twice and incubated in 20 ml Ca2+-, Mg2+-free HBSS (Life Technologies, Carlsbad, CA)/8% FCS/4 mM EDTA/0.5 mM DTT for 15 min at 37˚C. Supernatants were pooled and filtered through nylon mesh, pelleted at 120,000 g for 10 min, and resuspended in 40% Percoll (GE Healthcare, Munich, Germany) in RPMI 1640/4% FCS/2 m l-glutamine. This cell suspension was overlaid with 70% Percoll in RPMI 1640/4% FCS/2 mM l-glutamine and centrifuged at 2000 rpm for 20 min without interruption. iIELs were recovered from the interphase and washed twice in PBS/5% FCS.

Bone marrow chimera and adoptive transfer of untouched γδ iIELs

Bone marrow was isolated from TcrdH2BeGFP mice, and RBC lysis was performed. The bone marrow was incubated with biotinylated anti-lineage Abs (anti-CD3, TCR γδ, TCR αβ, CD19, Gr-1, NK1.1, CD11c, and CD11b), and labeled cells were removed with the aid of streptavidin beads (Invitrogen). Lineage-negative cells were adoptively transferred to Rag2−/−γc−/− or to C57BL/6 mice that were lethally irradiated with 2 × 5 Gy. Bone marrow chimeras were analyzed after 8–10 wk. For adoptive transfer of untouched γδ iIELs, GFP+δδ TCRβ+ cells were sorted from iIEL preparations of TcrdH2BeGFP mice (FACSaria; BD Biosciences, San Jose, CA) to a purity of >95%, and 0.5–1.0 × 107 sorted GFP+ cells (as indicated) were transferred i.v. to Tcrd−/−, Ccr9−/−, and C57BL6/6 mice. iIEL and peripheral compartments of recipient mice were analyzed 100 d after adoptive transfer.

Cell culture

The mouse keratinocyte cell line PDV (49) was grown in Ham F-12 medium supplemented with 8% heat-inactivated FBS, nonessential amino acids, 1 mM sodium pyruvate, 100 U/ml penicillin, 100 μg/ml streptomycin, and 50 μg/ml gentamycin (all Life Technologies). The mouse intestinal epithelial cell line m-IC (cl2) was grown in Ham F-12 plus DMEM without phenol red (1:1 ratio), supplemented with 2% decomplemented FBS, 5 μg/ml insulin, 5 × 10−8 M dexamethasone, 60 nM selenium, 5 mg/ml transferrin, 50 nM triiodothyronine, 10 ng/ml epidermal growth factor, 20 mM HEPES, 2 mM glutamine, 10% β-glucose, 100 U/ml penicillin, and 100 μg/ml streptomycin. All chemicals were purchased from Sigma-Aldrich, except Ham F-12, DMEM, l-glutamine, and penicillin/ streptomycin. m-IC cells, which were obtained from Life Technologies, m-IC (cl2) cells were maintained in culture for at least a period of 8 d before they were used for the experiments. One day before coculture, 50 × 105 PDV and m-IC (cl2) cells were seeded separately in a 96-well flat-bottom tissue culture
Results

Peripheral γδ T cells are highly motile, whereas γδ iIELs show only very limited local motility

All γδ TCR-positive cells within TcRdH2BeGFP mice express a bright nuclear GFP fluorescence that allows for an efficient visualization and tracking by two-photon laser-scanning microscopy. Taking advantage of this fact, we sought to compare the migration dynamics of peripheral γδ T cells and γδ iIELs within their respective tissue environment under physiological conditions. More precisely, we used for imaging experiments F1 C57BL/6-Tcra+/− × TcRdH2BeGFP double heterozygous mice in which expression of the reporter H2BeGFP unambiguously identifies γδ T cells without touching their TCR. This system was chosen to avoid any false-positive GFP+ cells that could be found in the homozygous TcRdH2BeGFP reporter mice due to monoallelic rearrangements of the Tcra locus (B. Malissen and I. Prinz, unpublished data). First, imaging explanted PLNs of TcRdH2BeGFP mice, we found peripheral γδ T cells to be highly motile, exhibiting a fast intranodal random walk migration indistinguishable from that of adoptively transferred TAMRA-labeled CD8+ αβ T cells (Fig. 1A, Supplemental Video 1). In stark contrast, when imaged by intravital microscopy in an exteriorized small intestinal loop, γδ iIELs (residing almost exclusively in the epithelial layer of the intestinal villi) showed only very little movement (Fig. 1B, Supplemental Video 2). The intranodal migration speed measured for peripheral γδ T cells (median average track speed 14.4 μm/min) was at least as high as for CD8+ αβ T cells (median average track speed 13.6 μm/min; Fig. 1C), whereas the average migration speed of γδ iIELs was observed to be much lower (median average track speed 5.3 μm/min; Fig. 1C). In addition, it should be noted that part of the observed γδ iIEL movement might actually result from residual peristaltic movement, although the segment of the small intestine under scrutiny was immobilized using tissue adhesive and the imaging data were carefully corrected for movement artifacts before performing cell tracking and motility analysis. The transposition of cell tracks to a common origin (Fig. 1D) illustrates that the intranodal migration behavior of peripheral γδ T cell and CD8+ αβ T cells was characterized by equally large net displacement values (left item), whereas the majority of γδ iIELs remained almost stationary during the whole imaging period (right item).

In summary, these observations conclusively show that endogenous γδ TCR-expressing T lymphocytes present within PLNs and small intestinal epithelium display completely different migration dynamics under steady-state conditions: peripheral γδ T cells exhibit the same rapid intranodal random walk that has previously been described to be the default mechanism of Ag search for naive αβ TCR-positive T lymphocytes, whereas γδ iIELs are effectively confined to the intestinal epithelium. This, in turn, raises the important question as to whether the striking difference in cellular motility between γδ TCR-positive

FIGURE 1. Peripheral γδ T cells are motile, whereas γδ iIELs are not. A, Migratory behavior of GFP+ γδ T cells (green) within explanted axillary LNs of TcRdH2BeGFP mice that were i.v. transferred with TAMRA-labeled CD8+ T cells (red) 24 h before two-photon imaging. Snapshot of a single time point is shown (see also Supplemental Video 1). Center and right panels, Illustrate the intranodal migration of GFP+ γδ T cells and TAMRA-labeled CD8+ T cells, respectively. Drag tails indicate cell tracks corresponding to the last 20 frames. Image dimensions 375 × 280 μm, 10 Z slices with 5 μm spacing. B, In vivo two-photon microscopy of γδ iIELs within the small intestine of TcRdH2BeGFP mice. Snapshot of a single time point is shown (see also Supplemental Video 2). Image dimensions 265 × 265 μm, 18 Z slices with 4 μm spacing. Dragon tails indicate cell tracks corresponding to the last 20 frames. C, Average track speed of γδ T cells and CD8+ T cells within axillary LNs, as well as of γδ iIELs within the small intestine. Each circle represents an individual cell; red bars indicate median values. D, Individual tracks of each group were transposed to a common origin, illustrating that displacement and pattern of intranodal migration of naive CD8+ αβ and γδ T cells within PLNs are highly comparable, whereas γδ iIELs represent largely immotile cells. Grid spacing is 25 μm.
cells within LNs and intestinal compartment primarily results from external influence factors of the tissue environment or whether γδ iIELs and peripheral γδ T cells actually represent exclusive, essentially nonexchanging subpopulations of γδ T lymphocytes with different intrinsic dynamic properties.

γδ iIELs can be reconstituted from lineage-negative precursors in adult mice

As a first step to address this question, we analyzed to what extent peripheral γδ iIEL precursors could regenerate the γδ iIEL pool. Therefore, we investigated whether adoptively transferred lineage-negative bone marrow cells from TcrdH2BeGFP donors could fully reconstitute the γδ iIEL compartment in adult mice deficient for these cells. As recipients, we used Rag2^{−/−}γc^{−/−} mice and lethally irradiated C57BL/6 mice, finding that GFP⁺ γδ iIELs were successfully reconstituted in both Rag2^{−/−}γc^{−/−} and lethally irradiated C57BL/6 mice 8 wk after transfer of lineage-negative TcrdH2BeGFP bone marrow (Fig. 2). Further dissection of the newly formed γδ iIELs in the recipient mice revealed reconstitution of Vγ7⁺, Vγ4⁺, and Vδ6.3/2-positive T cell subsets in ratios that were comparable to untreated TcrdH2BeGFP control mice (Fig. 2). These data suggest that the adult γδ iIEL pool within the small intestinal compartment is not locked in, but can admit periphery-derived γδ iIEL precursors, at least once the specific niches are empty.

CCR9 deficiency hinders γδ iIEL homing to the intestinal epithelium, but does not induce accumulation of γδ iIEL precursors in the periphery

In line with previous reports (52), we observed that the numbers of endogenous GFP⁺ γδ iIELs present in the small intestinal epithelium of TcrdH2BeGFP mice declined along the oral-aboral axis, forming a gradient from duodenum to ileum (Fig. 3A). This was not due to differential expression levels of the key gut-homing and retention molecules CCR9 and β₂ integrin on γδ iIELs, as CCR9 and β₂ integrin were expressed to similar extents on γδ iIELs across the whole small intestine (Fig. 3B).

To further explore the impact of CCR9-mediated migration cues on the compartmental distribution of γδ T cells and specifically γδ iIEL homing, we bred TcrdH2BeGFP reporter with Ccr9^{−/−} mice. These mice indeed displayed a ~3-fold reduced frequency of γδ iIELs across the small intestine compared with normal TcrdH2BeGFP mice (Fig. 3A), which is in accordance with earlier studies analyzing the role of CCR9 for gut homing (21, 22). Interestingly, however, γδ iIEL frequencies among all iIELs in TcrdH2BeGFP × Ccr9^{−/−} mice still showed a gradual decline from duodenum to ileum (Fig. 3A). These data indicated that CCR9 expression on γδ iIELs is critical for their efficient localization to the gut epithelium, but dispensable for the establishment of a numerical gradient along the oral-aboral axis of the small intestine. Furthermore, initial reports had observed that in a situation of CCR9 deficiency, the frequency of γδ T cell numbers in the periphery (PLNs, MLNs, and spleen) was 1.5- to 2-fold increased (21, 22). As this was also the case in TcrdH2BeGFP × Ccr9^{−/−} mice when compared with TcrdH2BeGFP littermates (Fig. 3C), we wanted to know whether this enrichment of peripheral γδ T cells was possibly due to the accumulation of γδ iIEL precursors that were unable to home to the gut epithelium and instead promoted the generation of increased numbers of peripheral γδ T cells. Under these circumstances, one would expect the TCR repertoire of peripheral γδ T cells to shift toward certain subsets typical for γδ iIELs, e.g., Vγ7⁺ cells. Therefore, we analyzed the expression of Vγ7, Vγ4, and Vδ6.3/2 on γδ T cells in peripheral compartments of TcrdH2BeGFP × Ccr9^{−/−} and TcrdH2BeGFP mice (Fig. 3D, 3E). Notably, we observed no differences between CCR9-deficient and CCR9-proficient mice. These data suggest that CCR9 deficiency hinders γδ iIEL homing to the intestinal epithelium, but does not induce compensatory accumulation of γδ iIEL precursors in the periphery.

The mouse keratinocyte cell line PDV supports the ex vivo survival of γδ iIELs

Our data suggest that γδ iIELs do not egress from their epithelial environment. Furthermore, the ex vivo life span of γδ iIELs is well known to be poor and often restricted to a period of 18–24 h after their isolation from the intestinal epithelium (9, 27). This is explained by their increased susceptibility to apoptosis upon isolation, probably as a consequence of loss of cell-cell contact. To analyze the requirements for γδ iIEL maintenance, we investigated factors that propagate γδ iIELs in vitro. We hypothesized that mouse epithelial or keratinocyte cell lines could replace such cell-cell contacts, and may provide a microenvironment that supports γδ iIEL survival ex vivo. To test this hypothesis, we cocultured GFP^{high} γδ iIELs either with the intestinal epithelial cell line m-IC (cl2) or with the keratinocyte cell line PDV for a period of 7 d. Furthermore, GFP^{high} γδ iIELs were cultured with a mixture of the cytokines IL-2, IL-7, and IL-15, which have been reported to at least slightly prolong the ex vivo life span of isolated γδ iIELs (26, 27, 53–57). By FACS quantification of GFP⁺ cells it quickly became evident that m-IC (cl2) cells were not supporting the ex vivo survival of sorted γδ iIELs (Fig. 4). However, coculture with PDV cells significantly extended the ex vivo survival of γδ iIELs to a life span even longer than that induced by the cytokine-conditioned culture medium (Fig. 4). Interestingly, PDV cell-conditioned medium had no effect on the survival of γδ iIELs (data not shown), suggesting that cell-cell contacts with PDV cells were the crucial factor extending the ex vivo survival of γδ iIELs. This observation is particularly noteworthy as it had been pre-

![FIGURE 2](http://www.jimmunol.org/)
experiments with each three mice per group.

A–D of at least three (\(\text{gd}\) untouched) environments was clearly very short, we next tested whether isolated sorted GFP + re-enter the intestinal epithelium. Upon adoptive transfer, FACS-TcrdH2BeGFP (\(\text{b}\) grams show CCR9 and (TcrdH2BeGFP) of four independent experiments. B, FACS-N mice. One hundred days after reconstitution, the presence of \(\text{Ccr9}^{-/-}\) recipients (Fig. 5A, 5B). The most sustained engraftment of the transferred cells was observed in \(\text{Ccr9}^{-/-}\) recipients, whereas only very few GFP+ \(\gamma\delta\) iIEL cells survived in wild-type (WT) \(\text{C57BL/6}\) mice. Notably, \(\text{Tcrd}^{-/-}\) mice showed an intermediate phenotype for the establishment of donor \(\gamma\delta\) iIELs. These results demonstrate that full reconstitution of the \(\gamma\delta\) iIEL compartment is possible in adult mice, but is likely to be dependent on the availability of empty niches for \(\gamma\delta\) iIELs in the small intestinal epithelium.

\(\gamma\delta\) iIELs, in particular CD8aa+ \(\gamma\delta\) iIELs, show a high proliferation rate

Because the \(\gamma\delta\) iIEL compartment was nonpermissive for transferred blood-borne \(\gamma\delta\) iIELs in WT recipients, we hypothesized

Ex vivo sorted \(\gamma\delta\) iIELs can efficiently survive within the intestinal epithelium after adoptive transfer

Although the life span of \(\gamma\delta\) iIELs outside their specific environment was clearly very short, we next tested whether isolated untouched \(\gamma\delta\) iIELs from TcrdH2BeGFP mice could efficiently re-enter the intestinal epithelium. Upon adoptive transfer, FACS-sorted GFP+ \(\gamma\delta\) iIEL donor cells quickly disappeared from spleen, liver, or PLNs of recipient mice within 48–72 h (data not shown). However, as late as 100 d after adoptive transfer, sizable populations of GFP+ donor \(\gamma\delta\) iIELs could be retrieved from the intestinal epithelium, but not from other organs, of \(\text{Ccr9}^{-/-}\) and Tcrd\(^{-/-}\) mice. The mouse keratinocyte cell line PDV supports \(\gamma\delta\) iIELs in vitro survival. GFP\(^{\text{high}}\) TCR\(^{\text{b}}\)- \(\gamma\delta\) iIELs were FACS sorted from TcrdH2BeGFP mice and cultured alone or cocultured either with the mouse keratinocyte cell line PDV or with the mouse intestinal epithelial cell line m-IC (c12) for a period of 7 d. As a positive control, \(\gamma\delta\) iIELs were cultured in PDV/m-IC (c12) medium enriched with a mixture of cytokines IL-2, IL-7, and IL-15. At the indicated time points, cells were retrieved from culture plates and live cells were identified by DAPI exclusion. Bars represent the cumulative output mean cell count/well ± SEM of three replicates for each value.
γδ iIELs remain resident in the intestinal epithelium and are not replaced by peripheral γδ T cells.

Finally, to directly test to what extent γδ iIELs and peripheral γδ T cells recirculate and exchange, we performed heterotopic transplantation of small intestines. To this end, a segment of the upper portion of jejunum (~7 cm) in length with intact vascularized MLNs still attached was isolated from C57BL/6 donor mice and grafted into TcrdH2BeGFP recipients, and vice versa. Seven days later, both graft and host intestines as well as MLNs were analyzed by immunohistology and FACS (Fig. 7). Importantly, thorough immunofluorescent microscopy analysis revealed that GFP+ γδ T cells appeared neither in the grafted C57BL/6 intestine (when TcrdH2BeGFP animals were used as recipients) nor in the C57BL/6 host intestine (when TcrdH2BeGFP animals were used as intestine donors; Fig. 7A). Moreover, normal frequencies of GFP+ γδ iIELs were observed both in TcrdH2BeGFP host and TcrdH2BeGFP graft intestines, respectively (Fig. 7A). At the same time, flow cytometric analysis of host and graft MLNs after transplantation of TcrdH2BeGFP intestines into C57BL/6 recipients showed an efficient bidirectional exchange of CD62L+ γδ T cells (Fig. 7B). This observation demonstrates that peripheral CD62L+ γδ T cells are fully capable of recirculation between secondary lymphoid organs such as MLNs. Intriguingly, however, a small subpopulation of GFP+ CD62L+ γδ T cells from the grafted TcrdH2BeGFP MLNs did not recirculate to the host MLNs. In summary, the data obtained from heterotopic gut transplantation experiments clearly show that LN-resident peripheral γδ T cells and γδ iIELs in the intestine epithelium are two diverse, nonoverlapping populations of γδ T cells.

Discussion

To our knowledge, this study is the first to visualize the migration dynamics of γδ T lymphocytes within different tissue compartments under physiological conditions. Our findings indicate that peripherally circulating γδ T cells and γδ iIELs probably represent two exclusive populations with distinct phenotypical and functional features, including a strikingly different interstitial motility. Whereas peripheral γδ T cells are likely to be among the fastest lymphocytes ever visualized by two-photon microscopy, exhibiting an intranodal random walk motility slightly outmatching even that of naive CD8+ CD69 T cells, γδ iIELs showed only very limited local movement, obviously being confined to the small intestinal epithelium. However, as we imaged intestinal segments for only...
rather short periods of time (maximum duration of 1 h), it remains to be shown whether γδ iIELs do actually displace within intestinal villi (14) over longer time spans, given their obviously very limited basal motility. Aiming for longer time intervals of intestinal in vivo imaging, it will be even more important to clearly dissect active γδ iIEL migration from any residual peristaltic bowel movement that might remain. Furthermore, it would be interesting to see the influence of, e.g., inflammatory stimuli within the intestinal compartment on the migration behavior of γδ iIELs. At least for the steady-state conditions analyzed in this study, γδ iIELs were observed to be confined to the small intestinal epithelium, residing in intimate contact to gut epithelial cells.

The strongest evidence for a strict nonoverlapping coexistence of γδ iIELs and peripheral γδ T cells was obtained by performing heterotopic transplantations of parts of the small intestine together with vascularized MLNs. In this scenario, the highly motile and mobile peripheral γδ T cells of the cotransplanted MLNs completely exchanged with their respective host counterparts during a period of 7 d. At the same time, the analysis of the transplanted intestines clearly showed that there was no redistribution of graft and host γδ iIEL cells taking place. Of note, the use of TcrdH2BeGFP reporter mice allowed us to unambiguously identify bona fide γδ T cells and revealed an even lower level of cellular exchange between donor and graft γδ iIELs than expected from previous studies using parabiotic mice (59, 60). Importantly, most probably due to their capacity of local self-renewal, environmental niches for intestinal γδ T cells were occupied in this experimental model. In contrast, γδ iIELs could be fully regenerated also in adult mice using an external source of bone marrow-derived γδ iIEL precursors when intestinal γδ T cells were actually missing. It is therefore likely that the replacement of γδ iIELs under steady-state conditions is only happening once specific intestinal niches are empty, thereby allowing for the specific entry of γδ iIEL precursor cells from the blood.

Our bone marrow chimera experiments provided support for this concept as they showed a complete reconstitution of all analyzed Vγ and Vδ iIEL populations, including the most abundant Vγ7 cells. The hosts used in this study, namely Rag2−/− γc−/− or irradiated WT mice, had empty intestinal niches that facilitated the uptake of γδ iIEL precursors and/or newly generated γδ iIELs. Along the same line, the efficient homing and survival of adoptively transferred reisolated γδ iIELs from TcrdH2BeGFP reporter mice required available host iIEL niches as well. Although the total numbers of γδ iIELs that were able to home back to the small intestinal epithelium after adoptive transfer were low, these cells were long lived and probably continued to proliferate locally. This suggests that γδ iIELs are indeed self-renewing in situ. Whereas very rare in WT mice, adoptive transfer of isolated γδ iIELs into CCR9-deficient mice led to a sustained establishment of donor γδ iIELs. In this respect, it is reminiscent of the situation in Rag2−/− mice in which intestinal T cells are fully absent (23). Interestingly, upon transfer into Tcrd−/− mice, we found only an intermediate reconstitution of γδ iIELs, i.e., more than in WT, but less than occurring in CCR9-deficient hosts. This suggests that iIEL-specific niches in the intestinal epithelium, which supply space and survival factors for iIELs, are at least partially shared by γδ iIELs and γδ iIELs. In Tcrd−/− mice, γδ iIEL-specific niches are thus squatted by γδ iIELs, as it was analogously shown for the invariant Vγ8+ DETCs that reside in the skin epidermis (61, 62). Although CCR9-deficient γδ iIELs have the ability to enter the small intestinal epithelium by other means (21, 22), they thus may have been superseded by adoptively transferred CCR9-competent γδ iIELs because CCR9–CCL25 interactions are required for stable localization of iIELs within the intestinal epithelium.

As we did not observe any significant accumulation of iIEL-specific Vγ7+ γδ T cell proportions in the periphery of CCR9-deficient mice, this study suggests that the increase of peripheral γδ T cell numbers in CCR9-deficient mice (21, 22) is probably not happening due to an accumulation of “wannabe γδ iIELs” that do not find their way to the gut epithelium. On the contrary, the results on γδ iIEL survival point out that these cells die rather quickly by apoptosis in the circulation. Finally, our ex vivo culturing experiments demonstrated that the keratinocyte cell line PDV (49), but not the intestinal epithelial cell line m-IC (cl2) (50), could sustain γδ iIEL survival. One might have expected converse results as the m-IC (cl2) retained many features of small intestinal crypt cells. Although both PDV and m-IC (cl2) are transformed immortalized cell lines, this outcome may thus reflect more effective immune surveillance recognition of the PDV cells by the γδ iIELs. In this context, it is intriguing that the same PDV cells were previously shown to support selection of Vγ5+ thymic DETC precursors (58). Therefore, it is tempting to speculate that related TCR-specific or TCR-independent signals may be involved in DETC selection and in γδ iIEL survival.

In conclusion, this study provides a detailed characterization of the intra- and intercompartmental migration of γδ iIELs as a self-renewing, tissue-resident lymphocyte population. Using two-photon microscopy and heterotopic intestinal transplantation, we could show that γδ iIELs are not motile and not recirculating out of their very specialized niche, but can be fully regenerated from progenitor cells when their niches are empty through genetic disposition or irradiation-mediated loss.

Acknowledgments

We thank Pablo Pereira for advice and for providing mAbs specific for Vγ7 and Vγ9, Andreas Krueger for critically reading the manuscript, and Mathias Herberg for excellent animal care.

Disclosures

The authors have no financial interests of conflict.

References

Video S1
Two-photon time lapse imaging of γδ T cells (green, white tracks) as well as adoptively transferred TAMRA-labeled CD8⁺ αβ T cells (red, yellow tracks) migrating within the paracortical T cell zone of explanted axillary lymph nodes of *TcrdH2BeGFP* recipients. γδ T cells exhibit a very high overall motility, comparable to that of naive CD8⁺ αβ T cells. Image dimensions 375 X 280 µm, 2D maximum intensity projection of 10 Z slices with 5 µm spacing. 150x time lapse, dragon tails (middle and right pannel) indicate cell tracks corresponding to the last 20 frames.

Video S2
Two-photon *in vivo* time lapse imaging of γδ iIEL (green, white tracks) in the intestinal epithelium of a *TcrdH2BeGFP* mice. γδ iIEL exhibit only minimal residual movement within the intestine epithelium. Image dimensions 265 X 265 µm, 2D maximum intensity projection of 18 Z slices with 4 µm spacing. 150x time lapse, dragon tails indicate cell tracks corresponding to the last 20 frames.