Development of a Nascent Galectin-1 Chimeric Molecule for Studying the Role of Leukocyte Galectin-1 Ligands and Immune Disease Modulation

Filiberto Cedeno-Laurent, Steven R. Barthel, Matthew J. Opperman, David M. Lee, Rachael A. Clark and Charles J. Dimitroff

J Immunol 2010; 185:4659-4672; Prepublished online 15 September 2010; doi: 10.4049/jimmunol.1000715

http://www.jimmunol.org/content/185/8/4659

Supplementary Material

http://www.jimmunol.org/content/suppl/2010/09/16/jimmunol.1000715.DC1

References

This article cites 52 articles, 29 of which you can access for free at:

http://www.jimmunol.org/content/185/8/4659.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Development of a Nascent Galectin-1 Chimeric Molecule for Studying the Role of Leukocyte Galectin-1 Ligands and Immune Disease Modulation

Filberto Cedeno-Laurent,*† Steven R. Barthel,*† Matthew J. Opperman,* David M. Lee,‡§ Rachael A. Clark,*† and Charles J. Dimitroff*†

Galectin-1 (Gal-1), a β-galactoside–binding lectin, plays a profound role in modulating adaptive immune responses by altering the phenotype and fate of T cells. Experimental data showing recombinant Gal-1 (rGal-1) efficacy on T cell viability and cytokine production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. To address this drawback, we developed a mouse Gal-1 human chimera (Gal-1hFc) that did not need chemical production, nevertheless, is controversial due to the necessity of using stabilizing chemicals to help retain Gal-1 structure and function. At high concentrations, Gal-1hFc induced apoptosis in Gal-1 ligand† Th1 and Th17 cells, leukemic cells, and granulocytes from synovial fluids of patients with rheumatoid arthritis. Importantly, at low, more physiologic concentrations, Gal-1hFc retained its homodimeric form without losing functionality. Not only did Gal-1hFc–binding trigger IL-10 and Th2 cytokine expression in activated T cells, but members of the CD28 family and several other immunomodulatory molecules were upregulated. In a mouse model of contact hypersensitivity, we found that a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, alleviated T cell–dependent inflammation by increasing IL-4+, IL-10+, TGF-β+, and CD25+FoxP3+ T cells, and by decreasing IFN-γ+ and IL-17+ T cells. Moreover, in human skin-resident T cell cultures, Gal-1hFc diminished IL-17+ T cells and increased IL-4+ and IL-10+ T cells. Gal-1hFc will not only be a useful new tool for investigating the role of Gal-1 ligands in leukocyte death and cytokine stimulation, but for studying how Gal-1–Gal-1 ligand binding shapes the intensity of immune responses. The Journal of Immunology, 2010, 185: 4659–4672.

© 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00

Received for publication March 2, 2010. Accepted for publication August 9, 2010.

This work was supported by American Cancer Society Research Scholar Award 06-024-01-CSM (to C.J.D.), National Institutes of Health/National Cancer Institute Grant RO1 CA118124 (to C.J.D.), National Institutes of Health/National Center for Complementary and Alternative Medicine Grant RO1 AT004268 (to C.J.D.), National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases Grant RO1 AR056720 (to R.A.C.), a Clinical Investigator award from the Damon Runyon Cancer Research Foundation (to R.A.C.), and a New Investigator award from the Scleroderma Foundation (to R.A.C.).

Address correspondence and reprint requests to Dr. Charles J. Dimitroff, HIM, Room 662, 77 Avenue Louis Pasteur, Boston, MA 02115. E-mail address: cdimitroff@rics.bwh.harvard.edu

The online version of this article contains supplemental material.

Abbreviations used in this paper: AP, alkaline phosphatase; DNFB, 2,4-dinitro-1-fluorobenzene; Gal-1, galectin-1; hFc, human Ig chimer; IL-1ra, IL-1R antagonist; Lac, lactose; LN, lymph node; OD, optic densitometry; PD, programmed death; PI, propidium iodide; PS, phosphatidylinerine; RA, rheumatoid arthritis; Gal-1, recombinant human galectin-1; RT, room temperature; sICAM-1, soluble ICAM-1; SS, signal sequence; TIMP-1, tissue inhibitor of metalloproteinase; Treg, regulatory T cell; wt, wild type.

Gal-1 is functionally active in nature as a homodimer, recognizing glycoconjugates exposing polyvalent chains of N-acetyllactosamine type 1 (Galβ1,3GlcNAc) or type 2 (Galβ1,4GlcNAc) disaccharides (5). Gal-1 lines the surfaces of epithelial, stromal, and hematopoietic cells, and is a component of extracellular matrix and basement membrane (6). It mediates homotypic and heterotypic cell adhesion, migration, and growth-regulatory activities (7). In immunity, Gal-1 helps preserve the fetomaternal tolerance (8), promote negative selection of T cells in the thymus (9), establish cancer “immune privilege” sites (10), and induce proapoptotic (or apoptotic) activity in activated leukocytes (11–14). These events appear to be regulated by Gal-1–death–sparing effect on Th2 cells (3, 4, 15), production of IL-10 in regulatory T cells (Tregs) (16), survival of Th1 cells (17), and exposure of phosphatidylserine (PS) on Gal-1 ligand-positive leukocytes (1, 4, 19). However, precise mechanisms by which Gal-1 induces selective and dramatic immunoregulatory activities in T cells are still under debate, largely because of controversial data on use of recombinant forms of Gal-1 in immune cell bioassays (12–14).

Because Gal-1 does not require any posttranslational modification, recombinant human Gal-1 (rGal-1) purified from transformed Escherichia coli using lactosyl Sepharose columns has been described (20, 21). Nevertheless, both native Gal-1 and rGal-1 preparations are susceptible to oxidative inactivation; and when concentrations decline to <7 μM, dimeric forms of Gal-1 spontaneously dissociate into monomers with limited binding capacity and functional activity (20). Conversely, Gal-1 can aberrantly oligomerize through disulfide bonding, which also limits its function (22). Reducing agents, such as DTT and 2-ME, are routinely added to confer resistance to oxidative inactivation to avert structural decomposition and functional inactivity. In fact, nearly all mechanistic data
on T cell death induction are produced by using these agents, which do sensitize cells to undergo Gal-1–mediated apoptosis (13). Recent reports described increased stability of iodoacetamide-alkylated rGal-1. However, although this preparation promotes PS exposure on human leukocytes in the absence of reducing agents, it does not cause morphologic changes in the nucleus or mitochondria, challenging the paradigm of Gal-1–mediated apoptosis on T cells (13, 14).

Considering the controversy surrounding Gal-1 stabilization approaches, how and to what extent Gal-1 regulates the immune system and induces effector leukocyte death at physiologic concentrations is unsettled (1, 4, 19). To help clarify mechanistic insights of Gal-1–Gal-1 ligand immunoregulatory activity, we produced and characterized a genetically engineered chimeric protein consisting of mouse Gal-1 fused to the Fc region of human IgG1 (Gal-1hFc). Because Gal-1 dimerization was facilitated and sustained through Ig homodimerization, Gal-1hFc was stable and functional at low micromolar concentrations, bound characteristic N-acetylgalactosamine moieties, bound leukocyte Gal-1 ligands in flow cytometric and immunohistochemical assays, recognized CD43 in Western blots of Th1 cell lysates, and triggered apoptosis in leukemic cells and in activated mouse and human Th1 and Th17 cell subsets, whereas augmenting levels of IL-4, IL-10, IL-13, CTLA-4, and programmed death (PD)-1 production in T cells. Moreover, analysis of activated T cell supernatants harvested from Gal-1hFc incubations on cytokine arrays showed that a number of anti-inflammatory molecules, including IL-1R antagonist (IL-1ra), IL-4, IL-10, IL-13, soluble ICAM-1 (sICAM-1), and tissue inhibitor of metalloproteinase (TIMP-1), were induced. Binding characterization of Gal-1hFc mutants containing substitutions in the AA-45 and/or AA-69 positions, validated the necessity of these residues for optimal functional activity. To examine Gal-1hFc effects in other effector leukocyte models, we found that granulocytes in inflamed joints of patients with rheumatoid arthritis (RA) were susceptible to Gal-1hFc–mediated cell death. In mice treated with a non-Fc receptor-binding isoform of Gal-1hFc, Gal-1hFc2, suppressed hapten mediated contact hypersensitivity, by increasing IL-4, IL-10, TGF-β, and CD25high/FoxP3+ T cells and reducing IFN-γ and IL-17–producing T cells. Importantly, Gal-1hFc and Gal-1hFc2 elicited its T cell skewing, cell death, and cytokine modulation without the use of chemical stabilization approaches. These data support the use of Gal-1hFc and its mutants as new glycobiochemical tools for dissecting the roles of Gal-1 ligands on various immune processes.

Materials and Methods
Cell lines, Abs, and chemicals
J558L, HL-60, Wehi-3, and PC-3 cells all from American Type Culture Collection (ATCC, Manassas, VA) were maintained in RPMI 1640/10% FBS/1% antibiotic-antimyotic (Invitrogen, Carlsbad, CA). Abs included anti-mouse Gal-1 (N16), anti-mouse β-actin and anti-human CD43 mAb (843C, Santa Cruz Biotechnology, Santa Cruz, CA); alkaline phosphatase (AP)-conjugated anti-human Fc and anti-goat IgG (Southern Biotech, Birmingham, AL); allopurinol-conjugated anti-human Fc (Jackson ImmunoResearch, West Grove, PA); anti-mouse CD43 mAb (1B11), biotin-conjugated anti-mouse CTLA-4 mAb, FITC-labeled anti-mouse CD4, CD25, and -ICOS mAbs and FITC-Annexin V; anti-human CD19 and -CD177 mAbs; PE-anti-FoxP3, anti-mouse IL-4, -IFN-γ, –IL-10, –IL-13, –IL-17, and allopurinol-CD1-Po-anti-mouse IL-13, -anti-human IL-13, and propidium iodide (PI; Biolegend, San Diego, CA). Goat Ig, mouse Ig, PE-anti-human CD3; allopurinol-anti-human CD3, –IL-10, and -FoxP3 mAbs; PerCP-conjugated anti-human CD8 mAb; PE-anti-human CD25, –TNF-α, and –IL-4 mAbs; FITC-labeled anti-mouse CD4, CD15, IFN-γ, and CD69 mAbs, and Alexa Fluor 647–conjugated anti-human IL-17 mAb (BD Biosciences, San Diego, CA); PE-labeled anti-human TGF-β and allopurinol-conjugated anti-mouse TGF-β mAb (R&D Systems, Minneapolis, MN). Mouse cytokine array and recombinant mouse Gal-1 were purchased from R&D Systems.

Production and purification of Gal-1hFc and its mutants
Mouse Gal-1 was PCR-cloned from C57BL/6 mouse spleenocyte cDNA using the following primers: forward 5′-GCAGCTTGGGCACCTGTC-CTTCGCTGTTGGTGC-3′, reverse 5′-CCGAGATCTCTTAAAGCCG-CTCCATTATCTTT-3′. The PCR product and pFUSE-hlgG1-Fc1 plasmid encoding the Zn(II)sequestering gene (InvivoGen, San Diego, CA) were digested with Xhol and BglIII (New England BioLabs, Ipswich, MA). PCR product was ligated in-frame using the Rapid DNA Ligation Kit (Roche Applied Science, Indianapolis, IN), and resultant plasmid was transformed into DH5α competent cells (Invitrogen) selected on Zeocin plates (InvivoGen). Mouse Gal-1 insert was confirmed by restriction enzyme digestion and DNA sequencing at the Brigham and Women’s Hospital High Throughput Sequencing Facility. J558L murine plasma cytoma cells were transfected using Lipofectamine 2000 and selected with Zeocin (400 μg/ml) for 10 d. Gal-1hFc expression was then examined by RT-PCR and by immunoblotting for Gal-1 and hFc in cell lysates.

Transfected cells were grown in RPMI 1640/10% FBS until a concentration of 1 × 10^6 cells/ml was reached. Cells were then washed with cold PBS and resuspended in OPTI-MEM medium supplemented with 1% penicillin/streptomycin (Invitrogen, Carlsbad, CA). Abs included anti-CD3, -CD4, -CD15, -IFN-γ, –IL-13, –IL-10, –IL-17, and allophycocyanin PD-1 mAbs, anti-human IL-13, and propidium iodide (PI; Biolegend, San Diego, CA). Goat Ig, mouse Ig, PE-anti-human CD3; allopurinol-anti-human CD3, –IL-10, and -FoxP3 mAbs; PerCP-conjugated anti-human CD8 mAb; PE-anti-human CD25, –TNF-α, and –IL-4 mAbs; FITC-labeled anti-mouse CD4, CD15, IFN-γ, and CD69 mAbs, and Alexa Fluor 647–conjugated anti-human IL-17 mAb (BD Biosciences, San Diego, CA); PE-labeled anti-human TGF-β and allopurinol-conjugated anti-mouse TGF-β mAb (R&D Systems, Minneapolis, MN). Mouse cytokine array and recombinant mouse Gal-1 were purchased from R&D Systems.

Characterizing carbohydrate-binding specificity of Gal-1hFc
Carbohydrate-binding profiles of Gal-1hFc were performed by the Core H of Consortium for Functional Glycomics using a printed glycan microarray of 442 elements as previously described (23). In brief, Gal-1hFc (200 μg/ml) or control hFc (200 μg/ml) in binding buffer (1% BSA, 150 mM NaCl, 2 mM CaCl₂, 2 mM MgCl₂, 0.05% Tween 20, and 20 mM Tris-HCL; pH 7.4) was incubated for 1 h at room temperature (RT) on the printed glycan array (Version 4.0) followed by a 1-h incubation with allopurinol-conjugated goat F(ab')₂, anti-human Fe (5 μg/ml). After washing to remove excess reagents, the slides were dried and scanned at an excitation wavelength of 633 nm to detect the allopurinol-cyanin fluorophore. The array is composed of glycomics printed in replicates of 6, and relative fluorescence was reported as the average of 4 after removal of the highest and lowest point from each set of six replicates. Mean fluorescence intensities of Gal-1hFc binding for each glycan tested were normalized by dividing Gal-1hFc–binding intensities by hFc-binding intensities and graphically represented as mean fold difference. Glycan-binding intensities with standard deviations greater than relative fluorescence unit were not considered. Raw data can be accessed online at: http://www.functionalglycomics.org/glycomics/HServlet?operation=view&sideMenu=no&psId=primscreen_2707.

Gal-1hFc–binding assays
Cells (1 × 10^6) previously incubated were incubated at 4°C for 45 min with Gal-1hFc or mutants (all at 20 μg/ml) in the presence or absence of diethyl pyrocarbonate-treated water. Moloney Murine Leukemia Virus Reverse Transcriptase kit, Platinum PCR SuperMix High Fidelity, DTT, FBS, Zeocin, OPTI-MEM, Lipofectamine 2000, protein-G agarose, GeneTailor Site-Directed Mutagenesis kit were from Invitrogen.

AUTHENTICATING GALECTIN-1 LIGAND FUNCTION IN IMMUNITY

4660
50 mM lactose or sucrose. Then cells were incubated for 30 min at 4°C with allopurinol-conjugated goat F(ab′)2 anti-human Fc and analyzed by flow cytometry in a FACSCanto (BD Biosciences) and then using FlowJo 8.1 (Tree Star, Ashland, OR).

Polarization of mouse Th cells

Naive CD4+ T cells (CD62L+CD44+) were isolated from 6-wk-old C57BL/6 mice, as previously described (4), CD43-deficient C57BL/6 mice were generously provided by Dr. Hermann Zilkenier (University of British Columbia, Vancouver, British Columbia, Canada). In brief, cells were resuspended (1.5 × 10^6 cells/ml) and stimulated for 48 h with plate-bound anti-CD3 mAb (5 μg/ml) and soluble anti-CD28 mAb (1 μg/ml). For Th1 polarization, 10 ng/ml IL-12 and 40 U/ml anti–IL-4 mAb were added; for Th2 polarization, 20 ng/ml IL-4, 2 μg/ml anti–IL-12 mAb, and 25 U/ml IL-2 were added; for Th17 polarization, 20 ng/ml IL-6, 10 ng/ml IL-23, 5 ng/ml TGF-β1, 1 μg/ml anti–IFN-γ mAb, 10 μg/ml anti–IL-4 mAb, and 10 μg/ml anti–IL-2 mAb were added. Th1 and Th2 cells were expanded with RPMI-1640 supplemented with 25 U/ml IL-2, and Th17 cells were expanded with 10 ng/ml IL-23 for 4 additional days. All cytokines and Abs were purchased from BD Biosciences.

Western blotting and immunoprecipitation

Cell lysates from naive mouse CD4+ T cells, ex vivo-polarized Th1 cells, ex vivo-polarized Th1 cells from CD43-deficient mice or KG1a cells, and anti–CD43 mAb (843C) or isotype control (mouse IgG) immunoprecipitates were separated by reducing 4–20% SDS-PAGE gradient gels and transferred to immunoblot membrane (Bio-Rad, Hercules, CA). After a 1-h blocking step with 100% PBS at RT, membranes were incubated overnight with 10 μg/ml Gal-1hFc in TBS at 4°C, washed three times, incubated 30 min with AP–anti-human Fc, extensive washing and development with Western Blue (Promega, Madison, WI). Alternatively, blots containing mouse T cell lysates were probed with anti-CD43 (B11) or anti–β-actin mAbs and then with respective AP-secondary Ab and developed with Western Blue. For CD43 immunoprecipitation, 300 μg precleared KG1a lysate was incubated with 2 μg anti-human CD43 (843C) Ab or isotype control Ab and 30 μl protein-G agarose for 2 h on a rotator at 4°C, as previously described (24).

In vivo T cell activation and induction of hapten-dependent contact hypersensitivity

Shaved abdomens of 6-wk-old C57BL/6 mice were painted on days 0 and 1 with 25 μl 0.5% 2,4-dinitro-1-fluorobenzene (DNFB) or with 1% oxazolone (Sigma) in a 4:1 acetone/olive oil vehicle. To assess T cell activation during the afferent phase, we harvested draining inguinal lymph nodes (LNs) on day 3, minced with frosted slides, and cells were stained with Gal-1hFc (± 50 mM lactose) and Abs to CD4 and CD69, and analyzed by flow cytometry. In vivo treatments with Gal-1hFc, a Gal-1hFc mutant that does not bind Fc receptor, though binds equally well to Gal-1 ligands as Gal-1hFc, were administered i.p. at 2.5 mg/kg on days 2, 4, and 5. Mice were alternatively treated with human Fc at an identical dose, which served as a control treatment. Hapten-induced inflammation was then induced on day 5 by challenging mice with 10 μl 0.25% DNFB or 0.5% oxazolone on both sides of the right ear, and as a negative inflammatory control, mice received 10 μl vehicle alone on both sides of the left ear. Ear swelling responses were determined by calculating the difference in ear thickness between days 5 and 6. To assess T cell cytokine levels, we harvested Ag-draining inguinal LNs and minced with frosted slides; then lymphocytes were activated with PMA/ionomycin in the presence of brefeldin A for 6 h, stained for surface markers or intracellular cytokines, and analyzed by flow cytometry. After a 24-h challenge, ears were harvested, fixed in 10% formalin, embedded in paraffin, sectioned, and stained with H&E.

Mouse T cell cytokine analysis

Naive CD4+ T cells (CD62L+CD44+) isolated from 6-wk-old C57BL/6 mouse spleens by immunomagnetic bead technology (Miltenyi Biotech, Auburn, CA) were polarized into Th1, Th2, Th17 subsets, as previously described (4). CD43-deficient C57BL/6 mice were generously provided by Dr. Hermann Zilkenier (University of British Columbia, Vancouver, British Columbia, Canada). In brief, cells were resuspended (1.5 × 10^6 cells/ml) and stimulated for 48 h with plate-bound anti-CD3 mAb (5 μg/ml) and soluble anti-CD28 mAb (1 μg/ml). For Th1 polarization, 10 ng/ml IL-12 and 40 U/ml anti–IL-4 mAb were added; for Th2 polarization, 20 ng/ml IL-4, 2 μg/ml anti–IL-12 mAb, and 25 U/ml IL-2 were added; for Th17 polarization, 20 ng/ml IL-6, 10 ng/ml IL-23, 5 ng/ml TGF-β1, 1 μg/ml anti–IFN-γ mAb, 10 μg/ml anti–IL-4 mAb, and 10 μg/ml anti–IL-2 mAb were added. Th1 and Th2 cells were expanded with RPMI-1640 supplemented with 25 U/ml IL-2, and Th17 cells were expanded with 10 ng/ml IL-23 for 4 additional days. All cytokines and Abs were purchased from BD Biosciences.

Cell death assays

Synovial fluid cells, HL-60 cells, or polarized mouse Th cell subsets (1.5 × 10^6 cells/ml) were incubated with Gal-1hFc at 10 or 100 μg/ml (±50 mM lactose) or with molecular controls for 12 or 24 h in RPMI 1640/10% FBS/1% penicillin/streptomycin. Apoptotic cells were identified by staining with the FITC-conjugated Annexin V and PI. Cell viability was also determined by trypan blue dye exclusion and forward/side scatter plots.

Real-time RT-PCR

Activated mouse Th cells were treated for 8 h with 0.25 μM Gal-1hFc or relevant controls. Total RNA extraction and cDNA conversion were performed as previously described (24). SYBR green PCR was performed using the following primers: GATA-3, forward 5′-GGTTGCAACGCCT-TATCGGA-3′, reverse 5′-ACCTGCTCCACTGCTTG-3′; IL-10, forward 5′-CTAACCCATAAATGAATGGGCAAG-3′, reverse 5′-CTCTCTTTGTCGGTGCCGCAGAC-3′; Tbet, forward 5′-GTCCATTTCTCCTGTCC-3′, reverse 5′-AGGCGAAGTACTCTGTTG-3′. Samples were analyzed in triplicate and normalized to β-actin expression.

Human skin-explant T cell cultures

Normal human skin discarded from cosmetic surgeries was cultured on cell coil three-dimensional growth matrices in the presence of IL-2 and IL-15 for 21 d, as previously described (25). T cells were harvested from the matrices, washed with cold PBS, and cultured in 24 h in the presence of Gal-1hFc (±50 mM lactose) or its molecular controls. Cells were stimulated with PMA/ionomycin and brefeldin A for 6 h before performing surface marker/cytokine/FoxP3 staining and FACS analysis.

Human synovial fluid and leukocyte analysis

Human knee synovial fluids were obtained as discarded material from patients with RA undergoing diagnostic or therapeutic arthrocentesis. RA was diagnosed by an American Board of Internal Medicine certified rheumatologist and/or by review of laboratory, radiologic, and clinic notes and by applying American College of Rheumatology classification criteria (26). All studies received Institutional Review Board approval. For FACS analyses and functional studies of cells contained in freshly collected RA synovial fluids, cells were washed in cold PBS, stained with trypan blue for cell death exclusion, adjusted to 1 × 10^6 cells/100 μl FACS buffer, incubated for 20 min in FcR-binding block, and then subsequently stained for surface markers and analyzed by flow cytometry.

Immunohistochemistry

For Gal-1hFc immunohistochemical analysis, we used Gal-1 ligand* Wehi-3 and HL-60 cells fixed in 10% formalin and embedded in paraffin as models. Four-micrometer sections were deparaffinized, rehydrated, and then subjected to Ag retrieval in 1 mM EDTA (pH 8.0) in a cloaking chamber for 2 min. Sections were then blocked in hydrogen peroxide and 10% PBS, and incubated for 24 h in the presence of Gal-1hFc (±50 mM lactose) or its molecular controls. Cells were stimulated with PMA/ionomycin and brefeldin A for 6 h before performing surface marker/cytokine/FoxP3 staining and FACS analysis.

Statistical analyses

Statistical significance was ascertained between groups using a paired t test.

Results

Gal-1hFc functions as an authentic Gal-1 ligand probe

Using chemical stabilization to help promote Gal-1 dimers from a monomer/dimer/oligomer equilibrium is critical in Gal-1 research. Incorporation of DTT in rGal-1 preparations could potentially bias cell death-related conclusions and even underestimate Gal-1’s effects on contact hypersensitivity. Inclusion of DTT in rGal-1 preparations could potentially bias cell death-related conclusions and even underestimate Gal-1’s effects on contact hypersensitivity. Inclusion of DTT in rGal-1 preparations could potentially bias cell death-related conclusions and even underestimate Gal-1’s effects on contact hypersensitivity.
position was substituted for a glycine (mGal-1hFc), and a histidine also important for carbohydrate-binding through the formation of hydrogen bonds in the 45th position was substituted for a leucine (dmGal-1hFc; Supplemental Fig. 1). Because J558L murine plasmacytoma cells are capable of producing greater amounts of ectopic fusion protein compared with CHO or HEK293 cells (27), J558L cells were transfected, drug-selected, subcloned, and assayed for Gal-1hFc expression by RT-PCR and Western blotting. Stable clones secreted a Gal-1hFc and mutant protein, which was isolated by protein G affinity chromatography and resolved at the predicted sizes of 40.7 and 81.4 kDa, under reducing and nonreducing conditions, respectively (Fig. 1A–C). To characterize specificity of glycan recognition, we assayed Gal-1hFc binding on printed glycan arrays containing 442 immobilized glycans with the assistance of Core H investigators of the Consortium for Functional Glycomics. Mean fluorescence intensities of Gal-1hFc binding were normalized by dividing Gal-1hFc fluorescence intensities by control hFc-binding intensities and graphed as mean fold difference. The top 20 normalized glycans are listed.

FIGURE 1. Construction and purification of Gal-1hFc and its mutants. A. Mouse Gal-1 cDNA containing native signal sequence (SS) or IL-2-SS was ligated in-frame into commercially available vector encoding the Fc region of IgG1 (pFUSE-Fc1) or the non-Fc receptor-binding mutant (pFUSE-Fc2), respectively. Purified plasmid DNA was transfected into J558L mouse plasmacytoma cells, drug selected and grown in serum-free medium. Gal-1hFc was purified by protein-G affinity chromatography. B. Schematic representation of Gal-1hFc in its reduced and nonreduced forms. C. Purified Gal-1hFc and its mutants were analyzed by SDS-PAGE and Western blotting with anti-human Fc or anti-mouse Gal-1 mAbs. D. Gal-1hFc or hFc was incubated on a covalent printed glycan array (version 4.0) developed by Core H investigators of the Consortium for Functional Glycomics. Mean fluorescence intensities of Gal-1hFc binding were normalized by dividing Gal-1hFc fluorescence intensities by control hFc-binding intensities and graphed as mean fold difference. The top 20 normalized glycans are listed.
Core H and the Consortium for Functional Glycomics. Because of the relative carbohydrate-binding properties of human IgG (28), we normalized Gal-1hFc binding to that of total human Fc. As expected, Gal-1hFc exhibited highest affinity for structures bearing type 1 (Galβ1,3) or type 2 (Galβ1,4) N-acetyllactosamine moieties (Fig. 1D). Interestingly, Gal-1hFc also bound sulfated lactosamine structures similar to a human Gal-1-lg chimeric molecule previously reported (23) and bound glycans containing α2,3 sialylated N-acetyllactosamine units as reported for a covalently linked dimeric Gal-1 preparation (29). Gal-1hFc also did not bind α2,6 sialylated structures, similar to rGal-1 forms tested and reported by Core H of the Consortium for Functional Glycomics.

To further validate Gal-1hFc–binding function, we performed binding assays using mouse and human hematopoietic cells and solid tumor cell lines. Gal-1hFc–bound mouse WEHI-3 and human HL-60 leukemic cell lines and binding were inhibited by 50 mM lactose, but not sucrose (Fig. 2A, 2C). Importantly, removal of terminal sialic acid residues by neuraminidase treatment enhanced WEHI-3 binding, whereas binding to human PC-3 prostate cancer cells overexpressing α1.3 fucosyltransferase 7 (30) was diminished compared with parental cells, validating published data on Gal-1 glycan-binding properties (29) (Fig. 2B). Binding of mGal-1hFc to HL-60 cells was diminished by ~50% (Fig. 2D) (31, 32), whereas dmGal-1hFc binding was completely abolished (Fig. 2D).

Although CD43 is a well-recognized Gal-1 ligand on human leukemic cell lines and human PBMCs (11, 33), it has yet to be validated on mouse Th cells. Using Gal-1hFc as a Gal-1 ligand probe, we incubated Western blots of whole-cell lysates from naive Th1 cell lysate or in naive Th lysate was not observed, indicating that CD43 is a putative Gal-1 ligand on Th1 cells (Fig. 2E). To confirm the absence of CD43 in CD43+ Th1 cell lysate or in naive Th lysate, we blotted the activated form of CD43 containing core-2 O-glycans with anti-CD43 mAb IB11 and found that core 2 O-glycan–bearing CD43 ranging from 120–140 kDa was expressed only in wt Th1 cell lysate (Fig. 2E). To validate reactivity of CD43 to Gal-1hFc, we immunoprecipitated a heavily glycosylated glycoform of CD43 from human leukemic KG1a cells and of CD43 to Gal-1hFc, we immunoprecipitated a heavily glycosylating activity (Fig. 2H).

We further probed Western blots of anti-CD43 or isotype control immunoprecipitated glycoform of CD43 from human leukemic KG1a cells and of CD43 to Gal-1hFc, we immunoprecipitated a heavily glycosylating activity (Fig. 2H).

Gal-1hFc induces cell death of human HL-60 leukemic cells

It is widely accepted that exogenous rGal-1 induces apoptosis on activated T cells and several hematopoietic cell lines after a short 4-h exposure (11). However, more recently, this paradigm has been challenged, arguing that DTT, a reducing agent commonly added to culture conditions to prevent rGal-1 oxidative inactivation during cell death assays, is itself able to induce apoptosis. Moreover, studies show that, although monomeric Gal-1 is unable to induce apoptosis, dimeric Gal-1 can induce transient PS exposure in leukocytes that is reversible on Gal-1 removal or oxidative inactivation of the carbohydrate-recognition domain after a short 4-h incubation (13, 35). Importantly, data suggest that activated human leukocytes are resistant to Gal-1–mediated PS exposure when no DTT is present, and that PS exposure does not lead to changes in the integrity of the plasma membrane, mitochondrial potential, or nuclei, a scenario referred to as preapreasis (14). To help clarify these conflicting data, we compared Gal-1hFc with rGal-1 efficacy on cell death induction using human HL-60 leukemic cells. Incubations were performed with 7 μM rGal-1 in the presence or absence of DTT, or with 2.5 μM Gal-1hFc for a period of 4 or 24 h. At 4 h, rGal-1 caused marked PS exposure, as evidenced by Annexin V positivity (or PS exposure), though PI staining was minimally increased (Fig. 3A, 3B). In contrast, inclusion of 80 μM DTT enhanced apoptotic potential, as PI positivity accompanied PS exposure (Fig. 3A, 3B). At 24 h, rGal-1 and DTT caused most HL-60 cells to exhibit Annexin V and PI positivity, whereas rGal-1 incubation alone did not further enhance, or even sustain, its proapoptotic potential. In contrast, Gal-1hFc alone induced both PS exposure and PI uptake in as early as 4 h and was sustained and enhanced over a 24-h period in the absence of DTT (Fig. 3C, 3D). These effects were averted by addition of lactose or by using dmGal-1hFc. These results suggested that Gal-1hFc can engage cell surface ligands and trigger irreversible cell death.

Th1 and Th17 cells are susceptible to Gal-1hFc–mediated apoptosis

Proinflammatory Th1 and Th17 cell subsets share common glycan motifs, such as abundant asialo-core-1 O-glycans, together with small amounts of sialic acid α2,6-galactose residues on their surfaces (4). To determine whether Gal-1hFc can bind these Th subsets, we polarized mouse Th1, Th2, and Th17 subsets ex vivo, confirmed their identity by intracellular cytokine staining, and assayed for Gal-1hFc–binding activity. IFN-γ Th1 and IL-17 Th17 cells expressed high levels of Gal-1 ligands as determined by Gal-1hFc binding, whereas only a small percentage of IL-4 Th2 cells (5%) bound Gal-1hFc as previously described (Fig. 4A) (3). Furthermore, compared with hFc, incubating Gal-1hFc with Th1 and Th17 cell cultures for 24 h decreased their viability as observed by analysis of Annexin V staining and PI uptake in a dose-dependent manner (Fig. 4B, 4C). To the contrary, Th2 or Th1/Th17 cells incubated with dmGal-1hFc or Gal-1hFc with lactose were largely resistant to cell death (Fig. 4B, 4C). These cell death-inducing results with Gal-1hFc on Th1 and Th17 cells, and not on Th2 cells, parallel effects caused by rGal-1 (4).

Gal-1hFc induces T cell immunomodulatory molecules and alters T cell differentiation

Typically, when investigating proapoptotic effects, high concentrations of Gal-1 (>7 μM) with DTT are needed to ensure dimerization and a functional lectin domain. Although DTT helps prevent intramolecular disulfide bond formation and retain carbohydrate-binding activity, they may favor monomer formation, which are significantly less avid than native homodimers. This
biochemical relationship could, therefore, undermine Gal-1’s effects on other non–death-related pathways at lower, more physiologic concentrations. Some insights on Gal-1–related cytokine modulation have been gleaned from studies of the pathophysiology of Hodgkin’s lymphoma, and from using mouse models of autoimmune diseases wherein rGal-1 treatment upregulates Th2 cytokines and IL-10 (15, 16). Similarly, studies using a leucine zipper-based Gal-1 homodimer showed 100-fold more secreted IL-10 than rGal-1 when incubated with human PBMCs (17, 36).

To expand on Gal-1–induced upregulation of IL-10, we investigated Gal-1hFc effects on a number of cytokines and immunomodulatory molecules in mouse and human T cells. At 10-fold less Gal-1hFc (0.25 μM) used in death assays, activated mouse Th cells still avidly bound Gal-1hFc, and naive T cells did not (Supplemental Fig. 2A). Using this concentration of Gal-1hFc, we activated sorted CD62L+CD44low naive CD4+ T cells (Supplemental Fig. 2B) with anti-CD3/CD28 mAb and incubated them for 24 h with Gal-1hFc. Lectin-binding controls, dmGal-1hFc, Gal-

![FIGURE 2. Carbohydrate-binding activity of Gal-1hFc and its mutants to hematopoietic and nonhematopoietic cells by flow cytometry, Western blotting, and immunohistochemistry. A, Gal-1hFc binding to Wehi-3 cells or cells treated with Vibrio cholerae sialidase (0.2 U/ml) for 30 min at 37°C was assessed in the presence or absence of 50 mM lactose. B, Gal-1hFc binding was assayed on PC-3 cells and on PC-3 α1,3 fucosyltransferase 7 (FT7) transfectants (24). C and D, Gal-1hFc, mGal-1hFc, and dmGal-1hFc binding to HL-60 cells was assayed in the presence or absence of 50 mM lactose or sucrose. E, Lysates (30 μg/lane) from naive Th cells or polarized Th1 cells isolated from wt or CD43−/− mice were subjected to reducing 4–20% SDS-PAGE gels, blotted with Gal-1hFc, anti-CD43 mAb (1B11), or anti–β-actin mAb and then with respective AP-secondary Ab. F, KG1a cell lysate (30 μg/lane) and anti-CD43 and isotype control immunoprecipitates from KG1a cells were separated by 4–20% reducing SDS-PAGE gradient gels and then blotted with Gal-hFc and AP–anti-hFc. G, Lymphocytes from LNs draining DNFB-sensitized or naive skin were analyzed by flow cytometry with Gal-1hFc, and anti-CD4 and -CD69 mAbs. Lactose (+ lac) was added to assay and washing buffers to control for carbohydrate-mediated binding. H, Sections of paraffin-embedded, formalin-fixed HL-60 or Wehi-3 cells were immunostained with 10 μg/ml Gal-1hFc or controls (hFc and dmGal-1hFc). Scale bars, 20 μm. Original magnification ×20. All data are representative of at least three experiments.]
1hFc with lactose, or hFc at equal concentrations were also used in this assay. Supernatants were collected and examined for the expression of 40 different cytokines and other immunologic molecules by immunoblotting (Supplemental Fig. 2C). Blots were scanned by OD, and signal levels were normalized to hFc staining levels. Results showed that Gal-1hFc triggered production/secretion of a number of immunoregulatory molecules, including IL-10, IL-1ra, sICAM-1, Th2 cytokines IL-4 and IL-13, chemokines CXCL-10 and RANTES, and anti-invasion molecule TIMP-1 in a Gal-1–dependent manner (Fig. 5A, 5B). Similarly, validation by intracellular cytokine analysis showed that Gal-1hFc enhanced expression of IL-4, IL-10, and IL-13 with little effect on IFN-γ and IL-17 production (Fig. 5C, 5D). Experiments were performed in parallel using (0.7 mM) rGal-1 with or without DTT or lactose and showed that rGal-1 did not significantly upregulate the expression of similar cytokines compared with Gal-1hFc (p < 0.01; Fig. 5E, Supplemental Fig. 2D).

To determine whether Gal-1hFc’s effect on T cell polarization was maintained longer than 24 h, we assayed IL-4, IL-10, and IFN-γ production from Gal-1hFc–treated Th0 cells after 24 and 48 h. Indeed, levels of IL-4+ and IL-10+ cells were nearly doubled, whereas the number of IFN-γ–producing cells was decreased (Fig. 6A). Likewise, mRNA levels of IL-4–transcription activator, GATA-3, of IL-10 and of transcriptional activator in IFN-γ+ T cells, T-bet, changed accordingly after Gal-1hFc treatment (Fig. 6B), confirming that cytokines were synthesized de novo, and that Gal-1hFc can help polarize Th cells. Importantly, at this concentration of Gal-1hFc, expression differences were not attributed to selective apoptosis on Th1 cells in which Gal-1hFc was used at a 10-fold higher concentration (Fig. 4C).

Gal-1hFc induces overexpression of CTLA-4, PD-1, and CD25 in Th cells

Earlier studies describe a parallel increase in Gal-1 expression and PD-1 and its ligand during the peak and recovery phases of experimental induced encephalomyelitis (1). Similarly, other studies indicate a possible synergistic and coordinated effect between molecules that turn off T cell effector functions and Gal-1 (37). To explore a possible role of Gal-1 in expression of immunoregulatory members of the CD28 family, we analyzed the expression of surface CTLA-4, PD-1, and ICOS in ex vivo-activated mouse T cell cultures after a 24-h incubation with 0.25 mM Gal-1hFc. Interestingly, Gal-1hFc upregulated the expression of CTLA-4 and PD-1 in a carbohydrate-dependent manner, as evidenced by its suppression after inclusion of 50 mM lactose (Fig. 6C, 6D). Expression of ICOS after Gal-1hFc treatment remained unaltered. Although CTLA-4 and PD-1 are associated with the phenotype and function of Tregs (38–40), we found that the levels of CD25high/FoxP3+ cells were relatively unchanged (Fig. 6C, 6E). However, most Gal-1hFc–treated cells showed high levels of CD25 compared with cells from control treatments (Fig. 6D).

Skin-resident human T cell cytokine profile is modified by Gal-1hFc

To further explore Gal-1hFc–mediated IL-10 secretion and its potential of skewing T cell differentiation toward a Th2 profile, we studied Gal-1hFc effects on human skin-resident memory T cells. Using human skin-explant cultures of skin-resident memory T cells (CD45RO+, CCR7−, cutaneous lymphocyte Ag [CLA−]) (25), we incubated Gal-1hFc for 24 h and analyzed cytokine levels by intracellular staining. This cell model characteristically produces
high numbers of TNF-α+/IL-17+ T cells (∼70%) and a relatively high presence of CD25high/FoxP3+ cells (25, 41). Similar to mouse T cell data, when incubated with low concentrations of Gal-1hFc, a greater percentage of human skin-resident memory T cells expressed IL-4 and IL-10 (Fig. 7A). In contrast, a dramatically lower number of IL-17–producing T cells was observed, whereas TNF-α or IFN-γ levels were largely unaffected (Fig. 7A). The number of CD25high/FoxP3+ Tregs did not appear to be altered (Fig. 7A).

Statistical analysis of data sets from six different donors showed the significance of Gal-1hFc induction of IL-4+ and IL-10+ T cells (p, 0.01) and downregulation of IL-17+ T cells (p, 0.01), indicating that Gal-1hFc can markedly affect cytokine production in human T cells (Fig. 7B).

Granulocytes infiltrating synovial fluid from patients with RA are susceptible to Gal-1hFc–mediated cell death

Because Gal-1 is a putative molecular regulator controlling the proliferation and viability of effector leukocytes, multiple researchers have tried to translate in vitro-generated data to experimental animal models of inflammatory diseases. Prior data using mouse models of inflammation shows that rGal-1 can suppress experimental type 1 diabetes, autoimmune encephalomyelitis, uveitis, Con A–induced hepatitis, and graft-versus-host disease (4, 16, 42–44). Of note, although T cells play an important role in the development of these disorders, relatively little is known about the anti-inflammatory properties of Gal-1 on other key cellular constituents, such as B cells and granulocytes. RA is an autoimmune disease that includes many different effector cell types, including B cells, neutrophils, monocytes/macrophages, and mast cells, which play key roles in both induction and maintenance of disease. To investigate Gal-1 efficacy as a putative anti-inflammatory agent in patients with RA, we assayed apoptotic induction properties of Gal-1hFc on freshly isolated leukocytes infiltrating synovial fluids of RA patients and incubated Gal-1hFc or control molecules. Infiltrates were freshly obtained and typically characterized by a moderate number of CD19+ B cells (12–20%) and abundant numbers of granulocytes (70–80%) as identified by surface expression of CD15 and neutrophils as identified by CD177 (Supplemental Fig. 3). We first assessed whether Gal-1hFc could bind inflamed leukocytic infiltrates. The majority of inflammatory infiltrates (70–80%) bound Gal-1hFc in a lactose-dependent manner and also expressed granulocytic marker, CD15 (Fig. 8A, B). For cell death analysis, leukocytic infiltrates were incubated for 12 or 24 h with Gal-1hFc or controls and assayed for trypan blue staining, Annexin V positivity, and PI uptake by flow cytometric analysis. Results showed that, compared with hFc incubations, a large percentage of cells incubated with Gal-1hFc underwent apoptosis as determined by Annexin V/PI positivity, and this apoptosis was inhibited by inclusion of lactose (Fig. 8C, 8D).
Gal-1hFc2 triggers immunomodulatory molecule production and helps alleviate hapten-mediated contact hypersensitivity

As shown in Fig. 2G, Gal-1hFc can bind activation-induced Gal-1 ligands on activated mouse T cells in LNs draining DNFB-sensitized skin. To study effects of Gal-1hFc on T cell development in vivo, we first developed a Gal-1hFc variant, Gal-1hFc2, which contains a mutated Fc region that prevents binding to Fc receptors and minimizes potential complement and Ab-dependent cytotoxicity, as previously reported (45, 46). Gal-1hFc2 retained identical morphologic and binding activity as Gal-1hFc (data not shown). To investigate Gal-1hFc2 anti-inflammatory efficacy, we used a model of hapten-mediated contact hypersensitivity, which consisted of

FIGURE 5. Gal-1hFc stimulates the secretion of immunoregulatory molecules and alters Th cell differentiation.

A, Naive Th cells were isolated by immunomagnetic beads from mouse spleens and activated for 48 h with anti-CD3/CD28, and further incubated for an additional 24 h with Gal-1hFc (±50 nM lactose), control hFc, or dmGal-1hFc. Supernatants were collected and analyzed for expression of 40 cytokines with a mouse cytokine panel array kit and quantified by OD, and mean densities were normalized to hFc-treated group. The complete list of cytokines and their spatial arrangement in the array are shown in Supplemental Fig. S2C.

B, Graphic representation of data from three experiments is shown as normalized mean fold difference. *Statistically significant difference compared with lactose control, p < 0.01.

C, Activated Th0 cells incubated with Gal-1hFc (0.25 μM) or controls for 24 h were stimulated with PMA/ionomycin in the presence of brefeldin A for 6 h and then stained with anti–IL-4, –IL-10, –IL-13, –IFN-γ, and –IL-17 mAbs, and analyzed by flow cytometry. D, Graphic representations of data from three experiments are shown. *Statistically significant difference compared with hFc control, p < 0.01.

E, Activated Th0 cells were incubated with 0.7 μM rGal-1 with or without 80 μM DTT (± lactose [Lac]) for 24 h, stimulated with PMA/ ionomycin in the presence of brefeldin A for 6 h, and then stained with anti–IL-4, –IL-10, –IL-13, –IFN-γ, and –IL-17 mAbs, and analyzed by flow cytometry. Data from three independent experiments are shown. *Statistically significant difference compared with rGal-1, p ≤ 0.01. Representative FACS plots are shown in Supplemental Fig. 2D.
oxazolone-sensitization on the abdomen on days 0 and 1, and oxazolone (or vehicle alone) challenge on the ear on day 5. Gal-1hFc2 or hFc control (both at 2.3 mg/kg mouse) was administered to mice on days 2, 4, and 5. On day 5, baseline ear thickness measurements were calculated on the right ear or vehicle alone on the left ear. After 24 h, to assess inflammation, ear thickness was remeasured and a mean change in ear thickness was computed. In addition, ear skin was analyzed for leukocytic infiltrate, and lymphocytes were harvested from oxazolone-draining LNs, enumerated, and then analyzed for cytokine expression. Gal-1hFc2–treated mice exhibited a significantly lower level of lymphocytes in draining LNs compared with hFc-treated mice ($p < 0.01$, Fig. 9A). Of note, nondraining LNs had similar cell numbers in both groups (data not shown). Flow cytometric analysis showed that lymphocytes from Gal-1hFc2–treated mice exhibited increased levels of IL-4, IL-10, and TGF-$
abla$ cells, and lower levels of IFN-$
abla$ and IL-17$^+$ cells (Fig. 9B). Of note, the percentage of CD25$^+$FoxP3$^+$ cells was increased two-fold in Gal-1hFc2–treated mice compared with the hFc-treatment control. Together with induction of T cell immunoregulatory cytokines, mononuclear and granulocytic infiltrates in inflamed skin

FIGURE 6. Gal-1hFc alters Th cell differentiation, cytokine production, and expression of regulatory surface molecules. A, Naive mouse Th cells activated with anti-CD3/28 were treated with 0.25 μM Gal-1hFc; and IL-4, IL-10, and IFN-$
\gamma$ for 24 or 48 h were assessed by intracellular cytokine FACS staining. B, Transcriptional activity of GATA-3, IL-10, and T-bet mRNA was analyzed 8 h after incubation with Gal-1hFc by quantitative RT-PCR. Data are expressed as relative mRNA levels normalized to hFc treatment. *Statistically significant difference compared with hFc control, $p \leq 0.01$. C, Naive mouse Th cells activated with anti-CD3/28 were incubated for 24 h with 0.25 μM hFc or Gal-1hFc (± 50 mM lactose), or stained with anti–CTLA-4, -PD-1, -ICOS, and -CD25 mAbs, and analyzed by flow cytometry. D, Graphic representation of data from three independent experiments. *Statistically significant difference compared with hFc control, $p \leq 0.01$.

4668 AUTHENTICATING GALECTIN-1 LIGAND FUNCTION IN IMMUNITY
were markedly decreased (Fig. 9C), and change in ear thickness was significantly abrogated in Gal-1hFc2–treated mice compared with that in vehicle-alone–challenged ears (Fig. 9D).

Discussion

Gal-1 is a β-galactoside–binding S-type lectin that contains numerous cysteine residues capable of forming intramolecular and intermolecular disulfide bonds (22). This has necessitated the use of reducing agents, alkylation, or fixation approaches to preserve the functionality of the carbohydrate-recognition domain (21, 35, 47, 48). Reducing agents can directly induce cell death and also promote the formation of less active Gal-1 monomers (29), whereas alkylation with iodoacetamide induces leukocyte PS exposure that does not progress to full apoptosis, calling into question its ability to cause death (5, 13). It has also been difficult to study other immune-modifying properties of Gal-1 in vitro because these studies require the use of lower, nonproapoptotic concentrations of Gal-1 that favor the formation of less active and avid monomers.

To help circumvent monomer/dimer equilibrium problems and help clarify Gal-1 effects on leukocyte cell death, cytokine modulation, and T cell subset skewing, we created a mouse Gal-1–human IgG1 Fc1 chimeric protein, Gal-1hFc. We also synthesized genetic mutants mGal-1hFc and dmGal-1hFc, whose lectin domains contained amino acid substitutions at positions 45 and/or 69, to help control for the carbohydrate-binding function of Gal-1hFc (48). Gal-1hFc persisted as a predominant homodimer even after 24 h at 37˚C and exhibited similar lectin properties as rGal-1 preparations. Importantly, probing Gal-1 ligands by flow cytometry, Western blotting or immunohistochemistry, triggering leukocytic apoptosis, and modulating cytokine secretion/production...
and T cell differentiation with Gal-1hFc were highly effective and not confounded by inclusion of reducing agents.

In cell-binding assays, Gal-1hFc exhibited characteristic Gal-1 ligand-binding activity, which was influenced by the presence of terminal α2,6 sialylation and α1,3 fucosylation. Gal-1hFc bound hallmark lactosamine-bearing glycans (18, 23) and recognized Gal-1 ligands on mouse and human hematopoietic cells, as well as on human nonhematopoietic cancer cells. Interestingly, we demonstrated that Gal-1 ligands were absent on naive LNs, though were highly expressed on activated CD4+ T cells in LNs draining Ag-sensitized skin. Moreover, Gal-1 ligands on mouse Th1 cells and on hematopoietic cell lines were detected with Gal-1hFc using Western blotting and immunohistochemical approaches, features not readily shown for other Gal-1 formulations. In fact, Western blotting experiments using Gal-1hFc and wt or CD43−/− Th1 cell lysates indicated that CD43 is a major Gal-1 ligand on Th1 cells. Collectively, Gal-1hFc and its mutants can be used in a number of leukocyte models and biochemical methodologies to analyze Gal-1 ligand expression and identity.

Expanding on its T cell death-inducing properties, we investigated Gal-1hFc’s effects on leukocytic infiltrates present in inflammatory synovial fluids from patients with RA. We found that most of these inflammatory leukocytes (94%) expressed Gal-1 ligands and granulocytic marker, CD15, and were susceptible to Gal-1hFc–mediated cell death. Notwithstanding Gal-1’s well-chronicled effects in dampening T cell-mediated autoimmune responses and transplant rejection (1, 16, 43, 44), we demonstrate that granulocytes also express Gal-1 ligands, and that engagement of these moieties triggers cell death. These results provide excitement for further investigation using Gal-1hFc as a potential anti-inflammatory therapeutic to eliminate Gal-1 ligand+/CD15+ granulocytic infiltrates that predominate in swollen joints.

At a 10-fold lower concentration (0.25 μM), we studied more subtle properties of Gal-1 binding that could result in the induction/suppression of cytokines, as well as expansion/retraction of specific Th cell subsets, independent of apoptosis. In mouse Th0 cell cultures, we found that Gal-1hFc and not rGal-1 significantly increased the production of IL-4, IL-10, and IL-17. These studies were conducted using sorted naive CD4+ T cells from C57BL-6 mice, a mouse strain innately prone to develop a Th1 phenotype (49). This Gal-1 Th2 skewing phenomenon, previously demonstrated in mouse models of autoimmunity and of cancer immune evasion (15, 16), has been, until now, difficult to replicate in vitro. Indeed, we heretofore showed that Gal-1 can directly skew Th cell subset differentiation of Th0 cells by upregulating IL-4 (GATA-3) and IL-10 expression at the mRNA and protein level without imparting cell death-inducing properties. Interestingly, although

![Figure 9](http://www.jimmunol.org/)

FIGURE 9. Galectin-1 human Ig chimera 2 (Gal-1hFc2) modulates cytokine production in T cells draining Ag-sensitized skin and alleviates Ag-dependent inflammation. A, Inguinal LNs draining oxazolone-sensitized skin from mice treated with hFc or Gal-1hFc2 (2.3 mg/kg) were harvested on day 6 after sensitization, minced, and analyzed for cellularity by trypan blue exclusion. Data are expressed as mean 10⁶ cells/LN (±SD). *Statistically significant difference compared with hFc control, p ≤ 0.01. B, Lymphocytes from inguinal LNs were then restimulated for 6 h with PMA/ionomycin/brefeldin A and analyzed for IL-4, IL-10, IL-17, IFN-γ, TGF-β, FoxP3, and CD25 expression by flow cytometry. C, Ears from mice treated with hFc or Gal-1hFc2 were fixed in 10% formalin and stained with H&E. Scale bars, 20 μM. Original magnification ×10; inset, original magnification ×40. D, Change in ear thickness was ascertained 24 h after vehicle alone or oxazolone challenge. All experiments were repeated three times and consisted of three mice per group. *Statistically significant difference compared with hFc-treated mice receiving oxazolone sensitization and challenge, p ≤ 0.01.
IFN-γ (T-bet) mRNA levels were depressed as early as 8 h after Gal-1hFc treatment in mouse Th0 cultures, a decrease at the protein level was still evident 40 h later. As a comparator, we also studied Gal-1hFc’s effect on cytokine production in human Th cells isolated from human skin (25, 41). These skin-resident Th cells, which contained a heterogeneous population rich in Th1, Th17, and FoxP3+ Tregs, were profoundly influenced by Gal-1hFc, as evidenced by significant increases in IL-4 and IL-10 production. Conversely, marked reductions in IL-17 production, although maintaining Treg numbers, suggested that Gal-1hFc can bias human skin T cells toward Th2 and tolerogenic (IL-10[high]) responses. These results indicate that Gal-1hFc may be useful in treating Th1- and Th17-mediated T cell inflammatory diseases of the skin, including psoriasis and cutaneous graft-versus-host disease.

To determine whether Gal-1hFc can trigger the formation/secrection of currently unappreciated immunoregulatory molecules, analysis of supernatants from Gal-1hFc–treated activated T cells showed that a number of molecules are secreted in a β-galactoside–dependent manner, including the IL-1ra and sICAM-1. Of interest, these two factors could synergize with increased IL-10 to augment anti-inflammatory properties of Gal-1. The significance of Gal-1hFc–mediated upregulation of TIMP-1, CXCL-9, and CXCL-10 is not clear and is currently under investigation. These studies do confirm, however, that Gal-1hFc directly enhances the production of Th2 cytokines and IL-10, making it a useful reagent for identifying immunoregulatory molecules elaborated by Gal-1 engagement and to study Gal-1 ligands necessary for conferring immunoregulatory activity.

Studies have recently suggested a potential relation between Gal-1 and other immunoregulatory molecules (1, 37). Our data highlight a potential role for Gal-1 in the upregulation of CD28 family surface molecules that are known to modulate T cell–mediated immune responses. Gal-1hFc enhanced the production of CTLA-4 and PD-1, two molecules that inhibit T cell stimulation and diminish inflammatory responses. In addition, surface expression of the IL-2R (CD25) is enhanced both in vitro and in vivo after Gal-1hFc treatment. Lastly, we demonstrate a direct influence of Gal-1 on the production of IL-10 from mouse and human CD4+ T cells. Importantly, these studies were conducted in the absence of dendritic cells, assuming that dendritic cells have previously been shown to produce IL-27 on Gal-1 engagement, which, in turn, acts on T cells to upregulate IL-10 levels (1). Although Gal-1–mediated upregulation of IL-10 production was previously described in human PBMCs using stable Gal-1 homodimers (17, 36), these studies are complicated by unknown percentages of baseline naive cells and by using 2 μM dimeric Gal-1 in the presence of 1.2 mM DTT for IL-10 induction analysis, which, at the same concentrations, causes cell death in 70% of MOLT4 T cells (17, 36). Our results showed that analyses of Gal-1–mediated cytokine expression and cell death can be attained at low (0.25 μM) and high (2.5 μM) levels of Gal-1hFc, respectively. To this end, our data suggested that Gal-1 can directly induce de novo synthesis of IL-10 from naive CD4+ T cells without inducing apoptosis of proinflammatory Th subsets or enhancing secretion of preformed cytokines from memory T cells.

Using an in vivo cutaneous model of T cell–dependent inflammation, we validated in vitro data on Gal-1hFc’s role in regulating T cell function by showing that Ag-dependent T cell activation was blunted, T cell subsets expressing IFN-γ and IL-17 were lowered, and T cell subsets expressing IL-4, IL-10, TGF-β, and FoxP3 were elevated in mice treated with a non-Fc receptor–binding variant, Gal-1hFc2. These T cell subset skewing effects prevented the expansion of activated proinflammatory T cells in Ag-draining LNs and attenuated leukocytic infiltration in Ag-challenged skin. These results provide rationale for using Gal-1hFc2 to help create an immunoregulatory environment and alter the intensity of Th1- or Th17-dependent inflammatory processes, such as psoriasis and autoimmunity.

Collectively, we show that Gal-1hFc and its mutants are powerful new tools for investigating Gal-1–Gal-1 ligand-mediated activities in the context of cellular immunity and inflammation. Because Gal-1hFc exhibits stable binding properties without ancillary stabilization procedures, we believe that a more accurate depiction of the immunoregulatory properties of Gal-1 not only on effector T cells, but on other leukocytes that express Gal-1 ligands. Importantly, compared with other enforced dimeric forms of Gal-1, such as the leucine zipper model, the Fc or Fc2 domain of Gal-1hFc/Gal-1hFc2 not only provides a versatile molecular probe for laboratory research, but often enhances potency, efficacy, and serum t½ in vivo (50–52), raising the prospect of using Gal-1hFc2 as an anti-inflammatory therapy.

Acknowledgments
We thank Dr. Vijay Kuchroo (Brigham and Women’s Hospital) and Dr. David Smith (Emory University School of Medicine) for helpful discussions.

Disclosures
C.J.D., F.C.-L., and S.R.B. are coinventors on a pending patent application that covers the subject matter of the manuscript.

References
26. Arnett, F. C., S. M. Edworthy, D. A. Bloch, D. J. McShane, J. F. Fries,
25. Clark, R. A., B. F. Chong, N. Mirchandani, K. Yamanaka, G. F. Murphy,
18. Stowell, S. R., Y. Qian, S. Karmakar, N. S. Koyama, M. Dias-Baruffi, H. Leffler,
17. van der Leij, J., A. van den Berg, T. Blokzijl, G. Harms, H. van Goot, P. Zwers,
4. Clark, R. A., and T. S. Kupper. 2007. IL-15 and dermal fibroblasts induce pro-
Supplemental Figure Legends

Figure S1. Mutant and double mutant non-binding forms of Gal-1hFc were made by PCR direct site mutagenesis and ligated in-frame into pFUSE-Fc1.

Figure S2. (A) Naïve CD4⁺ T cells (CD62⁺/CD44low) were isolated by immunomagnetic beads from mouse spleens and activated for 72h with anti-CD3/CD28. Gal-1hFc-binding was assayed on naïve and activated Th cells. (B) Representative plots assessing purity of sorted naïve CD4⁺ T cells. (C) List of analyzed cytokines and their spatial arrangement in the cytokine array. (D) Activated Th0 cells were incubated with 0.7μM rGal-1 in the presence or absence of DTT (+/- Lactose) for 24h and the expression of IL-4, IL-10, IL-13, IFN-γ, and IL-17 was analyzed by intracellular cytokine FACS staining. Representative experiment is shown.

Figure S3. Infiltrates of synovial fluids from patients with RA were analyzed for CD19, CD15 and CD177 by flow cytometry. Unstained controls are shown in gray.
Figure S1

Gal-1
MACGLVASNLNLKPGECLKVRGEVASDAKSVLNLGKDSNNLCLHFNPRFNANHDANTIVONTKEDGTmgEHPFQPGSITEVCITFDOQADLTIKLPDGHEFKFPNRLMEAINYMAADGDFKIKCVAFE

mGal-1
MACGLVASNLNLKPGECLKVRGEVASDAKSVLNLGKDSNNLCLHFNPRFNANHDANTIVONTKEDGTGmgEHPFQPGSITEVCITFDOQADLTIKLPDGHEFKFPNRLMEAINYMAADGDFKIKCVAFE

dmGal-1
MACGLVASNLNLKPGECLKVRGEVASDAKSVLNLGKDSNNLCLLFPNPRFNANHDANTIVONTKEDGTGmgEHPFQPGSITEVCITFDOQADLTIKLPDGHEFKFPNRLMEAINYMAADGDFKIKCVAFE
Figure S2A-D

A. Counts

B. CD62L

C. Coordinate Target/Control

D. Target/Control

Coordinate Target/Control Coordinate Target/Control Coordinate Target/Control
A1, A2 Positive Control C17, C18 IL-16 CD4
A23, A24 Positive Control C19, C20 IL-17 CD4
B1, B2 CXCL13/BCA-1 C21, C22 IL-23 CD4
B3, B4 C5A C23, C24 IL-27 CD4
B5, B6 G-CSF D1, D2 CXCL10 CD4
B7, B8 GM-CSF D3, D4 CXCL11 CD4
B9, B10 CCL1 D5, D6 KC CD4
B11, B12 Eotaxin D7, D8 M-CSF CD4
B13, B14 sICAM-1 D9, D10 MCP-1 CD4
B15, B16 IFN-γ D11, D12 CCL12 CD4
B17, B18 IL-1α D13, D14 CXCL9 CD4
B19, B20 IL-1β D15, D16 MIP-1α CD4
B21, B22 IL-1ra D17, D18 MIP-1β CD4
B23, B24 IL-2 D19, D20 MIP-2 CD4
C1, C2 IL-3 D21, D22 RANTES CD4
C3, C4 IL-4 D23, D24 CXCL12 CD4
C5, C6 IL-5 E1, E2 TARC CD4
C7, C8 IL-6 E3, E4 TIMP-1 CD4
C9, C10 IL-7 E5, E6 TNF-α CD4
C11, C12 IL-10 E7, E8 TREM-1 CD4
C13, C14 IL-13 F1, F2 Positive Control CD4
C15, C16 IL-12 p70 F23, F24 PBS (Neg Control)
Figure S3

Counts

CD19
12.4

CD15
76.1

CD177
59.7