Correction: A Distinct Subset of Proinflammatory Neutrophils Isolated from Patients with Systemic Lupus Erythematosus Induces Vascular Damage and Synthesizes Type I IFNs

Michael F. Denny, Srilakshmi Yalavarthi, Wenpu Zhao, Seth G. Thacker, Marc Anderson, Ashley R. Sandy, W. Joseph McCune and Mariana J. Kaplan

J Immunol 2010; 185:3779;
doi: 10.4049/jimmunol.1090082
http://www.jimmunol.org/content/185/6/3779
Corrections

In Fig. 1B, the y-axis was incorrectly labeled. The correct y-axis label should denote CD86, not CD14. The correct figure is shown below. The figure legend is correct as published but is shown below for reference.

FIGURE 1. Identification of LDGs in lupus PBMC fractions. Healthy control or SLE PBMCs were stained for markers of the monocyte or granulocyte lineages and analyzed by FACS. A, Gates that contained predominantly lymphocytes, monocytes, and granulocytes were established in dual-log scattergrams. Granulocytes (blue) and monocytes (pink) are distinguished based on CD14, CD15, CD86, and MHC class II expression. Monocytes express high levels of CD14 and are positive for CD86 and MHC class II, whereas CD15 is weak or absent. Granulocytes present in the PBMC fraction are CD15hi, CD14lo, and negative for CD86 and MHC class II. Similar results were seen in two additional controls and five additional SLE patients. B, Analysis of CD86 and CD16 revealed several subpopulations. Most healthy control monocytes display the resting phenotype of CD86⁺CD16⁻ (light blue), whereas SLE monocytes have the more activated phenotype of CD86⁺CD16⁺ (blue). The CD16⁺ cells can be divided based on CD86 expression. The CD16⁺/CD86⁺ pool (yellow) likely represents LDGs, whereas the CD16⁺/CD86⁺ population (pink) possibly reflects conjugates of CD16⁺ granulocytes and CD86⁺ monocytes.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.1090082