Internalization and Coreceptor Expression Are Critical for TLR2-Mediated Recognition of Lipoteichoic Acid in Human Peripheral Blood

Sebastian Bunk, Stefanie Sigel, Daniela Metzdorf, Omar Sharif, Kathy Triantafilou, Martha Triantafilou, Thomas Hartung, Sylvia Knapp and Sonja von Aulock

J Immunol 2010; 185:3708-3717; Prepublished online 16 August 2010; doi: 10.4049/jimmunol.0901660

http://www.jimmunol.org/content/185/6/3708
Internalization and Coreceptor Expression Are Critical for TLR2-Mediated Recognition of Lipoteichoic Acid in Human Peripheral Blood

Sebastian Bunk,* Stefanie Sigel,* Daniela Metzdorf,* Omar Sharif,† Kathy Triantafilou,§ Martha Triantafilou,§ Thomas Hartung,* Sylvia Knapp,† and Sonja von Aulock*⊥

Lipoteichoic acid (LTA), a ubiquitous cell wall component of Gram-positive bacteria, represents a potent immunostimulatory molecule. Because LTA of a mutant *Staphylococcus aureus* strain lacking lipoproteins (Δlgt-LTA) has been described to be immunobiologically inactive despite a lack of ascertained structural differences to wild-type LTA (wt-LTA), we investigated the functional requirements for the recognition of Δlgt-LTA by human peripheral blood cells. In this study, we demonstrate that Δlgt-LTA–induced immune activation critically depends on the immobilization of LTA and the presence of human serum components, which, to a lesser degree, was also observed for wt-LTA. Under experimental conditions allowing LTA-mediated stimulation, we found no differences between the immunostimulatory capacity of Δlgt-LTA and wt-LTA in human blood cells, arguing for a limited contribution of possible lipoprotein contaminants to wt-LTA–mediated immune activation. In contrast to human blood cells, TLR2-transfected human embryonic kidney 293 cells could be activated only by wt-LTA, whereas activation of these cells by Δlgt-LTA required the additional expression of TLR6 and CD14, suggesting that activation of human embryonic kidney 293 cells expressing solely TLR2 is probably mediated by residual lipoproteins in wt-LTA. Notably, in human peripheral blood, LTA-specific IgG Abs are essential for Δlgt-LTA–mediated immune activation and appear to induce the phagocytic uptake of Δlgt-LTA via engagement of FcγRII. In this study, we have elucidated a novel mechanism of LTA-induced cytokine induction in human peripheral blood cells that involves uptake of LTA and subsequent intracellular recognition driven by TLR2, TLR6, and CD14. The Journal of Immunology, 2010, 185: 3708–3717.
of LTA preparations derived from a Δlgt deletion mutant *S. aureus* lacking palmitate-labeled lipoproteins compared with LTA from the respective wild-type (wt-LTA) strain. From this finding and from other observations, they concluded contaminating lipoproteins in the LTA preparations to be responsible for LTA-mediated immune activation (24–26). Contrary to the latter investigators (27), we found that LTA of a mutant *S. aureus* strain lacking lipoproteins (Δlgt-LTA) and wt-LTA were equipotent in inducing cytokine release from human whole blood. The major discrepancy in LTA activation capacity observed in the two groups both using human whole blood were puzzling and led us to comparatively investigate the specific requirements for Δlgt- and wt-LTA–mediated cytokine induction in human blood cells.

In this report, we describe that cytokine induction by Δlgt-LTA in human peripheral blood is critically dependent on surface immobilization of LTA and requires the presence of LTA-specific Abs as well as the phagocytic activity of blood cells. We further provide evidence that recognition of Δlgt-LTA requires the coexpression of TLR2, TLR6, and CD14. The results presented in this study not only confirm the equipotent immune activation by Δlgt- and wt-LTA in human whole blood observed previously (28), but also provide a conclusive explanation for contradictory findings obtained in previous experiments analyzing the immunostimulatory capacity of Δlgt-LTA.

Materials and Methods

Stimuli

LTA from *S. aureus* wt (SA 113 wt, wt-LTA) and mutant strain SA 113 Δlgt::ermB (SA 113 Δlgt lacking the lipoprotein diacylglycerol transferase, Δlgt-LTA; both strains were kind gifts from A. Peschel, University of Tübingen, Tübingen, Germany) was isolated by butanol extraction and hydroscopic interaction chromatography as described previously (21). For UV inactivation and subsequent whole blood stimulation, *S. aureus* SA 113 wt was cultivated in tryptic soy broth (BD Biosciences, Heidelberg, Germany) for 16 h at 37°C. Harvested bacteria were adjusted to 10⁷ CFU/ml and 1 ml/well was irradiated on ice (UV-Stratalinker, Stratagene, La Jolla, CA) with an energy density of 1 kJ/cm² (3 mJ/cm² × 300 s) for 5 min in a six-well cell culture plate (Greiner Bio-One, Frickenhausen, Germany). The inactivation was controlled by growth on blood agar plates (Columbia-blood agar, Hepta Diagnostika, Eppelheim, Germany) after 24 h at 37°C and 5% CO₂.

Other substances were LPS from *Salmonella enterica serovar abortus equi* and cytochalasin D from *Zygosporium masoni* (Sigma-Aldrich, Deisenhofen, Germany), polymyxin-polycylic acid (poly I/C; Invivogen, San Diego, CA), Pam3Cys-SK4 and Pam4Cys-SK4 (EMC Microcollections, Senningen, Germany), muramyl dipeptides (MDPs; Bachem, Heidelberg, Germany), human IgG Abs (Endobulin, Baxter, Wien, Austria), control IgG1 (Avastin, Roche, Grenzach-Wyhlen, Germany), and anti-IgG1 IgG (Papabixamin, Biosynexus, Gaithersburg, MD).

Human whole-blood incubation

Heparinized venous blood was obtained from healthy volunteers after informed consent. Differential blood cell counts were routinely determined with a Pentra 60 apparatus (ABX Diagnostics, Montpellier, France) to exclude acute infections. Blood was diluted 5-fold with RPMI 1640 (Lonza, Verviers, Belgium), and 500 μl was incubated in the presence of the different stimuli in polypropylene tubes (Eppendorf, Hamburg, Germany) overnight for 22 h at 37°C and 5% CO₂. For LTA immobilization, 50 μl wt-LTA, Δlgt-LTA in RPMI 1640 at different concentrations was pre-incubated in tubes for up to 1 h at room temperature before the addition of whole blood and RPMI 1640. In case of LTA immobilization, all other control stimuli, such as LPS or UV-inactivated S. aureus, were also pre-incubated before use for stimulation experiments. To assess the role of phagocytosis in LTA-mediated cytokine induction, diluted human whole blood was first pretreated with 3 μM cytochalasin D for 30 min in siliconized glass tubes (Vaccutainer, BD Biosciences) and then applied to the preincubated LTA. The ability of cytochalasin D to inhibit phagocytosis was controlled by stimulation with MDP, CpG, and poly I:C as well as with LPS and Pam3Cys-SK4, respectively. After 22 h, blood cells were suspended by gentle shaking and centrifuged at 400 × g for 2 min. The cell-free supernatants were stored at −80°C for cytokine determination.

Preparation and stimulation of human PBMCs and monocytes

PBMCs of healthy volunteers were prepared with CPT Cell Preparation Tubes (BD Biosciences). Postcentrifugation at 1600 × g for 20 min, PBMCs were collected and washed four times at 300 × g for 10 min with RPMI 1640 containing 2.5 U/ml Lipasein (Hoffmann-La Roche, Basel, Switzerland) to remove serum residues. For experiments employing isolated monocytes or monocyte-depleted PBMCs, PBMCs were isolated from heparinized human whole blood using Lymphoprep as described by the manufacturer (Axis-Shield, Oslo, Norway) and were washed free of serum as described above. Monocytes were isolated from PBMCs by positive or negative magnetic isolation (Miltenyi Biotec, Bergisch Gladbach, Germany). Briefly, PBMCs were incubated with biotinylated anti-CD14 Ab (positive selection) or with a mixture of biotinylated Abs against CD3, CD7, CD16, CD19, CD56, and CD123 (negative selection) for 10 min on ice. Then cells were incubated with magnetic bead-conjugated anti-biotin Abs for 15 min and applied onto MACS LS columns. In case of positive selection, PBMCs passing the column were collected as monocyte-depleted PBMCs, and the CD14⁺ monocytes were collected by eluting the bound cell fraction. In case of negatively selected monocytes, the cells passing the column without binding were collected. Prior to stimulation, PBMCs and monocytes were supplemented with 4% autologous serum unless stated otherwise. Serum-free PBMCs were used for stimulation either with or without addition of different concentrations of autologous serum, different human Abs, or IgG-depleted autologous serum. Stimulation of PBMCs or monocytes and the storage of supernatants were performed according to the conditions described for whole blood in a total volume of 220 μl. PBMCs were added at a density of 5 × 10⁵ cells/tube, and monocytes were used at a density corresponding to the monocyte count in PBMC samples. For FcγR blockade experiments, PBMCs were preincubated with neutralizing Abs against CD16 against CD16 (clone 3G8, BD Biosciences), CD32 (clone AT10, Abcam, Cambridge, U.K.), or CD54 (clone 10.1, eBioscience, Hatfield, U.K.) or with the respective isotype control mouse IgG1 Ab (eBioscience) for 30 min at 37°C pretreatment.

Stimulation of transfected human embryonic kidney 293 cells

Human embryonic kidney (HEK) 293 cells stably transfected either with human TLR2 alone or a combination of human TLR2, TLR6, and CD14 as well as wt HEK293 cells were seeded at 2 × 10⁵ cells/well in 24-well cell culture plates (BD Biosciences) in DMEM (Life Technologies Invitrogen, Darmstadt, Germany) supplemented with 10% FCS (Life Technologies Invitrogen) and 1% penicillin/streptomycin (Life Technologies Invitrogen). After 48 h, the medium was replaced by FCS-free medium containing different concentrations of wt-LTA, Δlgt-LTA, or Pam3Cys-SK4. Cell-free supernatants were collected 22 h poststimulation and stored at −80°C for ELISA experiments.

Fluorescence resonance energy transfer analysis

Fluorescence resonance energy transfer (FRET) is a noninvasive imaging technique used to determine molecular proximity based on nonradiative transfer of energy from the excited state of donor molecules to an appropriate acceptor (29). This energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor (30, 31). In this study, FRET was measured using a method as previously described (30, 31). Briefly, human monocytes on microchamber culture slides (Lab-tek, Nalge Nunc Technologies Immunomax, Södertälje, Sweden) were stimulated with lipopolysaccharide (LPS) Δlgt-LTA or left untreated and then were labeled with 100 μl mixture of donor (Cy3)- and acceptor (Cy5)-conjugated Ab. The cells were rinsed twice in PBS/0.02% BSA and fixed with 4% formaldehyde for 15 min to prevent potential protein reorganization. Cells were imaged on a Carl Zeiss LSM510 confocal microscope (with an Axiovert 200 fluorescent microscope; Zeiss, Oberkochen, Germany) using a 1.4 numerical aperture 63× oil immersion objective. The image processing and analysis was performed using the Zen software (Zeiss). Cy3 and Cy5 were detected using the appropriate filter sets. Using typical exposure times for image acquisition (<5 s), no fluorescence was observed from a Cy3-labeled specimen using the Cy5 filters, nor was Cy5 fluorescence detected using the Cy3 filter sets.

For calculation, the energy (E) transfer between donor- and acceptor-conjugated Abs was detected as an increase in donor fluorescence (Cy3 fluorescence) after complete photobleaching of the acceptor molecule and calculated according to the formula: E(%) = 100 × [Cy3 postbleach/Cy3 prebleach] / Cy3 postbleach. The scaling factor of 10,000 was used to expand E to the scale of the 12-bit images.
Identification of LTA-binding proteins

For the identification of LTA-interaction components from human serum, the wells of a six-well cell culture plate (Greiner Bio-One) were incubated with either 10 μg Δlgt-LTA/well or with only PBS overnight at 4°C and afterward washed twice with PBS. Then, 1 ml/well 5% human serum in PBS was added for 1 h at room temperature, again followed by two washing steps with PBS. Surface-bound proteins from six wells were pooled in a total volume of 100 μl PBS containing 1% SDS and analyzed by SDS-PAGE and silver staining. The two protein bands at 25 kDa and 50 kDa were identified using MALDI-TOF mass spectrometry at the core facility of the Biomedical Centre at the Ludwig-Maximilians-University Munich, Munich, Germany.

Depletion of IgG from human serum and Western blot

IgG was removed from human serum using Hitrap protein A columns (1 ml; GE Healthcare, Munich, Germany). According to the manufacturer’s protocol, 1 ml 50% serum in PBS was applied to the column, and the flow-through was collected. To decrease remaining IgG residues, three columns were connected in series. The removal of IgG was confirmed by Western blot analysis. IgG-depleted serum samples were applied to 12% SDS-PAGE and blotted to nitrocellulose membranes (Pall Corporation, Dreieich, Germany). IgG was detected by immunoblotting with HRP-conjugated polyclonal rabbit anti-human-IgG Abs (DakoCytomation, Glostrup, Denmark) and ECL detection using an LAS-3000 imaging system (Fujifilm, Tokyo, Japan).

Cytokine measurement

Cytokines released by human whole blood were measured by in-house sandwich ELISA based on commercially available pairs of Abs and standards. Ab pairs against human β form of pro–IL-1 (IL-1β) and IL-6 were purchased from R&D Systems (Minneapolis, MN) and against human TNF, IL-8, and IFN-γ from Endogen (Perbio Science, Bonn, Germany). Recombinant standards for IL-1β, IL-6, TNF, and IFN-γ were obtained from the National Institute for Biological Standards and Control, Hertfordshire, U.K., and rIL-8 was obtained from PeproTech (Tebu, Frankfurt, Germany). Assays were carried out in flat-bottom, ultrasorbent 96-well plates (MaxiSorp, Nunc, Wiesbaden, Germany). Binding of biotinylated secondary Ab was quantified using streptavidin-conjugated HRP (BioSource, Life Technologies Invitrogen), and tetramethylbenzidine substrate (Sigma-Aldrich) was used as substrate. The reaction was stopped with 1 M sulphuric acid, and the absorption was measured in an ELISA reader at 450 nm with a reference wavelength of 690 nm. Cytokine levels are given per milliliter of blood.

Determination of anti-LTA Ab serum titer

The amount of LTA-binding IgG was determined in human serum obtained from 57 healthy volunteers. Flat-bottom 96-well plates (MaxiSorp, Nunc) were coated overnight with 10 μg/ml Δlgt-LTA in PBS at 4°C. Then, wells were blocked with 200 μl 3% BSA in PBS for 2 h at room temperature and washed with PBS preaddition of 4% serum in PBS and further incubation for 1 h at room temperature. After washing, HRP-conjugated polyclonal rabbit anti-human-IgG Ab was added to each well for another 30 min. Enzymatic activity was detected with 3,3′,5,5′-tetramethylbenzidine substrate (Sigma-Aldrich) and stopped with 1 M sulphuric acid. The absorption was measured in an ELISA reader at 450 nm with a reference wavelength of 690 nm.

Statistics

Statistical analysis was performed using the GraphPad Prism 3 Program (GraphPad, San Diego, CA). Three or more groups of data were compared by repeated-measure ANOVA followed by Dunn’s posttest. For statistical analysis of two groups of data, the Mann-Whitney U test was used. In the figures, * and ** represent p values <0.05, <0.01 and <0.001, respectively.

Results

Immobilized but not soluble LTA of mutant Δlgt S. aureus induces cytokine release in human whole blood

There are conflicting reports concerning the immunostimulatory capacity of LTA isolated from Δlgt mutant S. aureus strain that lacks lipoproteins (24, 27, 28). Because we previously reported an increased immune activation by immobilized wt-LTA (32, 33), we analyzed whether immobilization also augments Δlgt-LTA-mediated immune activation. We determined the cytokine induction in human whole blood upon stimulation with Δlgt-LTA and wt-LTA, either used in an immobilized or nonimmobilized form. Immobilization was achieved by preincubating LTA in polypropylene tubes prior to the addition of diluted blood, whereas for nonimmobilizing conditions, LTA was directly added to the blood.

As shown in Fig. 1A, whole-blood stimulation with immobilized Δlgt-LTA led to a potent induction of IL-1β and TNF, which was comparable to wt-LTA and LPS (Fig. 1A). In contrast, without immobilization, the Δlgt-LTA–induced cytokine release from whole blood was fully abrogated, whereas LPS-mediated cytokine induction was unaffected. Notably, wt-LTA induced also cytokine release when used without prior immobilization, albeit at a significantly lower level.

To confirm that LTA does adhere to the polypropylene tubes, we analyzed the cytokine-inducing capacity of only the LTA bound during the immobilization procedure. For this, LTA was incubated in polypropylene tubes for 30 s, and the residual, unbound LTA in the supernatant was transferred to another tube and then incubated for 30 min, followed by another transfer and 30 min incubation, but without subsequent removal of the supernatant. Even postincubation in the vial for only 30 s, the bound Δlgt-LTA and wt-LTA were able to induce IL-1β and TNF, albeit in low amounts, which was strongly enhanced after 30 min preincubation. Interestingly, the cytokine-inducing capacity of bound LTA was not diminished in tubes incubated with supernatants from previous incubations (Fig. 1B). No decrease in cytokine induction by the LTA-containing supernatant was observed even when it was transferred up to six times (S. Siegel, D. Metzendorf, and S. Bunk, unpublished observations), indicating that only a small proportion of LTA binds to the tube, thereby enabling to induce cytokine release.

Δlgt-LTA–mediated cytokine release depends on the presence of monocytes and requires the expression of TLR6 and CD14 in addition to TLR2

To determine which type of blood cells respond to stimulation with Δlgt-LTA, we compared cytokine release from PBMCs, isolated monocytes, and monocyte-depleted PBMCs. Stimulation with Δlgt-LTA, wt-LTA, or LPS led to a comparable release of IL-1β and TNF from PBMCs and from monocytes obtained by negative isolation (Fig. 2A). Furthermore, PBMCs depleted of CD14-expressing monocytes showed strongly reduced cytokine induction, suggesting that monocytes represent the main Δlgt-LTA–responsive cell type in human peripheral blood. Interestingly, monocytes enriched with anti-CD14 Abs (positive isolation) showed markedly diminished cytokine production poststimulation with Δlgt-LTA but not wt-LTA or LPS, indicating a role for membrane-bound CD14 in the recognition of Δlgt-LTA.

LTA is believed to induce cytokines via TLR2 engagement, but recent studies demonstrated the inability of Δlgt-LTA to activate TLR2-transfected cells (24, 25, 27). To analyze if Δlgt-LTA engages TLR2 independent of its ability to activate cells, we employed FRET analysis to determine Δlgt-LTA–mediated recruitment of TLR2 to lipid rafts of human monocytes (34). For this purpose, we measured the increase in fluorescence intensity (dequenching) of Cy3-labeled donors, such as TLR2, TLR4, or MHC class I, after complete photobleaching of Cy5-labeled acceptors, such as the lipid raft markers CD14 or GM1 ganglioside. Following Δlgt-LTA incubation, increased donor fluorescence of TLR2 was observed after bleaching the acceptors CD14 or GM1, which was not observed for unstimulated monocytes (Table 1). In contrast, TLR4 and MHC class I showed unchanged donor fluo-
rescence in the presence of Δlgt-LTA, thus demonstrating that Δlgt-LTA specifically recruits TLR2 to the lipid raft. Comparable results were observed for wt-LTA, suggesting that both LTAs engage the TLR2 receptor. The important role of TLR2 in Δlgt-LTA and wt-LTA recognition was further confirmed in TLR2 knockout mice, which, upon stimulation with both LTAs, showed

FIGURE 1. Stimulation with immobilized but not soluble Δlgt-LTA induces cytokine release in human whole blood. Whole blood of healthy human donors was stimulated with S. aureus wt-LTA or Δlgt-LTA under immobilizing and nonimmobilizing conditions. As controls, stimulations were carried out with LPS or blood was left without stimulus (con). After 22 h, TNF and IL-1β release was measured in the cell-free supernatants by ELISA. Data are given as means ± SEM. A, Whole blood of different donors (n = 11) was stimulated in polypropylene tubes with 1 μg/ml and 10 μg/ml Δlgt-LTA, wt-LTA, or LPS, respectively. The stimuli were directly applied to the blood (soluble) or were coated for 1 h before blood was added allowing immobilization of stimuli (immobilized). For each stimulus, significant differences between the soluble and the immobilized form were analyzed by Mann-Whitney U test. B, A total of 10 μg/ml wt-LTA or Δlgt-LTA was immobilized by preincubation in polypropylene tubes for 30 s. Supernatants with unbound LTA were completely removed and transferred to another tube for 30 min, removed again, and incubated in the last tubes for 30 min without subsequent removal of the supernatant. Human whole blood of different donors (n = 8) was added directly postimmobilization and samples were incubated for 22 h before cytokine determination by ELISA. *p < 0.05; **p < 0.01; ***p < 0.001.

FIGURE 2. Δlgt-LTA mediates cytokine release by human monocytes and requires expression of TLR2, TLR6, and CD14. A, Human PBMC (CD14-depleted or nondepleted) or isolated monocytes (obtained by positive isolation employing anti-CD14 Abs or by negative isolation), for which the number was adjusted to the monocyte content of nondepleted PBMCs, were stimulated with 10 μg/ml immobilized Δlgt-LTA, wt-LTA, or LPS in the presence of 4% human autologous serum. After 22 h, the amount of released IL-1β and TNF was measured in the cell-free supernatants by ELISA. Data were obtained from six different healthy donors and are given as means ± SEM. B, wt HEK293 cells or HEK293 either stably transfected with TLR2, TLR2/CD14, or TLR2/TLR6/CD14 were stimulated with 1 μg/ml and 10 μg/ml of Δlgt-LTA, wt-LTA, or Pam3Cys, respectively, or left without stimulation. After 22 h, released IL-8 was determined by ELISA. Data representing five independent experiments (performed in duplicates or triplicates) are given as means ± SEM. For each HEK293 cell type, significant differences in the release of IL-8 between stimulated and nonstimulated conditions (control) were assessed by Kruskal-Wallis test followed by Dunn’s posttesting. #p < 0.05.
significantly reduced cytokine induction compared with wt-mice (Supplemental Fig. 1).

To determine the innate immune receptors required for recognition of Δlgt-LTA and wt-LTA, we analyzed the activation of HEK293 cells stably transfected with human TLR2, TLR2/CD14, or TLR2/TLR6/CD14. In line with previous reports (27), cells stably transfected with human TLR2, TLR2/CD14, or TLR2/TLR6/CD14 release poststimulation with wt-LTA or Pam 3Cys (Fig. 2). The activation of TLR2-HEK293, whereas these cells showed pronounced IL-1β and TNF release of IL-8 by TLR2/6/CD14-HEK293 cells upon stimulation with 10 μg/ml Δlgt-LTA. Interestingly, the simultaneous expression of TLR2, CD14, and TLR6 enabled HEK293 cells to effectively recognize Δlgt-LTA. We observed a significant release of IL-8 by TLR2/6/CD14-HEK293 cells upon stimulation with 10 μg/ml Δlgt-LTA. Whereas TLR6 expression was pivotal for Δlgt-LTA recognition, almost no effect was observed for Pam3Cys and wt-LTA, respectively. Notably, for HEK293 experiments, Δlgt-LTA could not be immobilized prestimulation, a circumstance that might have contributed to the lower potency of Δlgt-LTA compared with wt-LTA. As indicated for isolated monocytes, CD14 was also required for Δlgt-LTA recognition by HEK293 cells, because HEK293 cells transiently transfected with TLR2 and TLR6 did not respond to Δlgt-LTA in the absence of CD14 (data not shown). Taken together, these data demonstrate the important role of TLR2 and the coreceptors TLR6 as well as CD14 in the recognition of Δlgt-LTA by human immune cells.

Δlgt-LTA–induced cytokine release by human PBMCs is abrogated after cytochalasin D treatment and in the absence of human serum

Recognition of LTA was described to be amplified by CD36-mediated phagocytosis and by the presence of serum MBL, via a mechanism that requires intracellular uptake of LTA (18, 20). These findings prompted us to investigate the influence of phagocytosis and human serum components on LTA-induced cytokine release in human blood cells. Using cytochalasin D to inhibit phagocytic activity, we analyzed the cytokine-inducing capacity of Δlgt-LTA and wt-LTA in human whole blood. For control purposes, stimulations were carried out with different ligands known to activate immune receptors located either intracellular or extracellular. Surprisingly, in the presence of cytochalasin D, the induction of IL-1β and TNF by Δlgt-LTA was completely abrogated and in the case of wt-LTA strongly attenuated, which was also observed for the intracellular receptor ligands CpG and MDP as well as for poly I:C (Fig. 3A). In contrast, recognition of the extracellular TLR ligands LPS and Pam3Cys was not affected by cytochalasin D treatment, suggesting a pivotal role of phagocytosis for LTA-mediated cytokine induction. To investigate the role of serum components, we determined Δlgt-LTA– and wt-LTA–mediated cytokine release from serum-free PBMCs supplemented with increasing concentrations of autologous human serum. For immobilized but also nonimmobilized (not shown) Δlgt-LTA, we detected no cytokine release from PBMCs in the absence of human serum, which in case of immobilized Δlgt-LTA could be regained by the addition of autologous human serum (Fig. 3B). Already at concentrations of 1% serum, significant cytokine induction by Δlgt-LTA was observed. For wt-LTA, a comparable enhancement of cytokine release in the presence of human serum was found, but in contrast to Δlgt-LTA, wt-LTA was already able to induce cytokines under serum-free conditions, albeit at low amounts (Fig. 3B). The cytokine induction in PBMCs by Δlgt-LTA and wt-LTA peaked at a concentration of 4% serum, and the amounts of released IL-1β and TNF were comparable between both LTAs, underlining their equal immunostimulatory capacity.

Immobilized Δlgt-LTA interacts with apolipoprotein A1 and cationic Igs from human serum

To identify serum components that possibly interact with immobilized LTA resulting in immune activation, cell-culture plate wells pretreated with or without Δlgt-LTA were incubated with 4% serum from different human donors, and bound components were analyzed by SDS-PAGE. As shown for two exemplary donors in Fig. 4, the SDS-PAGE profiles of serum components derived from wells with immobilized Δlgt-LTA showed two abundant protein bands (25 kDa and 50 kDa) that were absent in serum samples obtained from control wells without LTA. The two protein bands were observed in the SDS-PAGE profiles of six tested donors, albeit the band intensity among these donors was slightly different (data not shown). Using tandem mass spectrometry analysis of peptides derived from the 25-kDa protein band, we identified two different human proteins (i.e., apolipoprotein A1 and Igκ L chain), whereas...
the analysis of the 50-kDa protein band revealed only the H chain of Ig (Table II). In addition to the complete Ig L chain sequences with a predicted molecular mass of 23 kDa, a Mascot database search also revealed highest identification scores for the variable domains of L chains derived from anti-DNA and anti-cardiolipin Abs. Interestingly, DNA and cardiolipin share putative epitopes consisting of phosphodiester groups separated by three adjacent carbon atoms together with the polyglycerolphosphate backbone of LTA (35), arguing for a specific interaction between the detected Abs and LTA.

LTA-specific IgG Abs augment Δlgt-LTA–mediated cytokine induction in PBMCs in a CD32-dependent manner

To analyze the influence of apolipoprotein A1 and specific Igs on the recognition of Δlgt-LTA, we performed supplementation experiments using serum-free PBMCs. The addition of up to 10 μg/ml apolipoprotein A1 was unable to restore cytokine release in serum-free PBMCs stimulated with immobilized Δlgt-LTA (data not shown). In contrast, stimulation of PBMCs supplemented with LTA-specific IgG1 Abs resulted in a marked release of TNF (Fig. 5A) and IL-1β (data not shown), which was not observed in the case of control IgG1 Abs. Despite this pronounced effect of LTA-specific Abs, their addition could not fully restore the Δlgt-LTA–induced cytokine secretion observed in PBMCs containing 4% serum. Furthermore, supplementation of PBMCs with human IgG Abs extracted from a large plasma pool of >1000 donors that should contain a certain amount of LTA-specific IgG Abs had no positive effect on Δlgt-LTA–mediated cytokine release in serum-free PBMCs, suggesting that additional serum components contribute to the recognition process of LTA. To further address the role of IgG Abs in Δlgt-LTA recognition, Δlgt-LTA–mediated cytokine release was analyzed in PBMCs containing either normal or IgG-depleted serum. As shown in Fig. 5B, the cytokine induction by Δlgt-LTA in PBMCs containing IgG-depleted serum was significantly reduced compared with normal serum supplementation. This reduction was found to be specific for LTA,
because LPS-mediated cytokine release was not affected by IgG depletion. We next determined the role of FcγRs in cytokine induction by Δlgt-LTA. PBMCs containing 4% serum were stimulated with Δlgt-LTA in the presence or absence of anti-human CD16, CD32, or CD64 blocking Abs or an isotype control Ab. As shown in Fig. 5, Δlgt-LTA–mediated release of IL-1β was fully abrogated in the presence of CD32 Abs, but only marginally or not affected by anti-CD16 or anti-CD64 Abs. Similar results were also observed for TNF release (data not shown). In contrast to Δlgt-LTA, none of the blocking Abs had an effect on LPS-mediated cytokine release (Fig. 6B). These data demonstrate the specific requirement of FcγRII (CD32) for Δlgt-LTA–mediated immune activation in human peripheral blood and thus support the pivotal role of LTA-specific Abs in this process.

The amount of LTA-specific serum IgG correlates with Δlgt-LTA– but not S. aureus-mediated immune activation in human whole blood

Immune recognition of whole *S. aureus* strongly depends on inter nalization of bacteria, because the decreased phagocytosis found in CD36-deficient mice or cytochalasin D-treated murine immune cells associates with attenuated or abrogated immune activation by *S. aureus* (18, 20). In the current study, we found that LTA-mediated cytokine induction is sensitive toward cytochalasin D treatment and requires LTA-specific Abs, suggesting an opsonization-dependent LTA uptake and recognition process that could also contribute to the recognition of whole *S. aureus* presenting LTA at their surface. To investigate this, we correlated LTA-specific IgG titers in the sera of different donors with the respective cytokine

<table>
<thead>
<tr>
<th>Sample</th>
<th>Accession Number</th>
<th>Protein</th>
<th>Tandem Mass Spectrometry Score</th>
<th>Peptides Matched</th>
<th>Molecular Mass (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25 kDa)</td>
<td>g190108664</td>
<td>Apolipoprotein A1</td>
<td>702</td>
<td>49</td>
<td>28.0</td>
</tr>
<tr>
<td></td>
<td>gi1407576</td>
<td>Ig L chain, V region (anti-DNA Ab)</td>
<td>369</td>
<td>13</td>
<td>11.9</td>
</tr>
<tr>
<td></td>
<td>gi15783820</td>
<td>Ig κ L chain, C and V region</td>
<td>313</td>
<td>10</td>
<td>23.0</td>
</tr>
<tr>
<td></td>
<td>gi18092618</td>
<td>Ig L chain, V region (anti-cardiolipin Ab)</td>
<td>236</td>
<td>7</td>
<td>11.9</td>
</tr>
<tr>
<td>2 (50 kDa)</td>
<td>gi34365168</td>
<td>Ig H chain</td>
<td>419</td>
<td>41</td>
<td>51.1</td>
</tr>
</tbody>
</table>

FIGURE 5. Δlgt-LTA–mediated cytokine release from human PBMCs depends on the presence of specific IgG Abs. Human serum-free PBMCs were stimulated with immobilized Δlgt-LTA (10 μg/ml) or LPS (10 μg/ml) in the presence of LTA-specific IgG1, human IgG Abs, or control IgG1 Abs or in the presence of autologous or IgG-depleted autologous serum. After 22 h, TNF and IL-1β release was measured in the cell-free supernatants by ELISA. Data are given as means ± SEM. A, Δlgt-LTA–mediated stimulation of serum-free PBMCs from different donors (*n* = 8) supplemented with or without 4% autologous serum or increasing concentrations of human chimeric anti-LTA IgG1 Abs (Pagibaximab), total human IgG Abs (Endobulin), or human control IgG1 Abs (Avastin) (left panel). Significant differences between PBMC samples containing Δlgt-LTA and the corresponding unstimulated PBMC samples were analyzed by Kruskal-Wallis test followed by Dunn’s posttesting. As control, PBMCs (*n* = 8) containing 4% autologous serum were supplemented with the given concentrations of anti-LTA IgG1, total human IgG, or control IgG1 Abs and left without stimulation (right panel). B, Δlgt-LTA– and LPS-mediated stimulation of PBMCs of different donors (*n* = 10) in presence of 2 or 4% autologous serum, IgG-depleted autologous serum, or in absence of serum. For each stimulus, significant differences between LTA-stimulated samples supplemented with autologous before and after IgG depletion were analyzed by Mann-Whitney *U* test. ** *p* < 0.01; *** *p* < 0.001.

FIGURE 6. Δlgt-LTA–mediated cytokine release from human PBMCs depends on the expression of CD32. Human PBMCs from different donors (*n* = 8) containing 4% autologous serum were preincubated for 30 min with 1 μg/ml or 5 μg/ml neutralizing IgG Ab against human CD16, CD32, or CD64 or with isotype control IgG1 Ab. Subsequently, they were stimulated with 10 μg/ml immobilized Δlgt-LTA (A) or LPS or left without stimulation (B). After 22 h, released TNF was determined by ELISA. Data are given as means ± SEM. For each stimulus, significant differences of samples containing neutralizing Abs compared with samples containing the corresponding amount of isotype control Ab were assessed by Kruskal-Wallis test followed by Dunn’s posttesting. ** *p* < 0.01.
response of their whole blood poststimulation with Δlgt-LTA, whole S. aureus, or LPS. Among 57 human donors, we observed pronounced differences in LTA-specific IgG titers, as revealed by ELISA experiments using immobilized Δlgt-LTA (Fig. 7). Consistent with the results above, compared with blood from donors with high titers of specific IgG, blood from donors with low titers showed a significantly decreased induction of IL-1β and TNF poststimulation with Δlgt-LTA (Fig. 7B). For IL-6, which was strongly induced by Δlgt-LTA in comparison with whole S. aureus stimulation, we observed no significant difference between low- and high-titer donors. Furthermore, as previously described for wt-LTA (36), Δlgt-LTA was unable to induce IFN-γ in human whole blood. When whole blood stimulation was carried out with UV-inactivated S. aureus or LPS, no differences in the cytokine induction between donors with low and high titers of LTA-specific Abs were observed. The latter result suggests that, despite the necessity of LTA-specific IgG Abs to recognize LTA, these Abs are dispensable for the immune recognition of whole S. aureus by human peripheral blood, possibly due to uptake of the bacteria via alternative mechanisms.

Discussion

The immunostimulatory capacity of Δlgt-LTA is controversially discussed and is of seminal interest for the field of innate immunity, as it questions the ability of LTA per se to induce cytokine release. Although fully synthetic LTA was found to mirror the immunostimulatory activity of butanol-extracted LTA from wt S. aureus (22, 23), Hashimoto et al. (24, 27) propose that the activity of lgt-LTA in comparison with whole S. aureus or LPS, no differences in the cytokine induction between donors with low and high titers of LTA-specific Abs were observed. The latter observation suggests that, despite the necessity of LTA-specific IgG Abs to recognize LTA, these Abs are dispensable for the immune recognition of whole S. aureus by human peripheral blood, possibly due to uptake of the bacteria via alternative mechanisms.

FIGURE 7. LTA-specific serum IgG titers determine immune activation in human whole blood poststimulation with Δlgt-LTA but not S. aureus or LPS. A, Δlgt-LTA (10 μg/ml) immobilized in 96-well plates was used to determine the titer of LTA-specific IgG Abs in serum samples obtained from 57 healthy blood donors. Blood from the donors showing the highest (n = 20) and the lowest LTA-specific IgG titers (n = 20) was used for further experiments. B, Whole blood from donors with either high or low titers of LTA-specific Abs was stimulated with immobilized Δlgt-LTA (1 μg/ml and 10 μg/ml), UV-inactivated S. aureus (10^6 and 10^7/ml), or LPS (10 ng/ml). After 22 h, the amount of released IL-1β, TNF, IFN-γ, and IL-6 was determined by ELISA. Data representing six different donors of each group are given as means ± SEM. For each stimulus, significant differences in cytokine release between donors with low and high titers of LTA-specific Abs were assessed by Mann-Whitney U test. *p < 0.05.
showing that CD36 (20) and MBL (18) strongly enhance TLR2/6-mediated recognition of LTA when delivered to the phagosome. Furthermore, CD36 expression itself was found to trigger the internalization of whole S. aureus and its LTA in mouse macrophages and human TLR2/6-transfected HEK293 cells, thereby allowing intracellular recognition (20). Despite this role of CD36 in LTA uptake, in our experiments with human peripheral blood, the internalization of Δlgt-LTA was mediated by FcγRII after its opsonization by IgG Abs. Abs recognizing the polyglycerol phosphate backbone of LTA have been detected in human serum, and their titers can become elevated during streptococcal infection (39, 40). Our data revealed pronounced differences in the level of LTA-specific IgG Abs among 57 healthy human donors, which were associated with the amount of released IL-1β and TNF in Δlgt-LTA–stimulated peripheral blood. The mechanism of Δlgt-LTA–induced immune activation proposed in this study involving Abs and FcγRII engagement would explain the inability of LTA to induce the release of IL-12 and subsequent IFN-γ, by ligandation of phagocytic receptors on immune cells during stimulation with TLR ligands that has been found to selectively downregulate IL-12 transcription (41–43). Recently, an indispensable role of S. aureus–specific IgG Abs has been demonstrated for the activation of human immune cells by whole S. aureus (44). The authors described an FcγRII-dependent uptake process of Ab-opsonized bacteria to be responsible for the activation of plasmacytoid dendritic cells by S. aureus. However, poststimulation with S. aureus, we observed no differences in cytokine release from blood donors with high or low LTA-specific Ab titers, suggesting that whole bacteria in peripheral blood were taken up by alternative mechanisms.

In our experiments, immobilization of Δlgt-LTA was pivotal for cytokine induction. The lack of activity observed for soluble Δlgt-LTA possibly relates to its decreased accessibility for innate immune receptors (e.g., due to formation of micelles or binding to inhibitory serum components). Indeed, serum lipoproteins have been described to bind soluble LTA with very fast kinetics (45) and were found to inhibit LTA-mediated immune activation under nonimmobilizing conditions (46, 47). In line with this, we identified human serum apolipoproteins that abrogate cytokine induction from blood donors with high or low LTA-specific Ab titers, suggesting that whole bacteria in peripheral blood were taken up by alternative mechanisms.

Furthermore, Δlgt-LTA–induced cytokine secretion was also potentiated postimmobilization, but in contrast to Δlgt-LTA, was also detected under nonimmobilizing conditions. In addition, cytokine induction by wt-LTA was less dependent on serum supplementation than Δlgt-LTA, and its recognition by TLR2-transfected HEK293 cells was independent of TLR6 and CD14 coexpression. As Δlgt-LTA does not contain any lipoprotein contaminants, and we and others found no structural differences between Δlgt-LTA and wt-LTA (C. Rockel, S. Sigel, M. Borisova, S. Deininger, C. Draing, O. Dehus, A. Ulmer, M. Plitzgenmeier, A. Geyer, F. Götz, T. Hartung, S. Bunk, C. Hermann, and S. v.Aulock, manuscript in preparation and Ref. 24), it appears that this residual activity of wt-LTA results from remaining lipoproteins, which were shown by Hashimoto and coworkers (24, 25) to elute in the same hydrophobic interaction chromatography fractions than wt-LTA. This assumption would also correlate with the ability of wt-LTA to stimulate TLR2-transfected HEK293 cells in the absence of TLR6 and CD14, a common ability of lipopeptides or lipoproteins (38). Recent reports analyzing the structure of the TLR2/TLR1 (16) and the TLR2/TLR6 (17) heterodimer in complex with TLR2 ligands emphasized the role of the ligands’ two fatty acids as being the main driving force for TLR2 binding. This role of fatty acids likely explains why both Δlgt-LTA and wt-LTA initiate the recruitment of TLR2 to the membrane lipid raft of stimulated human monocytes. The selective requirement of TLR2/TLR6 heterodimerization for the recognition of Δlgt-LTA support the specificity of LTA-induced immune activation, because the fatty acid-driven binding to TLR2 alone has only a limited capability in discriminating bacterial ligands from the abundant diacylated molecules found in humans, like phospholipids (16, 17). However, the ability of lipoproteins to activate TLR2-transfected cells in absence of TLR6 indicates that specific immune activation by other TLR2 ligands can also occur without TLR2/TLR6 heterodimerization.

Based on our data, we suggest a mechanism for LTA-mediated immune activation in human blood cells that involves opsonization of immobilized LTA by specific Abs, thereby enabling phagocytic uptake of LTA and subsequent intracellular recognition driven by TLR2, TLR6, and CD14. Although the Ab-mediated uptake of LTA might play only a minor role in the recognition of LTA anchoring in the cell membrane of S. aureus, the current study uncovers important requirements for LTAb-mediated immune activation in general that should be taken into consideration when working with purified LTA. Furthermore, it offers a satisfying explanation for the discrepant immunobiologically activity of Δlgt-LTA observed in different laboratories.

Acknowledgments
We thank Corinna Hermann, Christof Hauck, and Christian Hesslinger for helpful discussions and Tobias Speicher for conceptual support. We also thank Leonardo Cobianchi and Margarete Kreuer-Ullmann for technical assistance and Sonja Erath for experimental help.

Disclosures
The authors have no financial conflicts of interest.

References
22. Morath, S., A. Stadelmaier, A. Geyer, R. R. Schmidt, and T. Hartung. 2002. Lipoteichoic acid is a poten-

28. von Aulock, S., T. Hartung, and C. Hermann. 2007. Comment on “Not lipote-
ichoic acid but lipoproteins appear to be the dominant immunobiologically active compounds in Staphylococcus aureus”. J. Immunol. 178: 2610, author reply 2610–2611.

Figure S1. TNF secretion by peritoneal macrophages from C57BL/6 wild type and TLR2 knockout mice. Macrophages were isolated from the peritoneal cavity by washing with ice cold sodium chloride. Cells were plated at 1x10^5/ml and cultured in RPMI containing 10% fetal calf serum and 1% penicillin/streptomycin for 24h. After two washing steps to remove nonadherent cells, the macrophages were stimulated with soluble (non-immobilized) Δlgt-LTA, wt-LTA, Pam3Cys or LPS. Cell-free supernatants were collected 22h after stimulation and the amount of TNF was determined by ELISA. Data obtained from two independent experiments represent eight mice per group and are given as mean ± SEM. For each stimulus significant differences between the wild type mice and the TLR2−/− mice were assessed by Mann Whitney test. In the figure *, ** and *** represent p values <0.05, <0.01 and <0.001, respectively.