The Journal of Immunology

Cutting Edge: All-Trans Retinoic Acid Sustains the Stability and Function of Natural Regulatory T Cells in an Inflammatory Milieu

Xiaohui Zhou, Ning Kong, Julie Wang, Huiming Fan, Hejian Zou, David Horwitz, David Brand, Zhongmin Liu and Song Guo Zheng

J Immunol 2010; 185:2675-2679; Prepublished online 2 August 2010;
doi: 10.4049/jimmunol.1000598
http://www.jimmunol.org/content/185/5/2675

Supplementary Material http://www.jimmunol.org/content/suppl/2010/07/30/jimmunol.1000598.DC1

Why The JI?

• Rapid Reviews! 30 days* from submission to initial decision
• No Triage! Every submission reviewed by practicing scientists
• Speedy Publication! 4 weeks from acceptance to publication

*average

References This article cites 21 articles, 10 of which you can access for free at:
http://www.jimmunol.org/content/185/5/2675.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Cutting Edge: All-Trans Retinoic Acid Sustains the Stability and Function of Natural Regulatory T Cells in an Inflammatory Milieu

Xiaohui Zhou,*† Ning Kong,*‡ Julie Wang,* Huiming Fan,† Hejian Zou,‡ Zhongmin Liu,‡ and Song Guo Zheng*‡

Recent studies have demonstrated that plasticity of naturally occurring CD4⁺Foxp³⁻ regulatory T cells (nTregs) may account for their inability to control chronic inflammation in established autoimmune diseases. All-trans retinoic acid (atRA), the active derivative of vitamin A, has been demonstrated to promote Foxp³⁺ Treg differentiation and suppress Th17 development. In this study, we report a vital role of atRA in sustaining the stability and functionality of nTregs in the presence of IL-6. We found that nTregs treated with atRA were resistant to Th17 and other Th cell conversion and maintained Foxp3 expression and suppressive activity in the presence of IL-6 in vitro. atRA decreased IL-6R expression and signaling by nTregs. Of interest, adoptive transfer of nTregs even from arthritic mice treated with atRA suppressed progression of established collagen-induced arthritis. We suggest that nTregs treated with atRA may represent a novel treatment strategy to control established chronic immune-mediated inflammatory diseases. The Journal of Immunology, 2010, 185: 2675–2679.

Naturally occurring CD4⁺Foxp³⁻ regulatory T cells (nTregs) play crucial roles in controlling autoimmune disease by maintaining immunological homeostasis and self-tolerance (1). Adoptive transfer of nTregs has been proven to prevent many autoimmune diseases; however, transfer of nTregs once the disease is established is less predictable. In lupus, their effect was only modest (2). In collagen-induced arthritis (CIA), nTreg transfer could prevent but was unable to sustain the suppressive activity of nTregs from autoimmune arthritic mice, implicating that this strategy may have an important clinical value.

Materials and Methods

Mice

Female DBA/1 mice (6–8 wk) were purchased from The Jackson Laboratory (Bar Harbor, ME). Foxp3gfp knockin mice on the DBA/1 background were developed by backcrossing of Foxp3gfp knockin mice on the C57BL/6 background (provided by Dr. Rudensky, Memorial Sloan-Kettering Cancer Center, New York, NY) to DBA/1 mice for 13 generations. All animals were treated according to National Institutes of Health guidelines for the use of experi-
mental animals with the approval of University of Southern California Committee for the Use and Care of Animals (Los Angeles, CA).

Cell purification, in vitro cell stimulation, and suppressor assay

nTregs were sorted from thymus or spleens in naïve DBA/1, CIA model in DBA/1, or Foxp3^{gfp} knockin DBA/1 mice by gating on CD4⁺CD25⁺ or CD4⁺GFP⁺ cells with 99% purity. To activate nTregs, these cells were stimulated with anti-CD3/CD28-coated beads (1 bead:5 cells) (Innogenous, Carlsbad, CA), IL-2 (100 U/ml; R&D Systems, Minneapolis, MN) with DMSO, or atRA (0.05 μM; Sigma-Aldrich, St. Louis, MO) for 3 d. nTregs were cultured under a condition polarizing Th17 as previously reported (5). Suppressive activities of these cells were measured by a standard assay as previously described (14).

Intracellular and soluble cytokine production, and IL-6R and signaling molecule expression

To determine the cytokine production, the cells were restimulated with PMA (0.25 μg/ml) and ionomycin (0.25 μg/ml) for 3 h, and brefeldin A (5 μg/ml) for 4 h. Cells were stained for surface CD4, IL-6R (anti-CD126; BD Pharmingen, San Diego, CA), anti-CD130 (MBL Medical & Biological Laboratories, Nagoya, Japan), and CRCX-5 (eBioscience, San Diego, CA). These cells were further fixed, permeabilized, and then stained for IL-17, Foxp3, retinoic acid-related orphan receptor (ROR) γ (eBioscience), and anti–phospho-STAT3 (BD Pharmingen). Soluble IL-17 and IFN-γ in the supernatants were determined by ELISA.

Induction of CIA and adoptive transfer

CIA was induced in DBA/1 mice according to standard protocol (15). nTregs treated with or without atRA (1–3 × 10⁶) were adoptively transferred to mice with established CIA at day 28 postimmunization. The severity of disease and clinical score were judged as described above (15). Type II collagen (CII)-specific IgG subsets in the sera were determined using ELISA (15).

Statistical analysis

Statistical comparison between various groups was performed by the Student t test using GraphPad Prism software (GraphPad, San Diego, CA). Differences were considered significant when p values were <0.05.

Results and Discussion

Addition of atRA makes nTregs resistant to Th17 cell conversion and sustains Foxp3 expression when stimulated with IL-6

Splenic CD4⁺CD25⁺ nTregs sorted from naïve DBA/1 mice were stimulated with anti-CD3/CD28 Abs with or without IL-6. As described by previous reports, some nTregs TCR activated with IL-6 can become Th17 cells (5, 6). Fig. 1A, 1B, and Supplemental Fig. 1A show, however, that when atRA but not DMSO control was added to cultures containing IL-6, both intracellular and soluble IL-17 production was completely blocked. We have also observed that addition of atRA did not affect the activation and proliferation status of nTregs, suggesting that atRA may specifically inhibit Th17 conversion from IL-6-treated nTregs.

Because IL-6 suppresses Foxp3 induction and atRA promotes TGF-β–induced Foxp3 (16), we sought to determine whether addition of atRA can overcome the effect of IL-6 on phenotype of nTregs. Although TCR-stimulated ex vivo nTregs slightly decreased Foxp3 expression, addition of exogenous IL-6 markedly decreased Foxp3 expression (Fig. 1C, Supplemental Fig. 1B). Interestingly, the addition of atRA to nTregs in the presence of IL-6 almost completely prevented the downregulation of the Foxp3 expression seen in DMSO cultures (Fig. 1C, Supplemental Fig. 1B). Previous study has confirmed Th17 conversion came from purified CD25⁻Foxp3⁺ but not CD25⁺-Foxp3⁻ cells (5), and addition of atRA still suppressed Th17 conversion from purified Tregs and sustained Foxp3 expression when stimulated with IL-6 using Foxp3^{3ebp} knockin mice (Supplemental Fig. 1B, 1C).

IL-6 also markedly decreases the suppressive activities by nTregs (5, 10). This effect is shown in Fig 1D. The suppressive

![FIGURE 1](http://www.jimmunol.org/)
activity of nTregs against T responder cell proliferation was completely abolished in the presence of IL-6. It is not surprising that addition of IL-6 actually increased responder T cell proliferation in the presence or absence of nTregs because T cells highly express IL-6R (5). Conversely, addition of atRA to the cultures maintained the suppressive activity of nTregs. In addition, addition of atRA alone did not suppress the T cell response in the presence of IL-6 when nTregs were absent (Fig. 1D), suggesting that atRA does not directly interfere with the role of IL-6 in immune response of T responder cells. Taken together, these data suggest that atRA can overcome the proinflammatory effects of IL-6 and sustain the stability and suppressive function of nTregs.

nTregs expanded with atRA are resistant to the inhibitory effects of IL-6 on Foxp3 expression and prevent Th17 conversion

The presence of atRA was not necessary for nTregs to become resistant to the inhibitory effects of IL-6. Unlike nTregs expanded with IL-2 only in which Foxp3 expression gradually decreased (17), Foxp3 expressed by nTregs pretreated with atRA remained stable, and the suppressive activities of these cells were even superior to nTregs expanded without atRA (Fig. 2A, 2B). Although atRA did not increase total Foxp3+ cell numbers (Supplemental Fig. 1D), it prevented Foxp3 from downregulation by expanded nTregs and may inhibit the expansion of CD25+Foxp3+ cells, leading to the enrichment of Foxp3+ Tregs. This is consistent with previous reports that suppressive activity of Tregs is closely associated with their Foxp3 levels (14, 18). Given that atRA sustained the phenotype and function of nTregs in the presence of IL-6, we next asked if nTregs expanded with atRA also conferred resistance to the inhibitory effects of IL-6. As shown in Fig. 2C, when expanded nTregs were restimulated with TCR and IL-6, ~20-30% nTregs converted to Th17 or Th1. We did not observe any Th2 and/or follicular Th cell conversion from nTregs (not shown). In contrast, nTregs expanded with atRA were completely resistant to Th17 and Th1 conversion (Fig. 2C). IL-17 and IFN-γ secreted into the supernatants were consistent with intracellular cytokine expression (not shown). In addition, we also observed that the Foxp3 expression by expanded nTregs was markedly decreased following restimulation with IL-6, whereas nTregs previously treated with atRA mostly maintained Foxp3 expression that was similar to Fig. 1C (Fig. 2D). Although expanded nTregs with intact suppressive activity completely lost this activity, the suppressive function of expanded nTregs treated with atRA was completely intact in the presence of IL-6 (Fig. 2E). These nTregs were washed exhaustively postharvesting, and atRA measured by HPLC in the supernatants in suppressive assay cultures was undetectable (not shown). Thus, there was no carryover of atRA in the suppressive activity. These results provide strong evidence that treatment of nTregs with atRA can stabilize their phenotype and suppressive activity.

nTregs treated with atRA can ameliorate the progression of established CIA in mice

Because IL-6 is often a component of inflammatory infiltrates, the ability of atRA to stabilize nTregs in the presence of IL-6 offers the possibility that transfer of atRA-treated nTregs can be therapeutic in the established chronic immune-mediated diseases, such as CIA. Previous studies have indicated that adoptive transfer of nTregs can prevent the development of CIA, but...
their therapeutic effect on the established CIA is unsatisfactory (3, 19).

Accordingly, we immunized DBA/1 mice with CII/CFA, and when the animals had developed arthritis around day 28, we transferred 1×10^6 nTregs previously stimulated with or without atRA. We used this dose of nTregs because others have used similar cell numbers to prevent CIA (3). As shown in Fig. 3A, transfer of atRA-treated nTregs completely blocked the progression of arthritis symptoms and could even decrease the clinical score compared with mice at day 28. Conversely, like control mice injected with PBS, mice injected with nTregs activated without atRA developed increasingly more severe arthritis (Fig. 3A). Values indicate the mean ± SEM of three independent experiments. D, nTregs from CIA mice were expanded with anti-CD3/CD28 beads (1:5) and IL-2 (100 U/ml) ± atRA (0.05 μM) for 4 d. Mice with established CIA were injected i.v. with 1×10^6 atRA-treated nTregs, DMSO-treated nTregs, or PBS (control group) ($n=6$ group). The mice were examined every 5 d postinjection, and the clinical scores are indicated.

FIGURE 3. nTregs treated with atRA suppress the progression of established CIA. A, nTregs isolated from naive DBA/1 mice were expanded as in Fig. 1B for 4 d. Mice with established CIA were injected i.v. with 1×10^6 atRA-treated nTregs, DMSO-treated nTregs, or PBS (control group) ($n=8$ group). The mice were examined every 3 d postinjection, and the clinical scores are indicated. B, CII-specific IgG1 and IgG2a levels in sera on day 45 after CII/CFA immunization were measured by ELISA. Values indicate the mean ± SEM of two independent experiments ($n=8$ group). C, nTregs isolated from CIA were treated ± atRA as described in Fig. 2A, and their suppressive activity was determined by similar methods as Fig. 2A. Values indicate the mean ± SEM of three independent experiments. D, nTregs from CIA mice were expanded with anti-CD3/CD28 beads (1:5) and IL-2 (100 U/ml) ± atRA (0.05 μM) for 4 d. Mice with established CIA were injected i.v. with 1×10^6 atRA-treated nTregs, DMSO-treated nTregs, or PBS (control group) ($n=6$ group). The mice were examined every 5 d postinjection, and the clinical scores are indicated.

FIGURE 4. nTregs treated with atRA maintain their phenotype and function via downregulation of IL-6R expression and phospho-STAT3 activation. A, nTregs were treated ± atRA as described in Fig. 2A, and CD126 (IL-6Rα-chain) expression was determined by FACS. The figure shows data from one of four separate experiments. B indicates the mean ± SEM of surface CD126, CD130 (IL-6Rβ-chain), intracellular phosphorylated STAT3, and transcription factor RORγt expression as determined by FACS ($n=4$).
treated with atRA but not DMSO (Fig. 3D). This finding is very important because atRA-treated nTregs from patients could potentially be used to control disease development.

nTregs treated with atRA maintain their phenotype and function by downregulating IL-6R expression and signaling

We next sought to determine the mechanisms by which atRA sustains the stability of nTregs in the inflammatory milieu. As reported by Xiao et al. (20), atRA not only strongly inhibits the upregulation of IL-6 Rα mRNA induced by TGF-β, but also decreases the levels of phospho-STAT3 expression induced by IL-6 plus TGF-β. We examined whether atRA can affect IL-6R and its signaling expression in nTregs. nTregs were stimulated with TCR with or without atRA for 4 d. We observed that, similar to naïve T cells, freshly isolated nTregs expressed substantial amounts of IL-6R α-chain (CD126) that slightly decreased after TCR activation (Fig. 4A). The addition of atRA markedly decreased the CD126 expression in activated nTregs (Fig. 4A), which is consistent with previous finding that atRA decreased CD126 expression on naïve CD4+ cells (20). Although IL-6 Rβ (CD130) is not highly expressed by nTregs, addition of atRA also significantly decreased its expression (Fig. 4B). The IL-6R expression reduction is likely associated with downregulation of IL-6R signaling because addition of atRA also significantly decreased STAT3 activation in nTregs (Fig. 4B). When atRA-treated nTregs were restimulated with IL-6, the decrease in IL-6 signaling was accompanied by a decrease of expression of RORγt (Fig. 4B), the crucial transcription factor required for Th17 cell differentiation (21). This finding is in agreement with the previous observation that the combination of IL-2 and TGF-β directly by relieving inhibition from CD4+CD44hi Cells.

Disclosures

The authors have no financial conflicts of interest.

References

Zhou et al. sFig. 1

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IL-6</th>
<th>atRA</th>
<th>DMSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Activated</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fresh CD4+CD25+</th>
<th>Activated CD4+CD25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>atRA</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Treatment</th>
<th>IL-17</th>
<th>GFP(Foxp3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSO</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>atRA</td>
<td>1</td>
<td>79</td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Foxp3+ cells (x10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atRA</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>
Zhou et al. sFig. 2

A

<table>
<thead>
<tr>
<th>Treatment</th>
<th>%IL-17+/CD4+ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA</td>
<td>8</td>
</tr>
<tr>
<td>nTreg (DMSO)</td>
<td>7</td>
</tr>
<tr>
<td>nTreg (atRA)</td>
<td>1</td>
</tr>
</tbody>
</table>

\[p = 0.07 \]

\[p = 0.0003 \]

B

<table>
<thead>
<tr>
<th></th>
<th>CIA</th>
<th>nTregs (DMSO)</th>
<th>nTregs (atRA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-17</td>
<td>8</td>
<td>5.6</td>
<td>1.1</td>
</tr>
<tr>
<td>CD4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[p = 0.07 \]

\[p = 0.0003 \]
Zhou et al. sFig. 3

A CD4+CD25+ frequency

\[p < 0.0001 \]

Naive CIA

\[0 \quad 5 \quad 10 \quad 15 \quad 20 \]

\[\%CD25/CD4 \]

Mice

B CD4+Foxp3+ frequency

\[p = 0.0003 \]

Mice

\[0 \quad 5 \quad 10 \quad 15 \]

\[\%Foxp3/CD4 \]

Naive CIA

\[0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \]

\[\%Foxp3/CD4+CD25+ cells \]

\[p = 0.001 \]

CIA

\[p = 0.002 \]

\[p = 0.02 \]

\[p = 0.03 \]

Naive CIA

\[0 \quad 25000 \quad 50000 \quad 75000 \quad 100000 \quad 125000 \]

\[+ naive nTregs \quad + CIA nTregs \]

Baseline

\[CPM \]
Zhou et al. sFig. 4

A

DMSO atRA

IL-17

IFN-γ

B

%Foxp3/CD4+CD25+ cells

Fresh nTregs
pretreated with DMSO
pretreated with atRA

p=0.002

Fresh restim with IL-6

Bar graphs showing the percentage of Foxp3/CD4+CD25+ cells in different conditions.
Supplemental Fig. legends:

Suppl Fig. S1 Addition of atRA prevents nTreg conversion to Th17 and sustains Foxp3 expression following stimulation with IL-6. *A*, splenic CD4+CD25+ cells (nTregs) sorted from DBA/1 mice were stimulated with immobilized anti-CD3 (1 μg/ml), soluble anti-CD28 (1 μg/ml) and IL-6 (10 ng/ml) ± atRA (0.05 μM). 3 days later, supernatants were harvested and subjected to ELISA for measuring of soluble IL-17A. Values indicate mean ± SEM of four separate experiments. *B*, nTregs were activated with anti-CD3/CD28 coated beads in the presence of the atRA solvent (DMSO) or atRA (0.05 μM) ± IL-6 (10 ng/ml) for 3 days and Foxp3 expression was determined by FACS staining. Values indicate mean ± SEM of four separate experiments. *C*, splenic CD4+CD25+GFP+ cells sorted from Foxp3^GFP+^ knock-in DBA/1 mice were similarly stimulated as pane *A* and Th17 and GFP (Foxp3) expression by nTregs was shown. Data is representative of three independent experiments. *D*, nTregs were stimulated with TCR, IL-2 (100U/ml) with DMSO or atRA (0.05 μM) for 7 days and total Foxp3+ cells were counted and compared to starting numbers on day 0 (horizontal line). Values indicate the mean ± SEM of three independent experiments. The *p* values were calculated by Student’s test and indicate significant differences between cultures ± atRA (*P*<0.05, below is same).

Suppl Fig. S2 Adoptive transfer of atRA treated nTregs significantly suppressed Th17 cell development in draining lymph nodes in CIA. nTregs were expanded with anti-CD3/CD28 beads (1:5) and IL-2 (100 U/ml) ± atRA (0.05 μM) for 4 days. Mice with established CIA were injected IV with 1 × 10^6 atRA treated nTregs, DMSO treated nTregs or PBS (control group). The mice were sacrificed on day 58 after CII/CFA immunization and IL-17+ cell proportion on the CD4+ gate in draining lymph nodes was examined by FACS. Values indicate the mean ± SEM of four mice (*A*) and representative of these mice in each group (*B*).

Suppl Fig. S3 Phenotype and function of nTregs in CIA mice. The frequency of splenic CD4+CD25+ cells (*A*), of CD4+Foxp3+ cells (*B*) and Foxp3+ cells among CD25 subset (*C*) in normal unimmunized mice (naïve) and CIA mice. Data are the values of 6 mice in both groups, or representative of these mice or the mean ± SEM of these mice in two groups. *D*, the suppressive activities of nTregs freshly isolated from naïve or CIA mice against dep-CD25 T cells from CIA mice were determined by the inhibition of tritiated thymidine ([3H]-TdR) uptake. Values indicate the mean ± SEM of three independent experiments.

Suppl Fig. S4 atRA stabilizes the phenotype of nTregs from arthritic mice. *A*, splenic nTregs isolated from CIA mice were stimulated as described in Fig. 1A. IL-17 and IFN-γ expression was examined by FACS. Data are representative of three separated experiments. *B*, nTregs isolated from CIA were treated ± atRA as described in Fig.2A and their Foxp3 expression was determined by FACS staining as Fig. 2A. Values indicate the mean ± SEM of three independent experiments.