Antigen-Containing Liposomes Engrafted with Flagellin-Related Peptides Are Effective Vaccines That Can Induce Potent Antitumor Immunity and Immunotherapeutic Effect

Abdus Faham and Joseph G. Altin

*J Immunol* 2010; 185:1744-1754; Prepublished online 7 July 2010;
doi: 10.4049/jimmunol.1000027
http://www.jimmunol.org/content/185/3/1744

Supplementary Material

http://www.jimmunol.org/content/suppl/2010/07/06/jimmunol.1000027.DC1

Why *The JI*?

- **Rapid Reviews! 30 days*** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article **cites 48 articles**, 18 of which you can access for free at:
http://www.jimmunol.org/content/185/3/1744.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Antigen-Containing Liposomes Engrafted with Flagellin-Related Peptides Are Effective Vaccines That Can Induce Potent Antitumor Immunity and Immunotherapeutic Effect

Abdus Faham and Joseph G. Altin

The bacterial protein flagellin can trigger immune responses to infections by interacting with TLR5 on APCs, and Ag-flagellin fusion proteins can act as effective vaccines. We report that flagellin-related peptides containing a His-tag and sequence related to conserved N-motif (aa 85–111) of FltC flagellin, purportedly involved in the interaction of flagellin with TLR5, can be used to target delivery of liposomal Ag to APCs in vitro and in vivo. When engrafted onto liposomes, two flagellin-related peptides, denoted as 9Flg and 42Flg, promoted strong liposome binding to murine bone marrow-derived dendritic cells and CD11c+ splenocytes, and cell binding correlated with expression of TLR5. Liposomes engrafted with 9Flg or 42Flg induced functional MyD88-dependent maturation of dendritic cells in vivo. The vaccination of mice with 9Flg liposomes containing OVA induced OVA-specific T cell priming, increased the number of Ag-responsive IFN-γ-producing CD8+ T cells, and increased Ag-specific IgG1 and IgG2b in serum. Importantly, the vaccination of C57Bl/6 mice with syngeneic B16-OVA–derived plasma membrane vesicles, engrafted with 9Flg or 42Flg, potently inhibited tumor growth/metastasis and induced complete tumor regression in the majority of mice challenged with the syngeneic B16-OVA melanoma, in the lung and s.c. tumor models. Strong antitumor responses were also seen in studies using the s.c. P815 tumor model. Therefore, vaccination with Ag-containing liposomes engrafted with 9Flg or 42Flg is a powerful strategy to exploit the innate and adaptive immune systems for the development of potent vaccines and cancer immunotherapies. The Journal of Immunology, 2010, 185: 1744–1754.

LRs are expressed by APCs, such as monocytes, macrophages, and dendritic cells (DCs), and play a key role in triggering innate immunity and in initiating adaptive immune responses to pathogens (1–3). Several TLRs function as sensors of external stimuli, which can recognize specific microbial products and structures, such as pathogen-associated molecular patterns, which are conserved in pathogens (1–5). One TLR of special interest is TLR5, which recognizes the protein flagellin (6, 7), the major constituent of bacterial flagella involved in motility. TLR5 is a transmembrane protein ~100 kDa expressed by a variety of cells, including monocytes, DCs, epithelial cells, and mast cells (8–10). Several studies showed that stimulation of TLR5 by monomeric flagellin can activate macrophages, DCs, neutrophils, and intestinal cells to produce inflammatory mediators, such as TNF-α, IL-6, IL-8, and IL-12, to an extent depending on cell type (6, 7, 10–12). The binding of flagellin to TLR5 on APCs in vivo activates the MyD88-dependent intracellular signaling pathway, leading to APC maturation and secretion of proinflammatory cytokines and chemokines (6, 13–15). Interestingly, when administered in vivo, flagellin induces a proinflammatory response similar to that of LPS; however, flagellin is much more potent than LPS, inducing responses at concentrations as low as 1 pg/ml (15, 16).

The fact that flagellin is one of the first Ags to which DCs are exposed during an early stage of bacterial infection suggests that it could play a crucial role in generating protective immunity (17). Consistent with this, a number of studies showed that flagellin has adjuvant-like properties (17, 18). Vaccination with recombinant flagellin–Ag fusions induced potent T and B cell responses, including Ag-specific CD8+ T cell and Ab responses to model Ags (19, 20), as well as to a number of disease-relevant Ags (21–23), including influenza M2e Ag (24), Plasmodium vivax merozoite surface protein-1 (25), and Mycobacterium tuberculosis Ag p27 (26). The responses induced were often much greater than those induced by vaccination of the Ag emulsified in CFA (20–26). Also, the linking of flagellin to Ag is essential to induce detectable Ab responses, because a simple mixing of the two is not sufficient (20–26). This underscores the notion that TL R activation and Ag delivery to the same APC, or indeed to the same location compartment at the cell surface or within the cell, may be required to elicit an effective adjuvant response.

The ability of Ag–flagellin fusion proteins to induce potent Ag-specific immunity when used as vaccines suggests that the targeting of Ag to TLR5 is an effective strategy to elicit Ag-specific immunity. However, the production of fusion proteins can be cumbersome and expensive and may lack versatility, especially for the delivery of...
multiple Ags simultaneously. In this study, we explored the potential of using relatively short flagellin-related peptides (pFlgs) to manipulate immunity by targeting Ag-containing liposomes and membrane vesicles to TLR5 on APCs. Using the chelator lipid 3-(nitriilotriacetic acid)-ditetradecylamine (NTA3-DTDA) (27, 28), we engrafted Ag-containing liposomes and tumor cell-derived plasma membrane vesicles (PMVs) with synthetic His-tagged peptides that contain a sequence derived from flagellin and explored the ability of these to enhance immunity when used as vaccines. The results show that peptides having a sequence related to conserved regions in bacterial flagellin can be used to elicit dramatic Ag-specific and antitumor responses in mouse tumor models.

Materials and Methods

Reagents

The phospholipids 1,2-disteroyl-phosphatidylcholine, 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), and cholesterol were obtained from Sigma-Aldrich (Castle Hill, New South Wales, Australia). NTA3-DTDA was produced in the Research School of Chemistry (Australian National University [ANU]), as described previously (27, 29). Disteroyl-phosphatidylethanolamine (polyethylene glycol)-750 was obtained from Avanti Polar Lipids (Alabaster, AL). The fluorescent lipid Oregon Green-488-(1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) (OG488-DHPE) was purchased from Invitrogen (Eugene, OR). 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphatidylethanolamine was reacted with Alexa Fluor-647 carboxylic acid succinimidyl ester (Invitrogen) and purified to produce Alexa Fluor-647-1,2-palmitoyl-oleoyl-sn-glycero-3-phosphatidylethanolamine (AF647-DOPE), as previously described (30). Paraformaldehyde was from BDH Chemicals (Kilsyth, Victoria, Australia). RPMI 1640 (Invitrogen) medium was obtained from the Media Unit, John Curtin School of Medical Research (ANU).

Cells

Day-6 bone marrow-derived DCs (BMDCs) from C57BL/6 mice were generated as previously described (31, 32). BMDCs were cultured in RPMI 1640 medium containing 10% FCS, 2 mM L-glutamine, 50 μM 2-ME, 0.1 mg/ml penicillin-streptomycin-neomycin (referred to as complete medium), or RPMI 1640 medium with 10% newborn calf serum (plus 0.5 mg/ml geneticin for B16-OVA cells), except for CHO cells, which were cultured in F15 medium containing 10% newborn calf serum (plus 10 ng/ml recombinant murine IL-3, 100 U/ml recombinant murine GM-CSF (PeproTech, Rocky Hill, NJ), and 100 U/ml penicillin-streptomycin-neomycin (referred to as complete medium), or RPMI 1640 medium with 10% newborn calf serum (plus 0.5 mg/ml geneticin for B16-OVA cells). All cells were cultured (in 37˚C incubator with 5% CO2) in RPMI 1640 medium supplemented with IL-2 (50 IU/ml) for 4 days.

Peptides

pFlgs for engraftment onto liposomes contained a 12His tag (to enable engraftment onto liposomes) and a GS repeated spacer of length indicated (to reduce steric hindrance), followed by an amino acid sequence to the indicated region conserved in bacterial FlgC flagellin (Table I). A 12His peptide was used as a nontargeted (control) peptide, because it is known to bind strongly to Ni-NTA-DTDA and to reduce nonspecific binding of Ni-NTA3-DTDA liposomes to cells. All peptides were synthesized and HPLC purified at the Biomolecular Research Facility, John Curtin School of Medical Research, ANU. Stock solutions of the peptides were prepared in distilled water, stored at −20˚C, and thawed and vortexed immediately before use.

Preparation of stealth liposomes and plasma membrane vesicles

Stealth liposomes (hereafter referred to as liposomes) were prepared as described (28, 32). Briefly, disteroyl-phosphatidylcholine, cholesterol, distearoyl-phosphatidylethanolamine (polyethylene glycol)-750, NTA3-DTDA, and tracer lipid OG488-DHPE dissolved in ethanol were mixed (molar ratio 46.5:46.5:5:1:1), dried under a stream of nitrogen gas, and rehydrated in 1 ml PBS (2 mM final lipid) containing Ni2+ (60 μM). Liposomes were produced by sonication (two 25-s bursts at maximum amplitude) in a TOHO 100W Ultrasonic Disintegrator (Measuring and Scientific, London, U.K.). ZetaSizer measurements indicated that liposomes prepared in this way had an average diameter ~130 nm and bore a near-neutral surface charge (ζ potential ~ −5 mV). Where indicated, the tracer lipid AF647-DOPE was used instead of OG488-DHPE. For immunological experiments, the tracer lipid was omitted, and OVA was encapsulated into the NTA3-DTDA liposomes to give ~200 μg OVA/mg total lipid, after removal of unencapsulated OVA by gel filtration, as previously described (28, 32).

PMVs from cultured cells (B16-OVA, B16, or P815) were prepared as described (32). Cells were washed twice with PBS and suspended in ice-cold PBS (1 × 107 cells/ml) and lysed by brief sonication (two 15-s bursts) at 4˚C. The lysate was centrifuged (1000 × g) in 1-ml Eppendorf tubes at 4˚C for 10 min; the supernatant was removed from the pelleted debris and centrifuged (15,000 × g) again for 30 min at 4˚C. The supernatant was discarded, and the pellet (enriched in PMVs) was suspended in PBS and resonicated. Typically, 1 × 107 cell-equivalents of PMVs were suspended in 1 ml PBS.

Stock PMVs were stored at −20˚C and briefly resonicated before use in experiments. PMVs were incorporated with Ni-NTA3-DTDA and tracer lipid (OG488-DHPE) by mixing with Ni-NTA3-DTDA plus POPC in PBS (final concentration 5 × 1010 cell-equivalents PMVs/ml containing 12.5 μM Ni-NTA3-DTDA plus 37.5 μM NISO4 and 37.5 μM POPC) and sonicating (two 20-s bursts at 4˚C) to promote NTA3-DTDA incorporation. ZetaSizer measurements indicated that the resulting PMVs had a diameter ~140 nm and bore a near-neutral surface charge.

Liposomes and PMVs were engrafted with peptide by mixing the indicated His-tagged peptide dissolved in H2O with a suspension of Ni-NTA3-DTDA-containing liposomes or PMVs and incubating for 30 min at room temperature. The amount of peptide used for engraftment onto liposomes or PMVs was based on a theoretical calculation of the amount of peptide required to be equimolar with anchoring moiety Ni-NTA3-DTDA and an empirical titration to give the optimal binding of the liposomes to mouse BMDCs. Where indicated, the same amount of Ni-NTA3-DTDA lipid (~1.5 μg) and approximately the same amount of peptide (3–4.5 μg, depending on the m.w. of the peptide being used) were used for all vaccination conditions for each experiment.

In vitro binding of liposomes to cells and flow cytometry

To assess the binding of pFlg-engrafted liposomes to cells, the cells (BMDCs, SpDCs, and splenocytes, at 1 × 107, 0.5 × 107, and 2 × 106 cells/well, respectively) were suspended in 50% FCS in PBS (50% FCS-PBS) and then added to pre-engrafted liposomes in a 96-well polypropylene V-bottom Serocluster plate (Costar, Cambridge, MA) and incubated for 1 h (at 37˚C or on ice, as indicated) with frequent gentle vortexing of the plate (32). Where indicated after this incubation, the cells were washed and blocked for 15 min on ice with mouse IgG before incubating with a fluorescein-conjugated mAb to the indicated cell surface marker. Cells were then washed thrice in PBS, fixed with 2% paraformaldehyde in PBS, and analyzed for fluorescence by flow cytometry. Cell fluorescence was quantified using a flow cytometer (BD Biosciences LSRII; BD Biosciences, San Jose, CA). Typically, 10,000 or 30,000 cells were counted for each condition.

Measurement of cell proliferation

Pooled splenocytes from each group of vaccinated mice were incubated with PBS, soluble OVA (100 μg/ml), or pFlg-OVA liposomes for 3 h at 37˚C. The cells were then washed and incubated in a 96-well flat-bottom plate in complete RPMI 1640 medium supplemented with IL-2 (50 IU/ml) for measurement of cell proliferation using a standard [3H]thymidine incorporation assay, as described (32).
**Intracellular staining for IFN-γ and measurement of OVA-specific Ab production**

Splenocytes (1 × 10^6 cells) from the spleens of each group of mice were stimulated for 2 h with 1 μg/ml SIINFEKL; a 1:1000 dilution of BD GolgiStop (BD Biosciences) was added, and the cells were incubated for an additional 3 h before staining with anti–CD8-PE (clone 53-6.7; BD Pharmaningen, San Diego, CA) and intracellularly with anti–IFN-γ–Alexa Fluor-647 (clone XMG1.2; BD Pharmaningen), as described (32). Flow cytometric data were acquired with a BD Biosciences LSR II and analyzed using FlowJo software (Tree Star, Ashland, OR). CD8+ cells were gated from live cells to give the IFN-γ+ CD8+ cells in a two-color dot plot; for each condition, the background was determined by subtracting the value obtained by adding PBS instead of peptide.

Ab production in response to vaccinations was analyzed in the sera of mice by indirect sandwich ELISA, exactly as described (32). Data are expressed as Ab concentration calculated from standard curves generated with OVA-specific IgG1, IgG2a, and IgG2b mAb standards (BD Pharmaningen) using KC4 V3.0 Analysis Software.

**Vaccination of mice, tumor challenge, and measurement of tumor size**

For vaccination, typically 200 μl the indicated vaccine preparation was administered i.v. to mice by tail vein injection. The preparations of OVA- or flagellin using a dissecting microscope. The size of s.c. tumors was determined from the final outcome by sacrificing the mice (at day 21 after challenge), removing the tumor, and weighing it. Results were expressed as mean ± SEM. Data from each condition, the background was determined by subtracting the value obtained by adding PBS instead of peptide.

**Statistical analyses**

Data are represented as mean ± SEM. The Student t test was used for statistical analysis, and p < 0.05 was considered statistically significant.

**Results**

**Design of pFlgs for targeting liposomes to APCs**

A comparison of the amino acid sequences of flagellins from different strains of bacteria, facilitated by using the National Center for Biotechnology Information’s Conserved Domain Protein Database, reveals the existence of at least two regions of high homology, the conserved N-region and C-region of flagellin. The representative flagellin sequence used in this study is the 494-aa mature flagellin FlIC from *Salmonella typhimurium* (GenBank accession no. D13689; hereafter referred to as flagellin). The high-homology regions are defined by aa 79–117 (in N region) and aa 420–475 (in C region) (33, 34). The three-dimensional structure, coupled with mutagenesis studies of flagellin, showed that the ability of flagellin to interact with TLR5 resides in the first 117 aa of the N-terminal region, particularly the region defined by aa 79–117, but it may require contributions from C-region aa 408–439 (33–38). Peptides spanning different regions conserved in flagellin and/or that have been implicated in binding to TLR5 can be designed (Table I), produced synthetically, and examined for their ability to interact with APCs.

Flgs covering aa 79–117 of FlIC in the conserved N-region may contain epitopes that can bind/stimulate TLR5 (34–39). Therefore, two peptides overlapping by 4 aa were designed and denoted 41Flg (79–101) and 42Flg (98–117); two peptides denoted 9Flg (85–111) and 45Flg (98–111) were designed to cover, respectively, the central and N- parts of the conserved N-region (Table I). Two other peptides covering the conserved C-region of flagellin were also produced: 10Flg (405–425) and 11Flg (408–438) (Table I). The His-tag for these was designed to be on the C-terminal end of the peptide sequence to avoid possible steric hindrance, as judged by the orientation of this region in the three-dimensional structure of flagellin and the predicted site of interaction with TLR5 (39).

**Flgs promote binding of liposomes to DCs**

The ability of pFlg to promote binding of liposomes to APCs was explored by incubating (1 h, 37˚C) tracer-containing NTa1-DTDA liposomes engrafted with 12His peptide (as control) or a pFlg peptide with day-6 BMDCs before washing, staining the cells with APC-conjugated CD11c mAb, and analysis by flow cytometry. The results indicated that BMDCs incubated with 12His liposomes exhibited a mean fluorescence intensity (MFI) ~2-fold above background (data not shown). Preliminary experiments also indicated that 5–15% of all BMDCs bound 9Flg and 42Flg liposomes (data not shown). Additional studies showed that although 1.00 ± 0.05% of BMDCs that bound 12His liposomes were double positives (bound liposomes and were CD11c+), 9.6 ± 1.0% and 6.4 ± 0.6% of BMDCs bound 9Flg and 42Flg liposomes, respectively, and were double positives (Fig. 1A). The MFI of the CD11c+ BMDCs was increased from a standardized value of 1 (for 12His liposomes) to 9.3 ± 1.0-fold and 4.0 ± 0.5-fold greater for cells incubated with 9Flg and 42Flg liposomes, respectively (Fig. 1A).

Interestingly, a similar pattern of fluorescence was observed in binding assays using SpDCs instead of BMDCs (Fig. 1B). Thus, incubation of SpDCs with liposomes caused the proportion of double-positive SpDCs (CD11c+ SpDCs that bound liposomes) to increase from 1% (for 12His liposomes) to 5.6 ± 2.2% and 2.6 ± 0.6% for 9Flg and 42Flg liposomes, respectively; and the MFI of the CD11c+ cells increased 6.2 ± 1.4-fold and 3.2 ± 0.2-fold, respectively (Fig. 1B). As shown in Fig. 1C, 9Flg and 42Flg liposomes also bound to CD11b+ SpDCs. The proportion of double-positive cells increased from 1% (12His liposomes) to 10 ± 2.2% and 6.6 ± 1.4% for 9Flg and 42Flg liposomes, respectively; and the MFI of the CD11b+ cells increased 9.5 ± 2.7-fold and 4.1 ± 1.3-fold, respectively (Fig. 1C). Under these conditions, 10Flg and 11Flg liposomes bound weakly and 41Flg and 45Flg liposomes bound very weakly or not at all to BMDCs and SpDCs (Supplemental Fig. 1), indicating that 9Flg and 42Flg are the most effective at promoting binding of liposomes to APCs.

### Table I. Name and amino acid sequence of pFlgs designed for engraftment onto liposomes/PMVs

<table>
<thead>
<tr>
<th>Peptide Name</th>
<th>Amino Acid Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Flg-85-111</td>
<td>HHHHHHHHHHHH-GSGSG-INNLQVRVELAQVSHFNSAIT-GSGSG-SANSNSSQLDSDSLD</td>
</tr>
<tr>
<td>10Flg-405-425</td>
<td>TENFLQKIDALAAVLQVDTLRSDLGAQVRFNSAIT-GSGSG-SANSNSSQLDSDSLD</td>
</tr>
<tr>
<td>11Flg-408-438</td>
<td>PLQKIDALAAVLQVDTLRSDLGAQVRFNSAIT-GSGSG-SANSNSSQLDSDSLD</td>
</tr>
<tr>
<td>41Flg-79-101</td>
<td>HHHHHHHHHHHH-GSGSGS-GSGSGSALNENNLQVRVELAQVSHFNSAIT-GSGSG-SANSNSSQLDSDSLD</td>
</tr>
<tr>
<td>42Flg-98-117</td>
<td>HHHHHHHHHHHH-GSGSGS-GSGSGS-GSGSGS-QSANSNSSQLDSDSLD</td>
</tr>
</tbody>
</table>

Each pFlg contains a 12His-tag (to enable engraftment onto NTa1-DTDA-liposomes), a spacer region (to reduce steric hindrance), and an amino acid sequence (bold text) derived from the indicated conserved region of FlIC flagellin.
The cell-binding specificity of pFlg liposomes was examined by incubating the liposomes with splenocytes. Preliminary experiments indicated that ∼1% of splenocytes bind 12His liposomes, but 7–10% of splenocytes bound 9Flg and 42Flg liposomes (data not shown). Further studies showed that although 0.50 ± 0.05% of splenocytes were double positives (i.e., bound liposomes and were CD11c⁻) following incubation with 12His liposomes, the proportion of double positives after incubation with 9Flg and 42Flg liposomes increased to 3.0 ± 0.2% and 2.5 ± 0.1%, respectively; the MFI of the CD11c⁻ cells increased 3.8 ± 0.4-fold and 3.1 ± 0.7-fold, respectively (Fig. 2A). Similarly, the double-positive cells (liposome-positive and CD11b⁺) increased from 0.5% (for control cells) to 2.6 ± 0.5% and 1.3 ± 0.3% for splenocytes incubated with 9Flg and 42Flg liposomes, respectively; the MFI of the CD11b⁺ cells increased 3.8 ± 0.4-fold and 3.1 ± 0.7-fold, respectively (Fig. 2A). Also, the proportion of double-positive cells (liposome positive and CD19⁺) increased from 0.5% (for control cells) to 3.6 ± 0.6% and 1.3 ± 0.1% for splenocytes incubated with 9Flg and 42Flg liposomes, respectively; the MFI of the CD19⁺ cells increased 4.8 ± 0.5-fold and 2.5 ± 0.1-fold, respectively (Fig. 2A). The binding of liposomes engrafted with 10Flg, 11Flg, 41Flg, and 45Flg to CD11c⁻, CD11b⁺, and CD19⁺ splenocytes was generally much lower than for liposomes engrafted with 9Flg and 42Flg (Supplemental Fig. 2). There was no significant binding of 9Flg and 42Flg liposomes to CD3⁺ cells (data not shown).

Additional studies, in which 9Flg liposomes were administered i.v. to mice, and the spleens were removed 1 h later for analysis of tracer-containing splenocytes, showed that 9Flg liposomes had bound to 1.7 ± 0.2% of the splenocytes subsequently isolated from the spleen; the liposome-associated fluorescence of the CD11c⁺ cells was increased 8.7 ± 1.9-fold (Fig. 2B). Interestingly, the liposome
pFlg liposomes bind specifically to TLR5-expressing cells and are internalized

To confirm that binding of pFlg liposomes to cells occurs through interaction with TLR5, cells were doubly stained with pFlg liposomes and TLR5 mAb. Many of the commercially available TLR5 Abs bind to a cytoplasmic region of TLR5 and, therefore, were unsuitable for correlating the binding of pFlg liposomes with surface TLR5 expression. Intracellular TLR5 mAb staining also cannot be used for the correlation because TLR5 is expressed intracellularly and at the cell surface (40, 41). The TLR5 mAb Clone 19D759.2 (Mouse IgG2a mAb; Imgenex, San Diego, CA) was particularly useful for cell-surface staining of mouse and human TLR5. This mAb stained BMDCs weakly, and it was more effective at staining cells that expressed higher levels of TLR5. Thus, the TLR5 mAb bound HEK-293 cells (widely reported to constitutively express TLR5), and it bound particularly well to the human hepatoma cell line HepG2 (42). Consistent with reports that CHO cells do not express TLR5 (43), we found no significant binding of TLR5 mAb or pFlg liposomes to CHO cells. Experiments in which CHO cells were transfected to express mTLR5 also were carried out, but only very low surface expression of TLR5 expression was achieved, which did not allow any meaningful comparisons to be made with these cells (data not shown). Therefore, we conducted binding experiments with BMDCs and the cell lines HEK-293 and HepG2 that react with the TLR5 mAb.

Preliminary experiments indicated that the binding of liposomes engrafted with the less-active peptides (i.e., 10Flg, 11Flg, 41Flg, and 45Flg) to BMDCs and HEK-293 and HepG2 cells was too low to permit a reliable correlation of the binding of the engrafted liposomes with the binding of the TLR5 mAb (data not shown). Therefore, experiments were performed to correlate the binding of 9Flg liposomes with that of TLR5 mAb to these cells. The two-color dot plots in Fig. 3A show that binding of the 9Flg liposomes correlates well with staining of TLR5 mAb in each of the three cell types. This correlation is strongest for HepG2 cells, which exhibit the strongest binding of TLR5 mAb (Fig. 3A, lower right panel). Other experiments showed a similar binding pattern when using 42Flg liposomes with HepG2 cells, but the level of binding was lower (Fig. 3B). Also, we observed only a small difference in the binding of the TLR5 mAb to cells that had been incubated or not with 9Flg liposomes, indicating no substantial interference between the binding of the 9Flg liposomes and binding of the TLR5 mAb used (data not shown). The mean percentage of double-positive cells (AF488⁺AF647⁺; i.e., cells that bound

**FIGURE 3.** pFlg liposomes bind to TLR5-expressing cells. Murine BMDCs and the cell lines HEK-293 and HepG2 suspended in 50% FCS-PBS were separately incubated (40 min, 4˚C) with 9Flg liposomes containing tracer AF647-DHPE. The cells were washed twice with PBS and stained for 40 min with AF647-conjugated mAb to TLR5 in 2% FCS-PBS before analysis by flow cytometry. A, Representative two-color dot plots for the fluorescence due to binding of AF647⁺ mAb (TLR5) versus 9Flg liposomes (AF647⁺) for each cell type: BMDC, HEK-293, and HepG2. B, Representative dot plots showing the binding of 42Flg liposomes (instead of 9Flg liposomes) to HepG2 cells. Quadrant gates were set as detailed in Materials and Methods. For each dot plot, the proportion of cells, as a percentage of live cells, is shown in the indicated quadrant. Also, the MFI of the gated live cell population (BMDCs, HEK-293, or HepG2 cells), due to the binding of engrafted liposomes (AF647⁺, x-axis) and staining with TLR5 mAb (AF647⁺, y-axis) is shown as the X and Y values, respectively. Each result in the dot plots represents the mean ± SEM obtained from four to seven independent experiments. C, The bar graph shows the mean percentage ± SEM of double-positive cells (AF488⁺AF647⁺; i.e., percentage of cells that bound pFlg liposomes and TLR5 mAb) to these cells. For conditions in A and B in which the cells were incubated with pFlg liposomes alone, or with pFlg liposomes then with TLR5 mAb, as indicated, D, BMDC-derived DC2.4 cells were incubated with 9Flg liposomes containing OG488-DHPE as tracer for 2 h at 4˚C or 37˚C. The cells were washed, fixed, and suspended in embedding medium for analysis of OG488 fluorescence by confocal fluorescence microscopy; a representative image set obtained from three separate experiments is shown (original magnification ×1500), *p < 0.05; **p < 0.01; ***p < 0.001.
The ability of 9Flg liposomes to induce DC maturation was first assessed using BMDCs. Day-6 BMDCs from C57BL/6 mice were incubated with complete medium, containing added PBS, 12His liposomes, 9Flg liposomes, or LPS (10 μg), before washing and culturing the cells for 24 h to assess surface expression of the activation markers MHC class II and CD86, by flow cytometry. The results showed that the incubation with 9Flg liposomes induced a significant (60–80%) increase in the relative expression of MHC class II or CD86, relative to controls cells treated with PBS or 12His liposomes (Supplemental Fig. 3A). Analogous studies using BMDCs from MyD88−/− mice showed no significant effect of 9Flg liposomes (Supplemental Fig. 3B). LPS, a known potent inducer of DC maturation, induced significant increases in expression of MHC class II and CD86 in these cells (Supplemental Fig. 3).

The effect of 9Flg liposomes on the maturation of DCs in vivo was examined by injecting naive C57BL/6 mice with PBS (control), LPS (10 μg in PBS, as positive control), or liposomes engrafted with peptide 12His or 9Flg and then comparing the level of expression of the activation markers CD86 and MHC class II on CD11c+ splenocytes after 48 h. Splenocytes from mice for each condition were incubated at 37˚C, before an examination of the cells by fluorescence confocal microscopy, showed that cell-bound 9Flg liposomes were actively internalized. Thus, the OGA88 tracer was distributed relatively uniformly at the cell surface after binding 9Flg liposomes at 4˚C (Fig. 3D, left panel), but a 3-h incubation at 37˚C resulted in the majority of the OGA88-fluorescence being intracellular (Fig. 3D, right panel), demonstrating that the 9Flg liposomes are internalized.

**Treatment with pFlg liposomes induces DC maturation in vitro and in vivo**

The results for a similar experiment using MyD88−/− mice showed no significant effect of 9Flg liposomes (Supplemental Fig. 3). Analogous studies using BMDCs from MyD88−/− mice showed no significant effect of 9Flg liposomes (Supplemental Fig. 3B). LPS, a known potent inducer of DC maturation, induced significant increases in expression of MHC class II and CD86 in these cells (Supplemental Fig. 3).

**Induction of Ag-specific T cell priming.** We used liposomes containing the model Ag OVA to test whether pFlg liposomes can be used to enhance Ag-specific responses. Different groups of five naive C57BL/6 mice were vaccinated on days 0, 7, and 14 with PBS, soluble OVA, or OVA-containing liposomes engrafted with 12His (as control), 9Flg, or 42Flg peptide. At day 21, spleens were isolated, and total splenocytes prepared from each group were pooled and incubated in vitro with soluble OVA to assess cell proliferation by measuring [3H]thymidine incorporation. Control mice, immunized with PBS, OVA alone, or 12His-OVA liposomes exhibited little, if any, proliferative response (Fig. 5A). In contrast, compared with their respective controls, splenocytes from mice vaccinated with 9Flg- and 42Flg-engrafted OVA liposomes exhibited ~10- and ~20-fold increases in cell proliferation, respectively (Fig. 5A).

**Generation of Ag-responsive CD8+ T cells.** The number of IFN-γ-producing CD8+ T cells from splenocytes of mice vaccinated with pFlg-OVA liposomes (as above) was determined by intracellular staining for INF-γ in response to a 3-h stimulation with 1 mM SIINFEKL peptide in the presence of monensin. Two-color FACS analysis of splenocytes from mice vaccinated with PBS, OVA alone, or 12His-, 10Flg-, 11Flg-, 41Flg-, or 45Flg-OVA liposomes showed no significant IFN-γ production by CD8+ T cells (Fig. 5B).

Importantly, splenocytes from mice vaccinated with OVA liposomes engrafted with 9Flg and 42Flg peptide induced a substantially higher proportion (i.e., 1.0 ± 0.1% and 0.7 ± 0.2%, respectively) of SIINFEKL-responsive IFN-γ-producing CD8+ T cells (Fig. 5B), indicating the induction of a modest CD8+ T cell response to the liposome-associated OVA Ag. Interestingly, ~50% of the SIINFEKL-responsive IFN-γ-producing splenocytes from mice vaccinated with 9Flg liposomes showed no significant Ag-specific Ab (Fig. 5C) and 42Flg liposomes (data not shown) were CD8-.

**Induction of Ag-specific Ab.** Mice vaccinated with pFlg-OVA liposomes also were tested for Ab production. Blood samples from the mice vaccinated at day 21 were collected, and sera from the mice in each group were pooled to assess the production of OVA-specific IgG1, IgG2a, and IgG2b by ELISA. No OVA-specific Ab was detected in sera from mice vaccinated with 12His-OVA liposomes (controls), and only low titers of IgG2a (corresponding to IgG2b, in C57BL/6 mice, data not shown) could be detected in sera from mice vaccinated with 9Flg- or 42Flg-OVA liposomes.
Interestingly, however, sera from mice vaccinated with 42Flg-OVA liposomes contained a high titer of IgG1 and a moderately high titer of IgG2b; sera from 9Flg-OVA liposome-vaccinated mice had low/moderate titers of IgG1 and IgG2b (Fig. 5C).

Effect of pFlg-PMV vaccination on tumor growth in tumor models

B16-OVA tumor growth and metastasis. The potential for pFlg liposomes to be useful as vaccines also can be assessed by their ability to induce antitumor effects. Groups of five C57BL/6 mice were inoculated with B16-OVA cells ($2 \times 10^5$ cells i.v. at day 0); vaccinated i.v. on days 2, 8, and 14 by PBS or OVA liposomes engrafted with 12His, 9Flg, or 42Flg; and sacrificed at day 21 to assess the response. As shown in Fig. 6A, the lungs of control mice vaccinated with PBS and 12His-OVA liposomes contained an average of $\sim 120$ tumor foci, whereas the lungs of mice vaccinated with OVA liposomes engrafted with 9Flg, 10Flg, 11Flg, and 42Flg contained an average of $1 \pm 1, 2 \pm 1, 7 \pm 5, 2 \pm 2$ tumor foci, respectively.

The antitumor effects of vaccinating with liposomal Ag engrafted with pFlg were also explored using tumor cell-derived PMVs that contain an array of Ags associated with the tumor.
and can potentially be used to enhance antitumor immunity (28, 32). We prepared PMVs from cultured B16-OVA cells and modified these by incorporating NTA3-DTDA, followed by engraftment of pFlg. Binding assays analogous to those in Fig. 1 revealed that the engraftment of pFlgs (particularly 9Flg and 42Flg) also mediated the binding of tracer-containing modified PMVs to BMDCs (Supplemental Fig. 4). In experiments analogous to those above, groups of five mice (C57BL/6) were inoculated with B16-OVA cells (2 $\times$ 10^5 cells i.v. at day 0); vaccinated at days 2, 8, and 14 by i.v. injection of PBS or PMVs engrafted with 12His, 9Flg, 10Flg, 11Flg, or 42Flg; and sacrificed at day 21 to assess the response. As shown in Fig. 6B, the lungs of the control mice vaccinated with PBS and 12His PMVs contained an average of $\sim$120 tumor foci. In contrast, the lungs of mice vaccinated with 9Flg PMVs or 42Flg PMVs contained an average of 2 $\pm$ 2 and 4 $\pm$ 4 tumor foci, respectively, whereas lungs from mice vaccinated with 10Flg PMVs and 11Flg PMVs contained 43 $\pm$ 15 and 60 $\pm$ 12 tumor foci, respectively (Fig. 6B); representative images of the lungs are shown in Fig. 6C.

**Effect on established B16-OVA tumors.** Experiments also were carried out in mice bearing established s.c. B16-OVA tumors. Mice were injected s.c. on the back with 4 $\times$ 10^5 B16-OVA cells on day 0; after 9 d when tumors were palpable ($\sim$2 mm in diameter), different groups of five mice were vaccinated i.v. each week for 5 consecutive weeks with PMVs engrafted with 12His, 9Flg, 10Flg, 11Flg, or 42Flg. Tumor size was monitored every 3 d; the average tumor diameter $\pm$ SEM for each group of mice is shown $p < 0.0001$; 9Flg PMV versus 12His PMV. B, Subcutaneous P815 tumors were established in syngeneic DBA/2J mice by injecting 4 $\times$ 10^5 P815 cells in the back of the mice (day 0). On day 15, when the tumors reached $\sim$5 mm diameter, groups of mice were vaccinated with PBS (six mice) or 12His- or 9Flg-engrafted P815 tumor cell-derived PMVs (seven mice in each group). The vaccinations were administered again every 5 d for a total of three consecutive vaccinations. The plot shows the survival times of the mice in each of the treatment groups.
PBS or 12His, 9Flg, or 42Flg PMVs. As shown in Fig. 7A, control mice vaccinated with PBS and 12His PMVs exhibited a progressive increase in tumor size, and all mice in these groups were sacrificed by day 30 (when tumors reached 15 mm diameter). Surprisingly, however, mice vaccinated with 9Flg PMVs and 42Flg PMVs exhibited marked abrogation of tumor growth and a dramatic regression of their tumors (Fig. 7A). Thus, all of the mice vaccinated with 9Flg PMVs, as well as 4/5 (i.e., 80%) of the 42Flg PMV-vaccinated mice, had no palpable tumor by day 30; furthermore, these mice showed no signs of tumor and were apparently tumor-free 4 mo after tumor inoculation. Effect on established P815 tumors. We also examined the effect of 9Flg PMV vaccination on s.c. P815 tumors. DBA/2J mice were challenged s.c. on the back with 0.5 × 10^6 P815 tumor cells (day 0); when tumors reached an average of 5 mm in diameter (day 15), different groups of mice were vaccinated i.v. with syngeneic P815 cell-derived PMVs engrafted with 12His (control) or 9Flg peptide. Vaccinations were repeated every 5 d, and tumor size/survival was monitored. The results show that control mice exhibited rapid and progressive tumor growth, with all mice being euthanized by day 22 because of tumor growth (tumors >15 mm diameter). In contrast, 9Flg PMV-vaccinated mice exhibited a markedly slower rate of tumor growth and prolonged survival: 50% of these mice survived at day 22, with some mice surviving to day 25 (Fig. 7B).

Discussion

This study used a novel approach using stealth liposomes engrafted with pFlgs to promote delivery of liposome-encapsulated Ag to APCs in vivo. Previous structure-function studies using truncated and/or mutated forms of flagellin indicate that the proinflammatory properties of flagellin are localized in the conserved N- and C-terminal regions (33–37, 44), with conflicting data claiming an essential role for the central hypervariable domain (36). Although not previously reported, short peptides making up the regions of flagellin implicated in the interaction with TLR5 may also bind TLR5 themselves; however, short peptides generally lack significant secondary/tertiary structure, suggesting that any such interaction is likely to be of low affinity, potentially limiting their use in vaccine development. However, peptides engrafted onto liposomes promote multimeric interactions between the liposome-encapsulated peptide molecules with receptors on the apoping cell (45). This attribute provides a means to reveal and use weakly interacting peptides—an approach exploited in the present work. In this way, we showed that the adjuvant properties of flagellin could be conveniently harnessed to target liposome-associated Ag to APCs, as well as to induce potent Ag-specific and antitumor immunity.

We produced several synthetic His-tagged peptides containing a sequence of 20–30 aa corresponding to different conserved regions in flagellin considered to be important for interaction with TLR5 (Table 1). Of the peptides tested, 9Flg and, to a lesser extent, 42Flg promoted substantial binding of NTAG-DTDA liposomes to CD11c<sup>+</sup> BMDCs and SpDCs (Fig. 1, Supplemental Fig. 1). Two-color FACS analysis of cells indicates that 9Flg-liposome binding correlates with TLR5 expression (Fig. 3A), with little or no binding to cells lacking the expression of TLR5. Importantly, 9Flg liposomes bound CD11c<sup>+</sup> DCs in vitro and in vivo (Fig. 2A, 2B), and cell-bound 9Flg liposomes were efficiently internalized by cultured DCs (Fig. 3B). This indicates that after interacting with TLR5 on APCs, 9Flg liposomes can be internalized, permitting intracellular Ag processing and presentation.

Recent evidence suggests that a 14-aa α-helical motif within the N-terminal domain (aa 95–108) and a conserved C-terminal motif (around aa 408–438) of flagellin are essential for full activation of TLR5, with the N-region of flagellin (aa 88–97) having been predicted to physically interact with aa 555–559 of TLR5 (33–37, 39). Our finding that liposomes engrafted with 9Flg and 42Flg (which contain aa 85–111 and aa 98–112 of flagellin, respectively) interact with TLR5-expressing cells, but that liposomes engrafted with 10Flg and 11Flg (which contain aa 405–425 and aa 408–438 of flagellin, respectively) exhibit only little binding, underscores the importance of the N-terminal aa 85–111 region and is consistent with the C-terminal region not playing a major role in the binding of flagellin to TLR5 (15, 17, 33, 39).

Although peptides 9Flg (containing aa 85–111 of flagellin) and 45Flg (containing aa 98–111 of flagellin) share considerable overlap, our results show that compared with 45Flg, peptide 9Flg is considerably more potent at promoting the binding of liposomes to TLR5<sup>+</sup> cells and at inducing Ag-specific immunity. The reasons for this are unclear. One possible explanation is that 9Flg (and not 45Flg) contains the amino acids crucial for interaction with TLR5. Interestingly, however, a 14-aa region defined by aa 95–108 of flagellin is reported to form a hairpin loop, and deletions or site-specific mutations within this region can apparently abolish the proinflammatory activity of flagellin (35). Because 45Flg contains aa 98–111 of flagellin, but 9Flg also contains amino acids purported to be nonessential for functional TLR5 activation (35), another possible explanation for the activity of 9Flg is that, when anchored onto NTA<sub>4</sub>-DTDA liposomes, the purported nonessential region (aa 85–95) could contribute to overcoming steric constraints for the interaction between liposome-anchored 9Flg (containing the flagellin hairpin region) and TLR5.

Interestingly, it was reported that asialo-GM1 could play a coreceptor role in the binding of flagellin to TLR5 in lung (36); however, the precise relevance of this for the flagellin–TLR5 interaction remains to be elucidated. The possibility that pFlg liposomes can interact with receptors other than TLR5 on cells also cannot be discounted by the present work. However, our demonstration of a correlation between the binding of pFlg liposomes and TLR5 mAb to cells known to express TLR5 (Fig. 3A) is consistent with 9Flg liposomes interacting with TLR5.

An important finding from the present work is that the interaction of pFlg liposomes with APCs can elicit APC activation/maturation in vitro (Supplemental Fig. 4), as well as in vivo (Fig. 4). The administration of 9Flg liposomes to mice increased the expression of activation markers MHC class II and CD86 on CD11c<sup>+</sup> cells recovered from spleen 24 h later to an extent comparable to that seen with the administration of 10 μg LPS (a TLR4 ligand) (Fig. 4A). Flagellin is known to elicit DC maturation by binding to TLR5 and signaling through the MyD88 signal-transduction pathway, which involves recruitment of the MyD88 adapter protein. Therefore, it is not surprising that analogous experiments performed using syngeneic MyD88<sup>−/−</sup> mice failed to show any increase in CD86 and MHC class II expression on CD11c<sup>+</sup> splenocytes from mice injected with pFlg liposomes (Fig. 4B). In contrast, splenocytes from MyD88<sup>−/−</sup> mice injected with LPS still elicited a substantial increase in CD86 and MHC class II expression, presumably because LPS (unlike flagellin) can signal DC maturation through the MyD88- and TRIF-dependent pathways (7, 19). These findings show clearly that vaccination with 9Flg liposomes is effective at inducing MyD88-dependent maturation of CD11c<sup>+</sup> DCs in vivo.

The ability to prime Ag-specific T cells and to generate IFN-γ-producing CD8<sup>+</sup> T cells is crucial for the induction of an effective CTL response and protective antitumor immunity (23, 47). Further confirmation that pFlg liposomes can be used to elicit Ag-specific responses was provided by our demonstration that vaccination of C57BL/6 mice with 9Flg- and 42Flg-OVA liposome induced Ag-specific T cell priming, as assessed by the ability to induce increased Ag-specific cell proliferation (Fig. 5A), as well as to generate a higher
proportion (~1%) of CD8+ T cells that produced IFN-γ in response to Ag compared with control vaccinations. These results are consistent with the reported induction of a SIINFEKL-specific CD8+ T cell IFN-γ ELISPOT response to fused flagellin-OVA vaccine (20). Our results indicate that vaccination with pFlg-OVA liposomes also induced a marked increase in the proportion of IFN-γ-producing CD8+ cells (Fig. 5C). We did not attempt to characterize the cells or the mechanism involved in this response. However, it was reported that vaccination with flagellin-Ag fusion protein (presumed to elicit responses through TLR5) also results in a potent induction of CD8+ and CD4+ Ag-specific T cell responses (19) and that the injection of flagellin in the footpad of mice induces the proliferation and activation of NK cells in the draining lymph node (16). Thus, the effects we observed also align with these previous findings. Interestingly, vaccination with 9Flg- and 42Flg-OVA liposomes also elicited the production of Ag-specific IgG1 and IgG2b Ab (Fig. 5D). The results demonstrate that vaccination with Ag liposomes engrafted with 9Flg or 42Flg is effective at inducing humoral and cell-mediated immune responses to liposome-associated Ag.

Crucial to the effectiveness of pFlg liposomes as a vaccine is their ability to induce protection against disease. We first inoculated mice with B16-OVA melanoma cells and then vaccinated them with OVA liposomes engrafted with the different pFlgs to assess the effect on tumor growth and metastasis. We also produced PMVs (known to contain a battery of tumor Ags) from cultured tumor cells (B16-OVA and P815 cells) and, after incorporation with NTA3-DTDA, engrafted them with 9Flg or 42Flg peptides for use as vaccines. In both experimental strategies, the vaccination of mice previously challenged with the B16-OVA tumor induced a dramatic inhibition of tumor growth/metastasis, resulting in the majority of the mice having a complete absence of tumor foci in their lungs (Fig. 6A, 6B). The antitumor responses induced by vaccinating with OVA liposomes engrafted with 10pFlg and 11pFlg (Fig. 6A) were stronger than for the corresponding vaccinations with PMVs (Fig. 6B). A likely explanation for this is that, under the conditions used, vaccination with OVA liposomes resulted in the surrogate tumor Ag (OVA) being administered at high levels compared with the amount of OVA and other tumor Ags contained in the PMVs. Thus, vaccination with OVA liposomes may have resulted in overvaccination and the consequent induction of an effective antitumor response, even with the less-active peptides 10Flg and 11Flg. However, these peptides are clearly less effective at inducing antitumor effects when PMVs are used (Fig. 6B, 6C), consistent with them also being less effective at mediating the binding of liposomes to DCs (Figs. 1, 2, Supplemental Figs. 1, 2).

A major finding is that vaccination with 9Flg PMVs also induced a strong antitumor response in DBA/2J mice bearing s.c. B16-OVA melanoma, resulting in inhibited tumor growth and prolonging survival of the animals (Fig. 7B). Importantly, studies with mice bearing established s.c. B16-OVA tumors (~2 mm diameter) resulted in complete tumor regression; unlike control mice that exhibited progressive tumor growth (Fig. 7A), the 9Flg PMV-treated mice were tumor-free 4 mo after tumor inoculation. Although the effectiveness can depend on the tumor type, our results clearly show that vaccination with 9Flg PMVs can be a highly effective approach to inducing strong antitumor responses and immunotherapeutic effects in these different tumor models.

In summary, this work developed a novel strategy that uses pFlgs to promote the interaction of liposomal Ag with APCs and that can potentially circumvent the need to manipulate DCs ex vivo for use in cancer immunotherapies (48). This approach has distinct advantages over the use of Ag-flagellin fusion proteins to target Ag to TLR5 (19–26) or single-chain variable fragment-engrafted Ag-containing liposomes to target Ag-uptake receptors to DCs (28). First, the relatively short pFlgs can readily be produced synthetically and do not require the production of recombinant proteins, such as Ag-flagellin fusions and short-chain variable fragments, which can be cumbersome to produce and difficult to use because of poor stability. Second, as demonstrated in this study, pFlg liposomes/PMVs vaccines are self-adjuvating, eliminating the need to deliver a concomitant DC maturation signal to induce an effective immunogenic response (28, 46). This is particularly important, because the absence of a DC-maturation signal can lead to a failure to mount the desired response, or it might lead to the induction of tolerance to the Ag (47). Third, the approach is versatile, and it can be readily applied to raising immune responses to potentially any clinically relevant Ag that can be incorporated in a liposome. Fourth, the use of pFlgs instead of wild-type flagellin can be expected to reduce the risk for triggering the production of neutralizing Abs in the host, which can adversely affect defense mechanisms against pathogenic flagellated bacteria. Our preliminary studies indicate that 9Flg liposomes also bind strongly to human monocyte-derived DCs (data not shown). Therefore, the use of pFlg-engrafted liposomes/PMVs could provide a convenient and attractive means to harness the immunopotentiating properties of the innate and adaptive immune systems through TLR5 on APCs for the development of novel effective vaccines and cancer immunotherapies.

Acknowledgments

We thank Lipotek Pty Ltd for providing the NTA3-DTDA for research purposes. We also thank David Bennett for carrying out some of the preliminary experiments and Prof. S. Akira and S. Uematsu, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Japan, for making the MYD88Δ/Δ mice available for some of the experiments carried out in this study.

Disclosures

J.G.A. has a commercial interest in Lipotek Pty Ltd.

References

LIPOSOMAL Ag WITH FLAGELLIN PEPTIDES ELICTS ANTITUMOR EFFECTS


**Suppl. Fig. S1. Liposomes engrafted with pFlg peptides bind murine BMDCs and splenic DCs.**

Day 6 BMDCs from C57BL/6 mice were suspended in 50% FCS-PBS and incubated (1 hr, 37 °C) with tracer-containing liposomes engrafted with peptide 12His (control), 9Flg, 10Flg, 11Flg, 41Flg, 42Flg or 45Flg, as indicated. Cells were then washed, blocked with mouse IgG and stained with APC-conjugated mAb to CD11c, before analysis by flow cytometry. The two-color dot-plots in (A) show fluorescence of the cells (OG<sub>488</sub>-liposomes versus APC-mAb, after gating out dead cells) due to the binding of liposomes engrafted with either 12His- or the indicted pFlg-peptide, as indicated, followed by staining with APC-mAb to CD11c. Two-color dot-plots of similar experiments carried out using murine splenic DC (SpDCs) instead of BMDCs are shown in (B); with a condition in which the SpDCs were stained with FITC-mAb to CD11b (instead of mAb to CD11c) also being shown in (C) (AF<sub>647</sub>-liposomes versus FITC-mAb to CD11b). Quadrant gates were set as detailed in the Materials and Methods. For each dot-plot the mean percentage (%) of gated live cells (BMDCs or SpDCs) that bind engrafted liposomes and that stain positive for the indicated mAb (i.e. double positive cells) is shown. Also shown is the average fold-increase (F) in mean fluorescence intensity of the cells incubated with liposomes engrafted with the indicated peptide and that stain positive for the indicated mAb, relative to the respective control cells incubated with 12His-liposomes (and defined as having F=1). Each result represents the mean ±SEM obtained from 3-5 independent experiments; *denotes p<0.05 relative to the control cells (incubated with 12His-liposomes) for the indicated experiment.
Suppl. Fig. S2. pFlg-liposomes bind CD11c⁺, CD11b⁺ and CD19⁺ splenocytes in vitro.

Splenocytes prepared from the spleens of C57BL/6 mice were incubated (1 hour, 37°C) in 50% FCS-PBS, with tracer (OG-DHPE or AF₆₄₇-DOPE) -containing liposomes engrafted with peptide 12His (control), 9Flg, 10Flg, 11Flg, 41Flg, 42Flg or 45Flg, as indicated. The splenocytes were then washed, blocked with mouse IgG, and stained with: APC-mAb (CD11c), FITC-mAb (CD11b) or PE-mAb (CD19), before analysis by flow cytometry. The two-color dot-plots show: (A) APC-mAb (CD11c) versus OG₄₈₈ (liposomes); (B) FITC-mAb (CD11b) versus AF₆₄₇ (liposomes), and (C) PE-mAb (CD19) versus AF₆₄₇ (liposomes), as indicated. Quadrant gates were set as detailed in the Materials and Methods. For each dot-plot the mean percentage (%) of gated live splenocytes that bind engrafted liposomes and that stain positive for the indicated mAb (i.e. double positive cells) is shown. Also shown is the average fold-increase (F) in mean fluorescence intensity of the splenocytes incubated with liposomes engrafted with the indicated peptide and that stain positive for the indicated mAb, relative to the respective control splenocytes incubated with 12His-liposomes (and defined as having F=1). Each result represents the mean ±SEM obtained from 3-5 independent experiments; *denotes p<0.05 relative to the control cells (incubated with 12His-liposomes) for the indicated experiment.

Suppl. Fig. S3. Vaccination with pFlg-liposomes activates DCs in vitro. Day-6 BMDCs prepared from native C57BL/6 mice were incubated (3 hr, 37 °C) in a 96-well plate with complete medium containing added PBS (as control), 12His-liposomes, 9Flg-liposomes, or LPS (10μg). After the incubation the cells were washed, suspended in complete medium and cultured for 24 hr at 37 °C. The cells were washed and blocked with mouse IgG, before staining with APC-labelled mAb to CD11c and FITC-labelled mAb to either MHC-II or CD86. The relative expression of each activation marker was expressed as a fold-increase: the mean fluorescence intensity (of CD11c⁺ cells) due to staining for either MHC class-II or CD86 (for the indicated condition), was divided by the mean fluorescence intensity due to staining for MHC class II or CD86, respectively, for
CD11c+ BMDCs treated with PBS as control, and the results are shown in (A). The results for a similar experiment using BMDCs prepared from MyD88−/− C57BL/6 mice are shown in (B). Each result represents the mean from three independent experiments (*denotes p<0.002).

**Suppl. Fig. S4. PMVs engrafted with His-tagged pFlg peptides bind to a proportion of CD11c+ murine BMDCs.** Plasma membrane vesicles (PMV) modified by incorporation of NTA3-DTDA and fluorescent tracer OG488-DHPE followed by engraftment of peptide, were tested for their ability to bind to Day-6 BMDCs of C57BL/6 origin. Modified PMVs (derived from B16-OVA cells) which had been engrafted with either 12His (control peptide) or the pFlg peptides 9Flg, 10Flg, 11Flg, 41Flg, 42Flg, and 45Flg were incubated with BMDCs (2×10⁵) for 1 hr at 37°C in PBS containing 50% FCS. The cells were then washed, pre-incubated with mouse IgG and then stained with APC-labelled mAb to CD11c and analysed by flow cytometry. The two-color dot-plots show staining of the BMDCs OG488-fluorescence (PMVs) versus APC (CD11c mAb) staining as indicated. Quadrant gating was set to contain >98% of all gated live mock-stained cells (as control for CD11c mAb staining, not shown), and >98% of all gated live cells stained with 12His-liposomes (as control for pFlg-liposome binding), respectively. For each dot-plot the mean percentage (%) of gated live cells (BMDCs or SpDCs) that bind engrafted liposomes and that stain positive for CD11c mAb (i.e. double positive cells) is shown. Also shown is the average fold-increase (F) in mean fluorescence intensity of the cells incubated with liposomes engrafted with the indicated peptide and that stain positive for CD11c mAb, relative to control cells incubated with 12His-liposomes (and defined as having F=1). Each result represents the mean ±SEM obtained from 3-4 independent experiments; *denotes p<0.05 relative to control cells incubated with 12His-liposomes.
Supplementary Fig. S1
Supplementary Fig. S2
Supplementary Fig. S3