Fluctuation of Peripheral Blood T, B, and NK Cells during a Menstrual Cycle of Normal Healthy Women

Sungki Lee, Jeeyun Kim, Byungwoo Jang, Sungeun Hur, Unsuk Jung, Kihyun Kil, Baegju Na, Millina Lee, Youngmin Choi, Atsushi Fukui, Alice Gilman-Sachs and Joanne Y. Kwak-Kim

J Immunol 2010; 185:756-762; Prepublished online 7 June 2010;
doi: 10.4049/jimmunol.0904192

http://www.jimmunol.org/content/185/1/756
Cyclical hormonal changes during an ovarian cycle may affect immune responses, which is crucial for the embryonic implantation. We aim to investigate whether the levels and activity of T, B, and NK cells change during a menstrual cycle. Twenty-two normally cycling women were enrolled and peripheral blood was drawn serially during a menstrual cycle. Intracellular cytokine expression of CD3+ CD4+ and CD3+CD8+ cells, and Th1/Th2 cytokine-producing T cell ratios were determined using flow cytometric analysis. NK cell cytotoxicity was measured by flow cytometric analysis at E:T ratios of 50:1, 25:1, and 12.5:1 and also using LU at 20%. Proportions (percentage) of CD3+(p = 0.046) and CD3+CD4+(p = 0.002) T cells were increased in the follicular phase compared with the luteal phase. The levels of CD3+CD56+ (p = 0.010) and CD3+CD56dim (p = 0.012) NK cells and NK cytotoxicity at E:T ratio of 50:1, 25:1, and 12.5:1 and LU at 20% were significantly increased in the luteal phase compared with the follicular phase. Even though IL-10–producing CD4+ T cells were significantly lower in the midluteal phase as compared with the early follicular phase. The levels of CD3+CD8+ and CD3+CD56+ cells, and Th1/Th2 cytokine-producing T cell subsets, and ratios of Th1/Th2 cytokine-producing T cells were not significantly changed during a menstrual cycle. We conclude that peripheral blood NK and T cell levels as well as NK cytotoxicity are changed during a menstrual cycle. Neuroendocrine regulation on immune responses is suggested during an ovarian cycle, which may be critical for embryonic implantation and pregnancy. The Journal of Immunology, 2010, 185: 756–762.
related to the study population, study design and sample size, and so on.

In women with recurrent pregnancy losses or multiple implantation failures, levels of peripheral blood NK cells and Th1/Th2 cytokine-producing cell ratios were significantly higher than those of normal fertile women (15, 16). Contrarily, T and NK cell levels and the Th1/Th2 cytokine ratio in peripheral blood of normal pregnant women are significantly decreased as compared with those of nonpregnant women (15, 17). Therefore, systemic immune regulation prior to and postconception is directly related to the reproductive outcome. Gonadal sex steroid and GnRH may be keenly related to systemic regulation of immune responses. However, the effect of ovarian cycle on immune effectors is remained largely elusive. In this study, we aim to investigate the levels of PBL subpopulations, NK cell cytotoxicity, and the levels of Th1 and Th2 cytokine-producing T lymphocytes during a menstrual cycle in healthy normal cycling women.

Materials and Methods

Study population

The study was designed as a prospective observational study. Study subjects were recruited at Konyang University Hospital (Daejeon, Korea). All had signed an informed consent before they entered the study. A total of 30 women were enrolled in the study; however, 8 dropped out as a result of emerging pregnancy, vaccination, inflammatory disease, and failure of matching sampling schedule. Finally, 22 women completed the study as scheduled. Age, obstetrical, and menstrual histories of study women are listed in Table I. All subjects were nonpregnant healthy women whose menstrual cycles had been regular. No one had active diseases, a history of spontaneous abortion, or autoimmune diseases. Eight women had a history of normal delivery and 14 had never been pregnant.

Laboratory

Peripheral blood was drawn consecutively for five times throughout a menstrual cycle between 8 and 10 AM. The menstrual cycle was divided into five phases: the early follicular (EF, menstrual cycle day [MCD] 2–4), the late follicular (LF, MCD 11–13), the early luteal (EL, MCD 16–18), the midluteal (ML, MCD 20–22), and the late luteal (LL, MCD 25–27) phases. A total of 7–10 ml blood was collected each time in a BD Vacutainer with heparin (BD Biosciences, San Jose, CA). All specimens were immediately processed following blood sampling.

Immunophenotyping of the whole blood

Two-color direct immunofluorescence reagent kits (BD Simultest IMK-Lymphocyte; BD Biosciences) were used to enumerate percentages of the following mature human leukocyte subsets in erythrocyte-lysed whole blood: CD3+ T, CD3+CD8+ T, CD19+ B, NK (CD3−CD56+ and/or CD16+), and CD3+CD56− NKT cells. IgG1 FITC and IgG2a PE were used for isotype controls.

Table I. Age, obstetrical, and menstrual histories of study women who have normal menstrual cycles (n = 22)

<table>
<thead>
<tr>
<th>Age (y)</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1 ± 4.71</td>
<td>24–42</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gravidity</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 ± 0.84</td>
<td>0–2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parity</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 ± 0.84</td>
<td>0–2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No. of spontaneous abortions</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ± 0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Menstrual interval (d)</th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.1 ± 1.84</td>
<td>27–33</td>
<td></td>
</tr>
</tbody>
</table>

Separation of PBMCs

PBMCs were isolated using Ficoll-Hypaque (Pharmacia Biotech, Uppsala, Sweden) density centrifugation with Leucogel (Greiner Bio-One, Frickenhausen, Germany). After washing with HBSS (Life Technologies), the cells were adjusted to a final concentration of 5 × 10⁶ cells/ml in RPMI 1640 medium (Life Technologies) supplemented with 10% FBS (Life Technologies) and 1 ml antibiotic-antimycotic solution (100×; Life Technologies). Prepared PBMCs were stored at 4°C in the dark.

NK cell cytotoxicity study

NK cell cytotoxicity was determined at E/T cell ratios of 50:1, 25:1, and 12.5:1 (18). Target cells were prepared by culturing the cell line K562, an NK cell-sensitive human erythromyelocytic leukemia cell line, in RPMI 1640 medium supplemented with 10% FBS and 1% antibiotic-antimycotic solution at 37°C in a 5% CO₂ humidified incubator. A total of 5 × 10⁶ K562 cells were washed twice in RPMI 1640 medium containing antibiotic-antimycotic solution and resuspended in 0.5 ml PKH2 dye (Sigma-Aldrich). In a separate 1.5-ml tube, 2 μl PKH2 dye (Sigma-Aldrich) was added to 0.5 ml PKH2 dye. PKH2 dye solution was added to the K562 target cells and incubated for 2 min at room temperature. After incubation, 1 ml PBS was added to the cell suspension to stop the reaction. The cells were then washed three times with RPMI 1640 medium containing 10% FBS and 1% antibiotic-antimycotic solution, and the cell concentration was adjusted to 1 × 10⁶ cells/ml. PBMCs and PKH2-labeled K562 cells were cocultured at E/T ratios of 50:1, 25:1, and 12.5:1 at 37°C in a 5% CO₂ humidified incubator. After 2 h, 0.2 μl propidium iodide (Sigma-Aldrich) solution (10 mg/ml) was added, and the cells were vortexed. NK cell cytotoxicity was expressed as the percentage of dead K562 cells containing propidium iodide.

LUs were also calculated to compare NK cytotoxicities of each menstrual phase. LU is defined as the estimated number of effector cells to kill a specific percentage of target cells. LU was calculated as follows: number of LU/10⁷ effector cells = 10⁷/(TXp), T indicates number of target cells, and Xp is the E:T ratio required for target cell lysis of a particular percentage (19). LU at 20% (LU20) is computed from the dose-response cytotoxicity curves.

Th1 and Th2 intracellular cytokine study

To activate PBMCs, 1 ml 5 × 10⁶ cells/ml of cell suspension was incubated with 25 ng/ml PMA (Sigma-Aldrich) and 1 μm ionomycin (Sigma-Aldrich) in polypropylene test tube for 16 h at 37°C in a 5% CO₂ humidified incubator. A 0.2 μg GolgiPlug (protein transport inhibitor containing brefeldin A; BD Biosciences) was also applied at the beginning of culture incubation to inhibit cytokine secretion. Cell staining procedure was carried out according to the manufacturer’s instructions with the Cytofix/ Cytoperm kit (BD Biosciences). Briefly, PBMCs were washed in PBS with 0.09% sodium azide twice, followed by staining with the fluorochrome-conjugated mAbs specific for cell surface Ags and were incubated for 15 min at 4°C. Anti-CD3-FITC and anti-CD8-PE were used to identify T cell populations. The cell pellet was then fixed and permeabilized for 20 min using 25 μl Cytofix/Cytoperm solution (BD Biosciences). Next, PE-conjugated anti-cytokine Abs were used to stain PBMCs for 30 min. To detect intracellular cytokines, 0.2 μg mAbs for TNF-α, IFN-γ, and IL-10 were applied. Corresponding isotype controls were used for each Ab. After intracellular staining, the cells were washed twice with Perm/Wash buffer (BD Biosciences) and resuspended in 0.5 ml Perm/Wash buffer (16). Statistical analysis

Tables II shows that the percentages of CD3+ T, CD3+CD4+ T, and CD3+CD8+ T cells are significantly changed during a menstrual cycle (EF and LF, EL, ML, and LL phases) of healthy women.
The percentages of TNF-α and IL-10 cytokine-producing T cell populations (CD3+, CD3+CD4+, CD3+CD8+) at the five menstrual phases were not significantly different (Table III). However, IL-10 cytokine-producing CD3+CD4+ T cells showed marginally different changes during a menstrual cycle (p = 0.066). There were no significant differences in levels of TNF-α–producing CD3+, CD3+CD4+, and CD3+CD8+ T cells between any two menstrual phases. IFN-γ–producing CD3+, CD3+CD4+, and CD3+CD8+ T cells were also not significantly different between any two phases of a menstrual cycle. The level of IL-10–producing CD3+CD4+ T cells was decreased in the ML phase when compared with that of the EF phase. The levels of IL-10–positive CD3+ and CD3+CD8+ T cells were not significantly different between any two phases of menses.

The proportion of TNF-α–producing CD3+CD4+ T cells was significantly higher than IFN-γ–producing CD3+CD4+ T cells throughout the cycle (p < 0.001, each phase) (Table III). When comparing cytokine expression in CD3+CD4+ and CD3+CD8+ T cells, percentages of TNF-α– and IL-10–producing cells were significantly higher in CD3+CD4+ T cells than CD3+CD8+ T cells in all five phases of the menstrual cycle (p < 0.001 in TNF-α–cells; p < 0.001 for EF, LF, EL and LL phase; p < 0.01 for ML in LL phase) (Fig. 2A, 2B). However, percentage of IFN-γ–producing CD3+CD4+ T cells were significantly lower than those of CD3+CD8+ T cells in all five menstrual phases (p < 0.001 each) (Fig. 2C).

Th1/Th2 cell ratios in T cell subsets (CD3+, CD3+CD4+, and CD3+CD8+) were not significantly changed during the menstrual cycle (Table IV). Th1/Th2 cell ratios in CD3+, CD3+CD4+, and CD3+CD8+ T cells did not show any significant changes between each phase of ovarian cycle.

The ratios of TNF-α/IL-10–producing cells (p = 0.054 in ML phase; *p < 0.05 in EF and LF phases; and **p < 0.01 in LF and EL phases) (Fig. 3A) and IFN-γ/IL-10–producing cells (***p < 0.001 in all five menstrual phases) (Fig. 3B) were significantly higher in CD3+CD8+ T cells than those of CD3+CD4+ T cells throughout the menstrual phases.
role of progesterone and/or estrogen on T cells. The potential
down regulatory effect of sex steroids and/or pituitary gonado-
tropin has been suggested. In patients with Sheehan’s syndrome
\((n = 8) \), significantly higher pan T, Th, and cytotoxic T (CD2,
CD4, and CD8) and B cells (CD19) were reported when compared
with normal menstruating women \((14) \).

In a PCR work, CD4+ T cells were reported to express relatively
high levels of ER\(\alpha \) mRNA as compared with ER\(\beta \), and B and NK
cells were also reported to express ER\(\alpha \) and ER\(\beta \) \((20, 21) \). It
has been demonstrated that 17\(\beta \)-estradiol suppresses production of
IL-2, IL-6, TNF-\(\alpha \), IL-1 receptor antagonist, and IL-1\(\beta \) from human
peripheral blood T cells \((22, 23) \). PRs are expressed on lymphocytes
of pregnant women \((24) \). Membrane PR\(\alpha \) mRNA has been also
detected in T cells, which is upregulated in the luteal phase of
the menstrual cycle in CD8\(^{+} \) but not in CD4\(^{+} \) T lymphocytes \((10) \). In
addition, it has been shown that progesterone can suppress Th1
immune responses and enhance Th2 cytokine production in vitro
\((25) \). Therefore, both estrogen and progesterone have potential
immune regulatory function through activation of their receptors.

T cell changes in this study are not consistent with the previous
studies. Coulam et al. \((26) \) reported no variation in the percentage
of Leu-2, Leu-3, or Leu-4 cells during the menstrual cycle \((n = 5) \) or
oral contraceptive cycle \((n = 5) \). Later on, Lopez-Karpovitchs et al.
\((14) \) reported that normal women \((n = 6) \) showed little nonstatisti-
cally different changes along the menstrual cycle in peripheral
blood cell parameters. Discrepancies in these studies as compared
with ours can be explained by 1) number of study population, 2)
different cell markers, and 3) different blood sampling time.

In this study, NK cell levels and cytotoxicity are statistically
significantly different along the five menstrual phases. The major

![FIGURE 1. NK cell cytotoxicities are measured by flow cytometry during a menstrual cycle of normal healthy women \((n = 22) \). A, Percentage of NK cytotoxicities are plotted at E:T ratios of 50:1, 25:1, and 12.5:1. NK cytotoxicities at E:T ratio of 25:1 \((p = 0.043) \) and 12.5:1 \((p = 0.044) \) showed significant changes during a menstrual cycle. B, NK cytotoxicities are plotted with LU20s. NK cytotoxicities measured by LU20 were not significantly different along the menstrual cycle. Each box shows the first and third quartiles, and a horizontal bar in the box represents the median. Dotted lines indicate the mean values. Whiskers at the top and bottom of the box represent the range of typical data values. Outliers (values that are between 1.5 and 3 times the interquartile range) and extreme values (values that are more than 3 times the interquartile range) are plotted as \(\circ \) or \(\bullet \). Differences in NK cytotoxicity between two phases were indicated with open brackets with †. NK cytotoxicity was measured at five different phases during the menstrual cycle. LU20, LU at 20%.](http://www.jimmunol.org/Downloadedfrom)
changes were NK cell levels between the EF and the ML and LL phases. In addition, NK cytotoxicity was significantly increased during the ML phase as compared with EF and LF phases both in

![Image](http://www.jimmunol.org/)

FIGURE 2. Proportions of TNF-α–, IFN-γ–, and IL-10–producing T cell subpopulations were measured during a menstrual cycle of normal healthy women (n = 22) by flow cytometric analysis. A, Comparison between CD3+CD8+ and CD3+CD4+ T cell populations producing TNF-α. Comparison between CD3+CD8+ and CD3+CD4+ T cell populations producing IL-10 (B) and comparison between CD3+CD8+ and CD3+CD4+ T cell populations producing IFN-γ (C). Significant differences between two T cell subpopulations producing TNF-α, IFN-γ, or IL-10 in each menstrual phase are plotted with asterisks (**p < 0.01; ***p < 0.001).
immunotherapy, and i.v. IgG (30, 34). Progesterone was also reported not to influence on NK activity (30). However, recently, PR was identified in KIR+ NK cells (11), but function of PR of NK cells still remained to be explored. Interestingly, Shakhar et al. (32) suggested that β-adrenergic stimulation acted as a suppressor of NK cytotoxicity through β-adrenergic receptors, which were increased during the luteal phase. These findings suggest that complicated neuroendocrine regulatory system(s) are involved in regulation of NK cytotoxicity.

Our observation of significant increase of NK cell level in the ML and LL phases compared with the EF phase may be connected to the uterus. Progesterone also helps CD56++ NK cells entering to the uterus and proliferation of uterine NK cells through stimulation of IL-15, vascular endothelial growth factor, prolactin, and other growth factors from endometrial stromal cells (36). Trafficking of peripheral blood NK cells to the uterus is proposed as one of putative mechanism of uterine NK cell increase. Trophoblasts and endometrial stromal cells express chemokines and adhesion molecules, which are possibly involved in the recruitment of NK cells (37). Furthermore, there is a report that CD56+CD16+ cells can be transformed to CD56+CD16- cells by TGF-β in vitro, which is produced locally in the secretory endometrial and decidua tissues (38, 39). Thus, TGF-β may convert CD56+CD16+ NK cells to CD56+CD16- cells in the uterus. We suggest that the increase of peripheral blood NK cells in the luteal phase may contribute to recruitment of uterine NK cells from peripheral blood.

The mechanism controlling the cytokine production in T cells during the menstrual cycle remains to be elucidated. Whitacre et al. (40) described that low concentration of estrogen and prolactin induced Th1 responses, but high levels of estrogen such as the concentration in pregnancy, progesterone, and testosterone promote to develop a Th2 response. In our study, TNF-α and IFN-γ T cell populations were not fluctuated during the menstrual cycle. However, there were significant changes between the EF and ML phases in terms of the level of IL-10–producing CD3+CD4+ T cells. No such prominent changes were found in the ratio of Th1/Th2 cytokine-producing CD3+CD4+ T or CD3+CD8+ T cells. Because there are no other studies measuring cytokine producing cells during a menstrual cycle, we cannot compare our data with others. However, it is noteworthy that the previous report of comparing cytokine profiles between the follicular and luteal phases did not demonstrate any differences in production of IL-4, IL-2, and IL-10 (13). Progesterone is known to suppress Th1 response and enhance IL-10–producing Th2 cells (25). At concentrations in the placenta, progesterone-suppressed immune functions of T cells by a nongenomic mechanism, which is the blocking of K+ channel, Ca2+ signaling and NF of activated T cells driven gene expression (41).

Previously, we have reported that women with a history of recurrent spontaneous abortions or multiple implantation failures demonstrated significantly elevated peripheral blood NK cell levels, NK cytotoxicity, and Th1/Th2 cell ratios as compared with those of normal fertile women (16, 29, 42). In a study conducted in women undergoing in vitro fertilization (IVF) and embryo transfer, the Th1/Th2 ratios of IFN-γ/IL-4 and TNF-α/IL-4 measured on the day of oocyte retrieval were significantly lower than the ratios before controlled ovarian stimulation, especially in women with successful

Table IV. Ratio of Th1 (TNF-α and IFN-γ)/Th2 (IL-10) cytokine producing T cells or subpopulations during a menstrual cycle of normal healthy women (n=22) by flow cytometric analysis

<table>
<thead>
<tr>
<th>Phase of Menstrual Cycle</th>
<th>EF</th>
<th>LF</th>
<th>EL</th>
<th>ML</th>
<th>LL</th>
<th>p Value among Five Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+ T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α/IL-10</td>
<td>22.83 ± 8.88</td>
<td>24.84 ± 7.31</td>
<td>23.50 ± 8.14</td>
<td>24.81 ± 8.43</td>
<td>24.06 ± 9.03</td>
<td>0.755</td>
</tr>
<tr>
<td>IFN-γ/IL-10</td>
<td>11.19 ± 5.77</td>
<td>13.20 ± 5.04</td>
<td>11.83 ± 4.84</td>
<td>12.49 ± 5.71</td>
<td>12.50 ± 5.78</td>
<td>0.731</td>
</tr>
<tr>
<td>CD3+CD4+ T cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α/IL-10</td>
<td>20.96 ± 14.32</td>
<td>23.22 ± 11.58</td>
<td>23.71 ± 11.85</td>
<td>25.58 ± 9.86</td>
<td>23.12 ± 15.57</td>
<td>0.735</td>
</tr>
<tr>
<td>IFN-γ/IL-10</td>
<td>8.06 ± 5.53</td>
<td>8.68 ± 3.62</td>
<td>9.36 ± 6.63</td>
<td>9.39 ± 5.21</td>
<td>8.86 ± 8.69</td>
<td>0.892</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD.

![Figure 3](http://www.jimmunol.org/)

FIGURE 3. Ratios of Th1 and Th2 cytokine-producing T cells during a menstrual cycle of normal healthy women (n=22) are measured by flow cytometric analysis. A, TNF-α/IL-10–producing CD3+CD8+ and CD3+CD4+ cell ratios are plotted. In all phases except ML, statistically significant differences in the ratio of TNF-α– and IL-10–producing cells were found between CD3+CD8+ and CD3+CD4+ T cell populations (*p < 0.05; **p < 0.01 each). B, IFN-γ/IL-10–producing CD3+CD8+ and CD3+CD4+ cell ratios were significantly different in each menstrual phase (***p < 0.001).
IVF and embryo transfer (43). The ratios were increased in women with failed IVF. In our study, Th1/Th2 ratios are stable throughout the ovarian cycle even with significantly fluctuating hormonal values. Further study is needed to elucidate this question.

This study is a prospective longitudinal investigation of immune effectors and their functional activity in relation to five phases of the menstrual cycle. A majority of previous investigations were designed as a cross-sectional study, and some studies did not have the same time for blood drawing or the phase in a menstrual cycle. We report significant changes in immune effectors during the menstrual cycle. However, the patterns of changes are different from hormonal cycles and actual magnitude of changes is relatively small. This observation suggests the presence of multiple neuroendocrine regulations on immune effectors during ovarian cycle. Further investigation is needed to define the interaction of hormones and their receptors on the immune competent cells and their signaling pathways as well as cross-talk between neuroendocrine and immune system.

Disclosures

The authors have no financial conflicts of interest.

References