Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis

Olivier Thaunat, Natacha Patey, Giuseppina Caligiuri, Chantal Gautreau, Maria Mamani-Matsuda, Yahia Mekki, Marie-Caroline Dieu-Nosjean, Gérard Eberl, René Ecochard, Jean-Baptiste Michel, Stéphanie Graff-Dubois and Antonino Nicoletti

J Immunol 2010; 185:717-728; Prepublished online 4 June 2010; doi: 10.4049/jimmunol.0903589

http://www.jimmunol.org/content/185/1/717

References

This article cites 42 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/185/1/717.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Chronic Rejection Triggers the Development of an Aggressive Intragraft Immune Response through Recapitulation of Lymphoid Organogenesis

Olivier Thaunat,*†,*‡,** Natacha Patey,† Giuseppina Caligiuri,*,†,§ Chantal Gautreau,** Maria Mamani-Matsuda,†† Yahia Mekki,‡‡ Marie-Caroline Dieu-Nosjean,*†,†*** Gérard Eberl,†† René Écochard,†‖ Jean-Baptiste Michel,# Stéphanie Graff-Dubois,*†,#,† and Antonino Nicoletti,*†,#,†

The unwarranted persistence of the immunoinflammatory process turns this critical component of the body’s natural defenses into a destructive mechanism, which is involved in a wide range of diseases, including chronic rejection. Performing a comprehensive analysis of human kidney grafts explanted because of terminal chronic rejection, we observed that the inflammatory infiltrate becomes organized into an ectopic lymphoid tissue, which harbors the maturation of a local humoral immune response. Interestingly, intragraft humoral immune response appeared uncoupled from the systemic response because the repertoires of locally produced and circulating alloantibodies only minimally overlapped. The organization of the immune effectors within adult human inflamed tissues recapitulates the biological program recently identified in murine embryos during the ontogeny of secondary lymphoid organs. When this recapitulation was incomplete, intragraft B cell maturation was impeded, limiting the aggressiveness of the local humoral response. Identification of the molecular checkpoints critical for completion of the lymphoid neogenesis program should help develop innovative therapeutic strategies to fight chronic inflammation. The Journal of Immunology, 2010, 185: 717–728.

The immunoinflammatory process aims at eliminating the target Ag. Stringent regulatory mechanisms normally ensure that this process is transient and is turned off when the causative stimulus has been cleared. Difficulty in eradicating Ags leads to sustained inflammation, which is responsible for extensive tissue destruction and loss of function.

The progression toward chronic inflammation is characterized by a gradual shift in the type of immune effectors present at the inflammation site, namely, an enrichment of cells from the adaptive immune system (1). In addition the organization of infiltrated cells is also modified. Indeed, it has long been observed that inflammatory cells can organize themselves into structures that morphologically resemble secondary lymphoid organ follicles (2). The process by which organized lymphoid structures (“tertiary lymphoid tissues”) appear de novo during chronic inflammation has been referred to as lymphoid neogenesis (3, 4).

Seminal studies (5–7) have demonstrated that tertiary lymphoid tissues are permissive microenvironments for the induction of Ag-specific humoral immune responses and have led to the hypothesis that lymphoid neogenesis may contribute to the exacerbation of chronic inflammatory diseases. This process has therefore received increasing attention, and the list of diseases in which tertiary lymphoid tissue has been observed is growing longer (8).

Chronic rejection provides optimal conditions to study the immune mechanisms involved in the development of chronic inflammation-associated tertiary lymphoid tissues. Indeed, 1) tertiary lymphoid tissues have systematically been detected in chronically rejected grafts (9–12); 2) the Ags targeted by the immune system are known (recipient-mismatched HLA Ags of the transplanted tissues); 3) the mechanisms by which inflammation becomes chronic rely on the sustained replenishment of the Ag from the rejected tissue; and 4) chronically rejected

*Institut National de la Santé et de la Recherche Médicale U872, Centre de Recherche des Cordeliers; †Université Pierre et Marie Curie; Service d’Anatomopathologie, Hôpital Necker, Assistance Publique Hôpitaux de Paris; ‡Institut National de la Santé et de la Recherche Médicale U783, Développement du Système Immunitaire, Université Paris Descartes, Faculté de Médecine, Site Necker-Enfants Malades; ††Université Paris Descartes, Unité Mixte de Recherche S872; ‡‡Laboratoire du Développement du Tissu Lymphoïde, Centre National de la Recherche Scientifique URA1961, Institut Pasteur, Paris 1 Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation Rénale et d’Immunologie Clinique; †Université Lyon; ‡Institut National de la Santé et de la Recherche Médicale U851, ‡§Laboratoire de Virologie Est, Hôpital Femme Mère Enfant, Centre Hospitalier de l’Université-Hospices Civils de Lyon; and †Service de Biostatistique Santé, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5558, Université Claude Bernard Lyon I, Lyon Cedex 03, France

S.G.-D. and A.N. contributed equally to this work.

Received for publication November 6, 2009. Accepted for publication May 1, 2010.

This work was supported by grants from the Institut National de la Santé et de la Recherche Médicale, the Fondation pour la Recherche Médicale, the Fondation du Rein, and the Fondation de France.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0903589

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00
organs are sometimes removed, providing a large amount of diseased tissue that can be comprehensively analyzed, at both the molecular and cellular levels.

In the current study, we show that in chronically rejected human kidneys, lymphoid neogenesis is analogous to the ontogenic program triggered in the embryo during the development of secondary lymphoid organs. The complete recapitulation of this program results in the generation of fully functional ectopic germinal centers (eGCs) that allows for the efficient maturation of a local humoral immune response, which hastens tissue destruction. In contrast, when this recapitulation was incomplete, local B cell maturation was impeded, limiting the aggressiveness of the intragraft humoral response.

Materials and Methods

Human samples

Renal allografts removed from 26 nonselected patients because of terminal failure were collected in four transplantation centers over a period of 3 y. The tissues were maintained in germ-free conditions at 4˚C and were processed <24 h after explantation. The individual characteristics of these patients are presented in Table I.

The immunohistological analysis of the first eight explanted kidneys revealed that intragraft B cell nodules were phenotypically heterogeneous. The following 18 explanted grafts were therefore subjected to a more comprehensive analysis, which could not be applied retrospectively to the transplanted grafts (DTR1-DTR8).

Fresh normal renal tissue was obtained from the intact portion of six kidneys removed for renal cancer. This study was approved by the Local Ethnic Committee, and all the patients gave informed consent for the use of the samples for research purposes.

Histopathology

The renal cortex of fresh explanted allografts or control kidneys were dissected and embedded in paraffin, or snap-frozen immediately in OCT medium (Tissue-Tek, Agar Scientific, Stansted, Essex, U.K.) in liquid nitrogen.

Ten-micrometer-thick cryosections and 4-μm-thick paraffin sections were used. Routine examination was performed after Masson’s trichrome, H&E-safran, periodic acid Schiff, and silver staining.

Indirect immunoperoxidase staining was performed with the following primary Abs: anti-human CD3 (polyclonal, Abcam, Paris, France), mouse anti-human CD20 (clone L26, Dako, Trappes, France), mouse anti-human follicular dendritic cells (clone DNA.C24, Dako), rat anti-human PNA4, (clone MECA 79, BD Pharmingen, San Diego, CA), rabbit anti-human podoplanin (polyclonal, Sigma-Aldrich, St. Louis, MO), mouse anti-human IgD (clone IA6-2, BD Pharmingen), rabbit anti-AID (polyclonal, Kind gift from A. Durandy, Necker, Paris), mouse anti-human Bel-2 (clone 124, Dako), mouse anti-human Bel-6 (clone PG-B6g, Dako), mouse anti-human CD208/Dc-LAMP (clone 104 G4, Beckman Coulter, Fullerton, CA), and mouse anti-human CD138 (clone B-A38, Aerotec, Oxford, U.K.). The first primary Ab was applied, followed by incubation with the appropriate biotinylated secondary Abs and with streptavidin peroxidase and 3,3-diaminobenzidine-tetrachloride (ChemMate detection Kit, Dako). Negative staining control experiments were performed by omitting the primary Ab. Slides were counterstained with H&E (Dako).

Numbers of primary follicle-like nodules and of eGCs were evaluated blindly by a trained pathologist (N. Patey) at 50× magnification on 10 sections from four distinct paraffin-embedded blocks using a semi-quantitative scale ranging from 0 (samples without follicle/eGC) to 3 (samples with >5 follicles/eGC per field).

Molecular biology

mRNA extraction and RT

Total RNA was isolated from two distinct renal cortex tissue fragments from each of the 26 explanted grafts and from six control kidneys using the RNeasy Mini Kit (Qiagen, Valencia, CA). cDNAs were generated from 1 μg total RNA using SuperScript II reverse transcriptase (Invitrogen, San Diego, CA) and random decamers (ABgene, Epsom, U.K.).

Primer design.

The gene-specific primer sets are provided in the Table II. All the primers were designed using Primer3 software and obtained from Eurogentec (Angers, France).

Real-time quantitative PCR. Quantitative real-time PCR (QRT-PCR) was performed on an AB Prism 7300 sequence detection system (Applied Biosystems, Foster City, CA) in a total volume of 24 μl, containing 4 μl cDNA sample, 8 μl diluted primer set, and 12 μl SYBR Green Master Mix (Qiagen). The thermal cycling was carried out by starting at 95˚C for a 10 min hold, followed by 50 amplification cycles at 95˚C for 15 s and at 60˚C for 60 s. Dissociation curve analysis was performed at the end of 50 cycles to verify the identity of the PCR product. No signals were detected in no-template controls. Results are expressed as threshold cycle values corresponding to the cycle at which PCR enters the exponential phase and were normalized to the threshold cycle value obtained with GAPDH housekeeping gene amplification. For each gene and each cDNA preparation, the PCR reactions were run five times and the results were averaged.

Cell biology

Cell suspension preparation. The renal cortices of fresh explanted grafts were cut with a sterile razor blade into ∼0.125 mm³ fragments that were incubated in a solution of 1 mg/ml collagenase A and 0.1 mg/ml DNase I (Roche Diagnostic Systems, Somerville, NJ) for 1 h at 37˚C. Cell suspensions were passed through a 70-μm cell strainer, and mononuclear cells were separated over Ficoll-Paque Plus (GE Healthcare, Saclay, France).

Flow cytometry. Ten million cells were incubated with a fluorescent mAb mixture (BD Biosciences, San Jose, CA) specific for the following human cell surface markers: CD19 (AntiCyan, clone SJ25C1), CD138 (allophycocyanin, clone MI15), IgD (FITC, clone IA6-2), CD38 (PE, clone HBB) from BD Pharmingen; CD27 (allophycocyanin-Alexa Fluor 750, clone 0323) from eBioscience (San Diego, CA). More than 1×10⁶ events in the lymphoid FSC/SSC gate were acquired on an LSRII flow cytometer and analyzed with DIVA software (BD Biosciences).

ELISPOT. The quantification of IgG-producing plasmacells was performed by ELISPOT as previously described (13, 14). Briefly, mononuclear cells isolated from kidneys were plated in complete medium and cultured for 6 d at 37˚C, in a 5% CO₂ atmosphere. Cultured cells were serially diluted in culture medium, in triplicate, before transfer to ELISPOT plates. Multiscreen 96-well filter plates (Millipore, Bedford, MA) were coated by incubation overnight at 4˚C with 10 μg/ml anti-human Ig polyclonal Ab (Caltag Laboratories, Burlingame, CA). After 6 h of incubation at 37˚C, ELISPOT was performed with 1 μg/ml biotinylated goat anti-human IgFc (Caltag Laboratories), followed by 5 μg/ml HRP-conjugated avidin D (Vector Laboratories, Burlingame, CA) and developed using 3-amin-9-ethylcarbazole (Sigma-Aldrich).

Quantification of memory B cells was conducted according to the same protocol, except that the cells were stimulated with an optimized mix of polyclonal mitogens: 10 ng/ml PWM extract (PWM, batch 1303H, ICN; MP Biomedical, Aurora, OH), a 1/10,000 dilution of fixed Staphylococcus aureus, Cowan extract (SAC; Sigma-Aldrich), and 6 μg/ml fully phos-photiohed CpG (ODN-2006, Proligo; Sigma-Aldrich) during the 6-d culture preceding the ELISPOT assay.

Analysis of local Ig production

Tissue culture. Tissue cultures were performed as previously described (11). Briefly, 24 randomly selected fragments (∼0.5 mm³) of the renal cortex of explanted allografts were washed three times and cultured in a 24-well plate in 1 ml RPMI 1640 medium (Cambrex, East Rutherford, NJ) supplemented with 100 U/ml penicillin/streptomycin and 25 μg/ml Fungizone (Life Technologies, Rockville, MD). Culture supernatants were harvested after 5 d of culture and stored at −20˚C until further analysis.

ELISA. The concentrations of IgG, IgA, and IgM in the supernatants were measured using standard ELISA. Human IgG subclasses were quantified using a Human IgG Subclass Profile ELISA Kit (Zymed Laboratories, San Francisco, CA). ELISA was performed at least twice on three different tissue-culture wells.

Luminex. Luminex assays were used to detect the presence of anti-HLA alloantibodies in the supernatants (Luminex, Tepnel Lifecodes, Stamford, CT) and subsequently, to determine their specificity (LABScreen single Ag ELISA Kit, Zymed Laboratories, San Francisco, CA). More than 1×10⁶ events in the lymphoid FSC/SSC gate were acquired on an LSRII flow cytometer and analyzed with DIVA software (BD Biosciences).

Statistical analysis

Significant differences between the four clusters of gene expression were sought for: donor age, donor sex, donor type (living versus cadaveric), donor CMV status, recipient age, cause of end-stage renal failure, time spent on dialysis, recipient CMV status, rank of transplantation, immunosuppressive therapy (administration or not of an induction therapy, and anticalcineurin-based versus mammalian target of rapamycin-inhibitor–based regimen), number of biopsy-proven acute rejection episodes, and number of CMV disease episodes. Kruskal-Wallis rank test was used for quantitative parameters and Fisher exact test for qualitative variables.

In an attempt to determine whether the differences in the functionality of lymphoid neogenesis observed between the four clusters of gene expression were statistically significant, we performed the following analysis. The
variables that explore the same biological process were grouped in four characteristics as follows: 1) local germinal center reaction (AID relative expression), 2) local B cell maturation (average rank [1–6] of IgD^{pos} CD38^{neg} germinal center B cells among CD19^{pos} cells, proportion of CD27^{pos} among CD19^{pos} infiltrating the graft, proportion of plasmacells infiltrating the graft), 3) local IgG production (concentration of total IgG in the supernatant of tissue cultures, three different tissue-culture wells), 4) local humoral alloimmune response (density, diversity, and intensity of the local anti-HLA Ab production). Values were then ranked and transformed in z-scores to correct them for non-normality and the trend was tested using a regression analysis for repeated measures.

Graft survival in the cluster of gene expression was compared using Wilcoxon test.

Results

Microarchitecture of the inflammatory infiltrate during chronic rejection

Over a period of 3 y, 26 explanted nonselected renal grafts were analyzed. The individual characteristics of these patients are presented in Table I. In contrast with kidneys removed due to immediate primary surgical failure (n = 3), or nonimmune failure (angiosarcoma, n = 1; or recurrence of the renal disease, n = 2), all the 20 chronically rejected renal grafts were infiltrated by immune effectors. The possibility that inflammatory infiltration was related to CMV-induced tubulointerstitial nephritis was ruled out for 25/26 samples by the negativity of CMV QRT-PCR (Table I).

In the vast majority of chronically rejected renal grafts (19/20), the interstitial chronic inflammatory infiltrate displayed a highly organized microarchitecture similar to that of secondary lymphoid tissues (Fig. 1A). In particular, B cells were packed into nodular structures evocative of B cell follicles. The phenotypic characterization of B lymphocytes revealed the heterogeneous nature of these nodules, as already reported in the synovia of rheumatoid arthritis patients (15). Two types of nodules could be identified; nodules composed of a uniform CD20^{pos} B cell population expressing IgD and Bcl-2 (Fig. 1B, left panels) were similar to primary follicles; whereas nodules with a core of CD20^{pos}IgD^{neg}Bcl-2^{neg} B cells, highly expressing Bcl-6 that had pushed aside the CD20^{pos}IgD^{pos}Bcl-2^{pos} B cells (Fig. 1B, right panels), resembled secondary follicles, namely, germinal centers. The ratio between these two types of structures differed between samples, and the number of eGCs did not increase with the quantity of primary nodules.

eGC formation during chronic inflammation requires the expression of genes involved in lymphoid organogenesis

We reasoned that the development of eGC during chronic inflammation could follow the same biological program as that identified in the embryo during the ontogeny of secondary lymphoid organs. The expression levels of a selected set of genes (Table II), reported to play key roles in lymphoid organogenesis (16–22), were quantified by QRT-PCR in each tissue sample, and in six normal kidneys, all of which were devoid of inflammation. Data were processed by hierarchical clustering to identify samples sharing a similar pattern of expression. Normal kidneys were characterized by a low level of expression for all lymphoid organogenesis genes. Strikingly, this pattern was shared by the three grafts explanted due to primary surgical failure (DTR11, DTR12, and DTR20) as well as by the three grafts explanted due to nonimmune mediated failure (DTR2, DTR10, and DTR16). All these samples were grouped in the C1 cluster (Fig. 2A). In the 20 remaining chronically rejected grafts, the level of expression of lymphoid organogenesis genes was heterogeneous, and samples could be split into three clusters: C2, C3, and C4 (Fig. 2A). In contrast to the samples of the C1 cluster, those of the C2, C3, and C4 clusters all expressed a common core of genes (CXCL13 and CXCR4), the expression of which was associated with the recruitment of B cells organized into primary follicles (Fig. 2B). C3 and C4 additionally expressed CCL19, CCL21, CCR7, LT_a, LTβ_R, and CXCR5. Finally, CXCL12 and LT_BR were expressed only in samples from the C4 cluster, this latter therefore grouping together the samples that expressed the complete set of lymphoid organogenesis genes. The expression of these additional genes in the C3 and C4 clusters correlated with the detection of eGC by immunohistochemical analysis (Fig. 2C). The conversion of primary into secondary follicles was more efficient in the C4 samples because the number of eGC was higher in the C4 than in the C3 samples (1 ± 0.71 versus 0.50 ± 0.62; Fig. 2C), despite the fact that they evolved from a reduced quantity of primary nodules (1.00 ± 0.41 versus 1.70 ± 1.03; Fig. 2B).

Germinal center reaction is characterized by the expression of activation-induced cytidine deaminase (AID), the key enzyme controlling class switch recombination and somatic hypermutations. In accordance with recently published data (12, 23), AID protein was not detectable in naive B cells forming the primary follicles, but was readily evidenced in eGC B cells (Fig. 2D). Because this enzyme is mandatory for the production of high-affinity Abs endowed with adequate effector functions, the gradual increase in AID expression observed from C1 to C4 (Student t test = 5.52; p < 0.001) indicates that this gene expression-based clusterization defines functional clusters with respect to the maturation of the local humoral immune response (Fig. 2E).

To identify the genes whose expression contributed the most to distribute the samples into the four clusters, we performed a principal component analysis on the realtime QRT-PCR dataset. This analysis revealed that CXCL13, CCL21, and LTβR were the genes with the largest eigenvalues. Whereas the dendrogram scale, which illustrates the way each sample enters its cluster (Fig. 2A, right dendrogram), suggested a greater level of similarity between C1 and C2 on one hand, and C3 and C4 on the other, the discrimination between samples belonging to the C2 and C3 clusters appeared difficult along the first two eigenvectors (canon 1 and 2; Fig. 2F), indicating that C2 and C3 are highly related.

Lack of completion of the biological program results in impeded local B cell maturation

The maturation of B cells was analyzed by flow cytometry according to the Bml1–Bm5 classification, which is based on the expression of CD38 and IgD (24). This classification allows for the identification of the successive cell development stages, from naive B cells to differentiated memory B cells.

The proportion of CD19^{pos} cells in the inflammatory infiltrate (Fig. 3A) was concordant with the histological quantification of primary nodules (Fig. 2B) and further documented the paucity of the B cells in the C1 cluster samples.

Regarding the maturation of B cells, a gradual increase in the proportion of Bm5 memory B cells and a symmetric reduction of Bm1/Bm2 naive B cells was observed from the C2 to C4 samples (Fig. 3B). In the samples of the C4 cluster, in which the complete set of lymphoid organogenesis genes was expressed, the B cell maturation program appeared to be proceeding toward the memory stage unhindered. In contrast, B cell maturation in the C3 cluster was blocked at the Bm2*/Bm348B pregerminal stage, because a marked reduction in Bm3 and Bm4 germinal center B cells was observed (Fig. 3B). In the C2 cluster B cells maturation was impeded, resulting in naive B cells accumulation (Fig. 3B). Bm5 B cells proportion was only slightly reduced in the C2 cluster, suggesting that a direct recruitment of memory B cells from the periphery is also possible.

The Bm1–Bm5 classification has recently been challenged by the demonstration that some Bm1 cells express the CD27 memory
<table>
<thead>
<tr>
<th>Characteristics of the Donor</th>
<th>Characteristics of the Recipient</th>
<th>Transplantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)/Sex</td>
<td>Type</td>
<td>Anti-CMV IgG</td>
</tr>
<tr>
<td>DTR1</td>
<td>55/F</td>
<td>L</td>
</tr>
<tr>
<td>DTR2</td>
<td>74/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR3</td>
<td>43/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR4</td>
<td>35/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR5</td>
<td>60/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR6</td>
<td>49/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR7</td>
<td>68/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR8</td>
<td>79/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR9</td>
<td>35/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR10</td>
<td>62/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR11</td>
<td>38/M</td>
<td>L</td>
</tr>
<tr>
<td>DTR12</td>
<td>57/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR13</td>
<td>18/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR14</td>
<td>17/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR15</td>
<td>46/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR16</td>
<td>59/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR17</td>
<td>55/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR18</td>
<td>16/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR19</td>
<td>41/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR20</td>
<td>81/M</td>
<td>C</td>
</tr>
<tr>
<td>DTR21</td>
<td>52/M</td>
<td>L</td>
</tr>
<tr>
<td>DTR22</td>
<td>59/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR23</td>
<td>57/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR24</td>
<td>49/M</td>
<td>L</td>
</tr>
<tr>
<td>DTR25</td>
<td>54/F</td>
<td>C</td>
</tr>
<tr>
<td>DTR26</td>
<td>61/M</td>
<td>C</td>
</tr>
</tbody>
</table>

A statistical analysis was performed to seek difference between the four clusters regarding the clinical characteristics of patients. No difference was found except for the number of acute cellular rejection (C1 = 0 versus C2 = 1.5 versus C3 = 1.2 versus C4 = 1; \(\chi^2 = 8.548; p = 0.0359 \)).

*The CMV QRT-PCR performed on the cDNA of the 26 renal grafts were all negative, except for DTR12 (34,000 copies).
marker (25) therefore indicating that the CD19^{pos}IgD^{pos}CD38^{neg} population includes both naive Bm1 cells (CD27^{neg}) and IgD^{pos} memory B cells (CD27^{pos}) (26). To exclude the possibility that memory B cells were underestimated when identified by their IgD/CD38 expression, we compared the proportion of CD19^{pos} cells. We found a gradual increase in CD27^{pos} B cells, from C2 to C4, further validating the results obtained with the Bm1–Bm5 classification (Fig. 3C).

Finally, kidneys from the C2 cluster can be regarded as inflamed tissues in which the maturation of naive B cells is the less efficient; whereas, the C4 cluster gathers samples in which naive B cells are the most efficiently converted into memory B cells (Student t test = 2.26; p = 0.024). There was no difference regarding IgG subclass distribution in the samples from the various clusters (Fig. 4D). One limitation of using ELISA to detect IgG on tissue-culture supernatants is the impossibility of discriminating between IgG produced locally and that released, from IgG produced by infiltrated plasmacells. Indeed, IgG, which might be trapped within the tissue and subsequently resecreted, might not be detected by ELISA in the supernatants of tissue-culture conditioned media. Quantification of the various classes and subclasses of Ig produced locally was performed by ELISA in the supernatants of tissue-culture conditioned media. Indeed, IgG, which might be trapped within the tissue and subsequently released, from IgG produced by infiltrated plasmacells. Indeed,
FIGURE 2. Lymphoid neogenesis is a recapitulation of the embryonic lymphoid organogenesis program. A, For each kidney, mRNA was extracted from two distinct tissue fragments and reverse transcribed. For each gene involved in lymphoid organogenesis, real-time QRT-PCR was run five times on each cDNA preparation. Expression levels of these genes were normalized to that of the GAPDH housekeeping gene. For each gene, the 10 values obtained for a single kidney were averaged and the data set was computed to clusterize tissues according to their expression pattern (Ward hierarchical clustering). Individual samples are listed in rows, the genes in columns, and increasing expression levels are encoded from dark blue to bright red. On the top and on the right of the color map, dendrograms list each observation, and indicate the cluster it is in and when it entered its cluster. Four clusters C1–C4 were identified. B and C, The number of primary follicle-like nodules (B) and eGCs (C) was evaluated blindly by a pathologist (N.P.) using a semiquantitative scale ranging from 0 (samples without follicle/eGC) to 3 (samples with >5 follicles/eGCs per field) (original magnification ×50). For each sample, 10 sections from four distinct paraffin-embedded blocks were analyzed. For the analysis, histological quantifications were grouped according to the gene expression-defined clusters (mean ± SD). D, AID protein expression analysis was performed by immunohistochemistry. This staining, performed on the successive serial sections used for the immunohistological study presented in Fig. 1B (a, the same arteriole as in the sections of Fig. 1B), shows that AICD expression is restricted to the germinal center B cell population (CD20⁺IgD⁻Bcl2⁻Bcl6⁺) (original magnification ×400). AID was not expressed by the CD20⁺IgD⁺Bcl2⁺Bcl6⁻ B cells, either in the periphery of eGCs or in primary follicle-like nodules. E, The expression level of AID was analyzed by real-time QRT-PCR with the same methods described in the Fig. 2 legend (mean ± SD). F, The principal component analysis was used to reduce the multidimensional gene expression data set to lower dimensions for analysis, by retaining those characteristics of the data set that contributed most to its variance. The projection of the data on the first and second principal components (canonical 1 and 2) efficiently discriminated the four clusters when individual samples were projected orthogonally. Each circle represents the multivariate mean for each cluster and the size of the circle corresponds to a 95% confidence limit. Nonintersecting circles indicate that clusters are significantly different; however, the difficulty to discriminate between the C2 and C3 clusters suggests that these two clusters are closely related. The composition of the eigenvectors, indicated in the Table below the graph, revealed that the chemokines CCL21 and CXCL13, and the LTβR, were the genes with the largest eigenvalues, namely, the genes that contributed most to dividing the samples into the four clusters. LT, lymphotoksin; NoK, normal kidney.
a small amount of IgG was detected in the C1 cluster samples (Fig. 4C), in which plasmacells were absent (note). We therefore performed an ELISPOT assay on representative samples from the C3 and C4 clusters that demonstrated the presence of IgG-producing cells among the inflammatory infiltrate (Fig. 4E). The increased number of spots observed on mitogen stimulation in the C4, as compared with the C3 cluster (Fig. 4E), indicated that the number of memory B cells was higher in the C4 samples, in accordance with the results of flow cytometric analysis (Fig. 3B, 3C).

Clusters correlate with the aggressiveness of the local alloimmune response

For 18 of 26 of the explanted kidneys, 24 randomly selected cortical fragments per kidney were tissue cultured and the supernatants were collected after 5 d. The quantification of anti-HLA Abs in these supernatants by luminex assays allowed us to characterize the local alloimmune response as follows: 1) the density of the response was defined as the percentage of wells that were positive for either HLA I or HLA II; 2) the diversity was the ratio of the number of specificities over the number of HLA mismatches for each donor/recipient couple; and 3) the intensity was the highest mean fluorescence intensity (MFI).

As expected, there were no alloantibodies in the tissue supernatants from the C1 cluster. In contrast, a local production of antidonor Abs was detected in the tissues of the three remaining clusters. The density, diversity, and intensity of the local humoral response against the target Ags (Table III) were maximal in the C4 cluster and minimal in the C2 cluster (Student’s test = 4.62;
The diversity and intensity of the local alloimmune response in the C2 and C3 clusters were similar. This is consistent with the close relation between these two clusters, as demonstrated by the principal component analysis (Fig. 2F). These two clusters only differed in density. Local humoral response is uncoupled from the systemic response

Alloantibodies produced in “canonical” secondary lymphoid organs (i.e., the spleen and the lymph nodes) reach the graft through the circulation. Analysis of the serum therefore offers a unique opportunity to compare the local (i.e., intragraft) and the systemic (i.e., elicited in the secondary lymphoid organs) humoral alloimmune responses. The luminex assays performed on the sera collected at the time of the explantation demonstrated a disconnection between systemic and local humoral responses. Indeed, Ab specificities found in tissue-culture supernatants were almost systematically distinct from those detected in the sera (Fig. 5A, Table III). Also, the local response appeared more diverse, especially in the C4 samples (Fig. 5A, Table III).

Functionality of intragraft lymphoid tissue and graft survival

Because we observed that grafts of the C2 cluster had functioned 7.8 y on average and those of the C4 cluster had lasted only half that time (3.5 y; Fig. 5B); whereas we found no statistically significant difference between the clusters for the clinical characteristics that could explain this difference (Table I), we put forward the hypothesis that the functionality of intragraft lymphoid tissue could negatively impact graft survival. A first analysis documented a statistical difference in graft survival between the four clusters ($\chi^2 = 30.08; p < 0.0001$). However, this difference was likely related to the very short survival of samples from the C1 cluster (three samples of this group were explanted for primary surgical failure). Therefore, in an attempt to more specifically explore the influence of gene expression-based clusterization on chronic rejection kinetic, we performed a subgroup analysis on chronically rejected grafts only (samples from C1 cluster were excluded). Interestingly, this subgroup analysis ($\chi^2 = 5.96; p = 0.0507$) almost reached the statistical significance despite the very low number of patients of the study.

Discussion

In the current study, we have performed a comprehensive analysis of the molecular and cellular events that take place in human chronically rejected grafts in which lymphoid neogenesis is invariably observed (11, 12). We observed that the expression of lymphoid organogenesis genes was heterogeneous in chronically rejected allografts. Hierarchical clusterization of the QRT-PCR dataset was used to sort the samples into four clusters according to their pattern of expression for lymphoid organogenesis genes. The C1 cluster contained all the control...
Table III. Density, diversity, and intensity of the local humoral alloimmune response

<table>
<thead>
<tr>
<th>A/B/DR Mismatches</th>
<th>Density of the Local Immune Response</th>
<th>Diversity of the Immune Response</th>
<th>Intensity of the Local Immune Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anti-HLA I</td>
<td>Anti-HLA II</td>
<td>Total (%)</td>
</tr>
<tr>
<td>A/B/DR Mismatches</td>
<td>Anti-HLA I</td>
<td>Anti-HLA II</td>
<td>Total (%)</td>
</tr>
<tr>
<td></td>
<td>Anti-HLA I</td>
<td>Anti-HLA II</td>
<td>Total (%)</td>
</tr>
</tbody>
</table>

Twenty four fragments of randomly sampled renal cortex were tissue cultured. Because this part of the study was initiated after DTR8, data concerning DTR1–DTR8 are lacking. Anticlass I and anticlass II HLA Abs were sought for in the supernatants of tissue cultures and in the sera obtained immediately before detransplantation by the luminex detection kit. We defined the density of the local humoral alloimmune response as the percentage of wells positive for either HLA I or HLA II. We subsequently measured the diversity and the intensity of the local humoral immune response using the luminex single Ag kit on the supernatant from the well displaying the highest MFI in the luminex detection kit. The diversity of the peripheral humoral response was measured on the sera obtained immediately before detransplantation. The diversity of the immune response was calculated as the number of detected specificities normalized by the number of HLA I mismatches for the donor/recipient pair. The intensity of the local humoral immune response was defined as the maximal MFI observed, normalized by the MFI of the positive control. Direct comparison of the density and the intensity of the local and peripheral humoral responses is not possible. Bold text corresponds to the mean of each cluster (C1, C2, C3, and C4).
achieved with the supplementary expression of capitulation of the lymphoid organogenesis program is finally and the return to dialysis, was plotted for the four clusters of DTRs (mean was initiated after DTR8, data concerning DTR1 to DTR8 are lacking. The black bars represents the specificities detected simultaneously in the serum and the supernatants of tissue cultures. Because this part of the study was initiated after DTR8, data concerning DTR1 to DTR8 are lacking. B. The duration of graft function, set as the number of days between transplantation and the return to dialysis, was plotted for the four clusters of DTRs (mean ± SD).

tissues (six normal kidneys, three grafts explanted due to primary surgical failure, and three grafts explanted due to nonimmune mediated failure). Rejected grafts were distributed among three additional clusters of expression patterns (C2–C4). These three different clusters could either reflect distinct biological programs or, alternatively, they might identify different stages of the same program. Although the design of the current study does not allow us to draw a definitive conclusion regarding these two hypotheses, several findings point toward the latter possibility. Indeed, gene expression is not randomly distributed: C2 differs from C1 by switching on a limited number of genes, C3 is characterized by the expression of additional genes compared with C2, and finally C4 contains the samples that express all the genes involved in lymphoid organogenesis. This suggests that the development of a functional ectopic tertiary lymphoid tissue during chronic inflammation has to go through three checkpoints. The C1–C2 checkpoint involves the expression of CXCL13 and CXCR4. The progression from C2 to C3 requires the additional expression of CCL19, CCL21, CCR7, LTA, LTβ, and CXCR5. Complete recapitulation of the lymphoid organogenesis program is finally achieved with the supplementary expression of CXCL12 and LTβR, which characterizes the transition from C3 to C4. The complete recapitulation of this program results in the generation of fully functional eGCs, which allows for the efficient maturation of B cells up to memory B cells and plasmacells. In contrast, when this recapitulation was incomplete, local B cell maturation was impeded. Statistical analysis on this small cohort found no influence of immunosuppressive treatments on lymphoid neogenesis. Indeed, neither the administration of an induction therapy, nor the nature of the immunosuppressive regimen (anticalcineurin-based versus mammalian target of rapamycin-inhibitor based) showed any influence on the distribution of the patients across the four clusters.

Interestingly, we observed a trend ($p = 0.0507$) for a shorter survival for the grafts of the C4 cluster, which lasted 3.5 y in average as compared with 7.8 y for the C2 cluster. These preliminary results, in line with previous experimental studies (27), suggest a detrimental role of lymphoid neogenesis that could hasten chronic destruction of the graft. However, given the small number of grafts analyzed and the limitations inherent to statistical subgroup analysis, additional work is required to definitively validate this hypothesis.

We found that the specificities of circulating Abs were different from those of locally produced Abs. This implies that there are two compartmentalized immune responses that each target distinct Ags. The higher diversity of the local response points to a laxer selection process of B cell clones in eGCs. These observations provide interesting clues regarding the reasons why evolution have kept in mammals the ancestral capacity to mount a local immune response in the presence of secondary lymphoid organs, the canonic place for the elicitation of adaptive immune responses. Because lymphoid neogenesis generates effectors close to their targets and displaying original specificities, it may provide selective advantage to prevent dissemination of pathogens resistant to “classical” responses. In contrast, the higher aggressiveness of the local response implies that it may be more difficult to control by standard therapeutic strategies. In line with this hypothesis, we (28) and others (29) have recently shown that tertiary lymphoid tissues B cells could survive anti-CD20 Ab (rituximab) therapy when circulating B cells were efficiently depleted. The current study paves the way for innovative therapeutic strategies aimed at blocking the maturation of local adaptive immune response. Indeed, among the molecular checkpoints, critical for the completion of the lymphoid neogenesis program, that we have identified, LTβR represents an attractive therapeutic target. LTβR signaling primes the expression of homeostatic chemokines in stromal cells (30), and therefore plays a critical role in the recruitment and subsequent organization of inflammatory effectors within the diseased tissue (6, 31–35). Our findings, which demonstrate that LTβR expression is characteristic of samples from the C4 cluster, indicate that its role is not restricted to the early stages of the ontogeny of lymphoid organs; it also extends to the maintenance of lymphoid-tissue architecture as proposed by Browning et al. (36). In addition, LTβR has been shown to orchestrate lymphangiogenesis (37) that could fuel lymphoid neogenesis by carrying the antigenic information to the neoformed eGCs (38).

The current study was performed on explanted organs, namely, on grafts that had failed. This choice constitutes a limitation of the current study that precluded a kinetic analysis of the process. In contrast, the large amount of tissue allowed simultaneous analyzes...
at both the molecular and cellular levels that provided valuable and novel information about maturation stages of the intragraft immune response. Further, our results obtained on grafts with terminal failure indicate a detrimental role of lymphoid neogenesis during chronic inflammation, a conclusion not reached by biopsy-based studies (39–41). Two explanations can be proposed to reconcile these apparently conflicting results. First, not only are the data provided by the biopsies limited to a small area of tissue, but this small amount of tissue does not allow for functional analysis of the ectopic lymphoid organs. In our experience, histological analysis (even on a large area) was of limited value for discriminating samples of the C4 cluster from those of the C2 cluster. For example, despite the fact that histological analysis was performed on 10 fields from four different blocks, it failed to document lymphoid nodules in the interstitium of DTR17. It is, however, likely that a low number of functional eGCs were present in this chronically rejected graft because: 1) CD19+ B cells were detected by flow cytometry, 2) QRT-PCR demonstrated a low but significant AIDC expression, and 3) tissue-culture experiments evidenced a local production of Abs in Abs in 38% of the tissue-culture supernatants for this sample. Therefore, although irreplaceable to obtain topological information regarding ectopic lymphoid nodules, histology is not accurate to quantify lymphoid neogenesis.

An alternative, though not entirely exclusive, hypothesis is that in some situations, lymphoid neogenesis could generate a regulatory and protective immune response. This theory, which arose from the clinical observations of lymphoid aggregates in allografts devoid of immunologically active lymphocytic infiltrates. J. Immunol. 168: 576–579.

