In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development

Amanda C. Poholek, Kyle Hansen, Sairy G. Hernandez, Danelle Eto, Anmol Chandele, Jason S. Weinstein, Xuemei Dong, Jared M. Odegard, Susan M. Kaech, Alexander L. Dent, Shane Crotty and Joe Craft

J Immunol 2010; 185:313-326; Prepublished online 2 June 2010;
doi: 10.4049/jimmunol.0904023
http://www.jimmunol.org/content/185/1/313

Supplementary Material
http://www.jimmunol.org/content/suppl/2010/06/02/jimmunol.0904023.DC1

Why The _JI_?

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References
This article _cites_ 75 articles, 40 of which you can access for free at:
http://www.jimmunol.org/content/185/1/313.full#ref-list-1

Subscription
Information about subscribing to _The Journal of Immunology_ is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
In Vivo Regulation of Bcl6 and T Follicular Helper Cell Development

Amanda C. Poholek, * Kyle Hansen, † Sairy G. Hernandez, ‡ Danelle Eto, ‡ Anmol Chandele, § Jason S. Weinstein, § Xuemei Dong, § Jared M. Odegard, ³, 1 Susan M. Kaech, ² Alexander L. Dent, ³ Shane Crotty, ³ and Joe Craft ², ³

Follicular helper T (TFH) cells, defined by expression of the surface markers CXCR5 and programmed death receptor-1 (PD-1) and synthesis of IL-21, require upregulation of the transcriptional repressor Bcl6 for their development and function in B cell maturation in germinal centers. We have explored the role of B cells and the cytokines IL-6 and IL-21 in the in vivo regulation of Bcl6 expression and TFH cell development. We found that TFH cells are characterized by a Bcl6-dependent downregulation of P-selectin glycoprotein ligand 1 (PSGL1, a CCL19- and CCL21-binding protein), indicating that, like CXCR5 and PD-1 upregulation, modulation of PSGL1 expression is part of the TFH cell program of differentiation. B cells were neither required for initial upregulation of Bcl6 nor PSGL1 downregulation, suggesting these events preceded T–B cell interactions, although they were required for full development of the TFH cell phenotype, including CXCR5 and PD-1 upregulation, and IL-21 synthesis. Bcl6 upregulation and TFH cell differentiation were independent of IL-6 and IL-21, revealing that either cytokine is not absolutely required for development of Bcl6+ TFH cells in vivo. These data increase our understanding of Bcl6 regulation in TFH cells and their differentiation in vivo and identifies a new surface marker that may be functionally relevant in this subset. The Journal of Immunology, 2010, 185: 313–326.

Antibody production is critical for pathogen clearance and prevention of reinfection, with Ab responses to most protein Ags strictly T cell dependent (TD) (1). Follicular helper T (TFH) cells play a critical role in providing B cell help to TD Ags given their movement to the B cell follicle (2) and the germinal center (GC) (3, 4), the primary site of B cell somatic mutation with affinity maturation (5, 6) and Ig class switching (7). This help is mediated in part by IL-21, a cytokine produced by TFH cells that, in cooperation with B cell AgR and TD signals, promotes GC B cell proliferation and maturation (8–12) and, in conjunction with IL-4, Ig class switching (13). Consistent with their location in the B cell follicle, TFH cells upregulate the chemokine receptor CXCR5, allowing for migration toward the ligand CXCL13 (B lymphocytic chemoattractant [BLC]) expressed in the follicle (3, 4). ICOS is also upregulated on TFH cells and is required for their development and expansion (14–16), as are B cells (14, 17, 18) via their expression of the ligand for ICOS (B7RP.1) (9, 14). Similarly, IL-6 and IL-21 are important for the in vitro development of IL-21-producing CD4 T cells (19, 20) and TFH cell development in vitro and in vivo following immunization with protein Ags (8, 9). IL-6 is also important for Ab responses in several systems (20–22). Yet, the role that these cytokines play in T cell maturation is not restricted to the TFH cell subset, given their requirement for Th17 differentiation and maintenance (23–25).

Bcl6 is a transcriptional repressor that was originally identified in GC B cells, with its expression in these cells necessary for GC formation (26). It is also selectively expressed by TFH cells compared with other CD4 T cell subsets (9, 12). We and others have recently shown that it is required for TFH cell development and the subsequent formation of TD GC responses (18, 27, 28). Bcl6 represses a program of gene activation, including that of other transcription factors (18, 27, 28) and microRNAs (28) that promotes expression of proteins needed for TFH cell trafficking and function. These observations further established TFH cells as a subset independent from the Th1, Th2, and Th17 lineages; however, other studies have demonstrated that IFN-γ, IL-4, and IL-17 can be secreted by TFH cells, with subsequent shaping of the Ab and autoantibody responses (18, 29–33) indicating plasticity in differentiation (34). IL-21 and IL-6 can induce Bcl6 expression in vitro in mouse T cells (9, 27), with IL-12 playing a similar role in human cells (35, 36), although the role that these cytokines play in Bcl6 regulation in vivo is less clear.

We recently described a population of CD4 T cells in lupus-prone MRL mice that is marked by downregulation of P-selectin glycoprotein ligand 1 (PSGL1). These cells migrate to the extrafollicular sites of Ab production in the spleen (37). Extrafollicular PSGL1lo cells are similar to TFH cells in that they express IL-21,
require ICOS and B cells for development, and are necessary for generation of class-switched Ab and autoantibody production; however, unlike TFH cells, they lack expression of CXCR5. This absence, combined with expression of CXCR4, presumably enables their movement to extralymphatic locations (38). Modification of PSGL1 by glycosyleransfeters permits T cell migration to inflammatory sites via binding to P- or E-selectin expressed on endothelial cells (39, 40); however, unmodified PSGL1 can bind CCL19 and CCL21 (41), suggesting that PSGL1 may act as a retention signal for T cells in the T zone.

These findings indicated that T cells with reduced surface expression of PSGL1 are capable of migration out of the T cell zone to sites of B cell help. Logically then, TFH cells would likely be characterized by downregulation of PSGL1, because they too migrate to sites of B cell responses. We have sought in this study to address this question, in parallel with further dissection of the developmental requirements for TFH cells. We specifically asked how the expression of Bcl6 is integrated with that of PSGL1, the inflammatory cytokines IL-6 and IL-21, and the presence of B cells, using in vivo models of Ag-specific CD4 T cell activation. We found that TFH cells are characterized by a Bcl6-dependent downregulation of PSGL1, indicating that this is part of the T FH cell program of differentiation. B cells were not required for initial upregulation of Bcl6 or PSGL1 downregulation, suggesting these events preceded T--B cell interactions, although they were required for full development of the T FH cell phenotype, including CXCR5 and programmed death receptor-1 (PD-1) upregulation, and IL-21 synthesis. Interestingly, Bcl6 upregulation was independent of both IL-6 and IL-21, revealing that neither is absolutely required for development of Bcl6+ T FH cells in vivo. These data increase our understanding of Bcl6 regulation in T FH cells and their differentiation in vivo.

Materials and Methods

Mice

Mice were housed in specific pathogen-free conditions at the Yale School of Medicine (New Haven, CT) or the La Jolla Institute for Allergy and Immunology (La Jolla, CA). B6 mice were purchased from the National Institutes of Health (Bethesda, MD) (Figs. 1–6) or The Jackson Laboratory (Bar Harbor, ME) (Figs. 7–9). IL-6–deficient (B6.129S2-B6ld2J/Koj), B cell-deficient (muMT; B10.129S2(B6)-Igh-B6.2/2B6) OT-II TCR transgenic (C57BL/6-Tg [T cell receptor]-4525cunJ), CD19-deficient (B6.129P2(C)-Cd19tm1[cre]Cgn/J), and MD4 (HEL-Tg) (C57BL/6-Tg[HELMD4(Ctg)]B6) were purchased from the Jackson Laboratory, as were MRL/FasLo (MRL/MpJ-Fas[Lo]) and BALB/c animals. IL-21–deficient (B6129S2(B6)-Igh-B6.2/2B6) mice were purchased from MMRC. D011.10 mice (42) were provided by K. Bottomly (Yale School of Medicine). Bcl6-deficient B6 animals were generated as described previously (43). To produce Fas-deficient Bcl6-deficient animals, we backcrossed Bcl6 heterozygous to the MRL/FasLo strain to the N2 generation, producing Bcl6-deficient Fas-deficient mice, followed by intercrosses to generate three groups of homzygous Fas-deficient animals: Bcl6 intact, Bcl6 heterogeneous, and Bcl6 deficient. These mice were used at ages 7–8 wk (given the shortened lifespan of Bcl6-deficient mice) in the experiments depicted in Fig. 4E–I, always with appropriate littermate controls. All other mice were used at 6–8 wk of age, save for wild-type (WT) MRL/FasLo animals sacrificed at age 16–24 wk. The Institutional Animal Care and Use Committee of Yale University or La Jolla Institute for Allergy and Immunology approved all procedures involving mice.

Immunizations and infections

A total of 0.5 × 10⁶ OT-II CD4 T cells were transferred via retro-orbital injection into recipient mice. Twelve to 24 h later, 50 μg OVA precipitated in 200 μl aluminum hydroxide (alum) were administered by i.p. injection. Six days postimmunization, spleens of recipient mice were harvested and crushed through 40-μm cell strainers. Red cell lysis was performed by i.p. injection of 1–2 × 10⁵ PFU of LCMV Armstrong per mouse.

Flow cytometry and cell sorting

Abs used for staining included CD4, CD44, TCRβ, B220 (all from eBioscience, San Diego, CA), PD-1, ICOS, PSGL1, Thy1.1, CXCR5, CxCL2, streptavidin, BTLA, Fas, Ifn-γ, KJ1–26, IgM, IgG, CD138, CXCR4 (all from BD Biosciences, San Jose, CA), and peanut lectin (agglutinin) (PNA)-biotin (Vector Laboratories, Burlingame, CA). In general, 10 × 10⁶ cells were surface stained in ice-cold 1× PBS plus 0.5% BSA for 30 min at 4°C. For Figs. 3–6, CXCR5 detection was performed at 30 min at 25°C to enhance detection of surface expression. For Figs. 7–9, CXCR5 labeling was a three-step stain as described previously (18). Cells were washed and immediately analyzed unfixed on an LSRII Multilaser Cytometer (BD Biosciences). Dead cells were excluded using Hoescht (Sigma-Aldrich, St. Louis, MO). Intracellular IgM and IgG staining was performed by standard fixation and permeabilization methods directly ex vivo. Staining for surface IgM was done prior to fixation. For intracellular cytokine staining, splenocytes were stimulated ex vivo for 4–5 h with LCMV gp61–80 peptide (2.0 μg/ml) or PMA (20 ng/ml) and ionomycin (1 μM). Intracellular IL-21 staining was done using an IL-21R-Fl chimeric protein (R&D Systems, Minneapolis, MN), followed by PE- or allophycocyanin-labeled anti-human IgG (Jackson Immunoresearch Laboratories, West Grove, PA) (18). For cell sorting, magnetic separation was performed using a biotin-based magnetic separation kit (EasySep; StemCell Technologies, Vancouver, British Columbia, Canada) to enrich for CD4 T cells, followed by surface staining as described previously. Sorting was performed on a FACSaria (BD Biosciences), with postsorting purity >95%. A nondepleting anti-CD4 (Ab) (BD Biosciences) was used for experiments with sorted cell transfers.

B cell transfers

A total of 0.5 × 10⁶ OT-II CD4 T cells were transferred via retro-orbital injection into WT or B cell-deficient (μMT) mice. Twelve to 24 h later, 50 μg OVA precipitated in 200 μl alum was administered by i.p. injection. Four days postimmunization, spleens were harvested and total CD4 T cells sorted using a nondepleting Ab. The percentage of OT-II CD4 Thy1.1+ cells was assessed by flow cytometry, and an equivalent number of OT-II CD4 T cells was then transferred to new recipients, either WT or B cell deficient, that were immunized 4 previously i.p. with 50 μg OVA in alum (at the same time as the first set of recipient mice) so that transferred cells would return to the same antigenic and inflammatory environment. Three days posttransfer of sorted CD4 T cells (7 d after the first immunization), spleens of recipient mice were harvested and processed for flow cytometry.

Quantitative PCR

For Figs. 1, 2, and 5, RNA from sorted cell populations was isolated using the mini or microRNeasy Kit (Qiagen, Valencia, CA), followed by conversion to cDNA using iScript (Bio-Rad, Hercules, CA). Quantitative PCR was performed on a Stratagene Mx3000P Thermal Cycler (Stratagene, La Jolla, CA) or a Brilliant SYBR Master Mix (Stratagene, La Jolla, CA) and the following primers: bcl6, 5′-CACTACGTAAATTACACGTG-3′ (forward) and 5′-TATGTCCACCTTTGTTGTGG-3′ (reverse); il21, 5′-TGAGGACCACCTTTGGAATGACG-3′ (forward) and 5′-AGGACGATTGAAGGACCTACGCAACCC-3′ (reverse); rpl9, 5′-GCGGAGGCGCCATG-3′ (forward) and 5′-GCCAGGACCAGGCCCTG-3′ (reverse); prdm1, 5′-GGCAACCAAGGACCACCAAACCAAGG-3′ (forward) and 5′-GGCAACCAAGGACCACCAAACCAAGG-3′ (reverse); and pdml, 5′-CCACGTGAGGCTCAATGCATAA-3′ (reverse) and 5′-GGCAACCAAGGACCACCAAACCAAGG-3′ (forward). The level of each transcript was normalized to RPL9 and expressed as the fold change in expression relative to the indicated control. For real-time PCR, primers were designed using Primer Express software (Applied Biosystems). PCR reactions were run on a Roche Lightcycler for RT-PCR using a biotin-based magnetic separation kit (EasySep; StemCell Technologies, Vancouver, British Columbia, Canada) to enrich for CD4 T cells, followed by surface staining as described previously. Sorting was performed on a FACSaria (BD Biosciences), with postsorting purity >95%. A nondepleting anti-CD4 (Ab) (BD Biosciences) was used for experiments with sorted cell transfers.

Culture media

B cells were sorted by flow cytometry from spleens of 16- to 24-wk-old WT MRL/FasLo mice, followed by lysis in radioimmunoprecipitation assay buffer. The supernatants from spin cell lysates were loaded onto a 12% SDS-PAGE gel in loading buffer. Roughly 13–15 μg total protein was loaded per lane for each of the sorted populations, and 30 μg protein
was loaded for positive controls. Blots were incubated with an anti-Bcl6 Ab (Cell Signaling Technology, Beverly, MA) overnight and, after exposure, stripped and reprobed overnight with anti–Blimp-1 (Santa Cruz Biotechnology, Santa Cruz, CA). After exposure, blots were restripped and probed for actin (Santa Cruz Biotechnology).

Retroviral transduction of primary T cells

OT-II Thy1.1 splenocytes were isolated and activated with Con A for 24 h in vitro. A control retrovirus (MigR1, an empty construct) or one expressing Bcl6 was transduced into activated OT-II splenocytes by centrifugation (2500 rpm) at 37°C for 90 min, and 0.5 × 10^6 OT-II CD4 T cells were immediately transferred i.v. into recipient mice. Twelve to 24 h after transfer, mice were immunized i.p. with 50 μg OVA precipitated in alum. Six days later, spleens were harvested and stained as above.

ELISA

Anti-LCMV Ab was measured by ELISA using sonicated cell lysate from LCMV-infected BHK-21 cells as capture Ag. Ninety-six-well Polysorp microtiter plates (Nunc, Naperville, IL) were coated overnight with lysate in PBS and then UV inactivated (300 mJ in Stratalinker 1800; Stratagene). HRP-conjugated goat anti-mouse IgG secondary Ab was used for detection (Caltag Laboratories, Burlingame, CA) (44). For NP-specific ELISA, plates were coated with NP, conjugated OVA (Biosearch Technologies). Anti-NP IgM and IgG Abs were detected using HRP-conjugated goat anti-mouse IgM, IgG, or IgG1 Abs (Southern Biotechnology Associates, Birmingham, AL). ODs were converted to units based on standard curves with sera from B6 mice immunized with NP-CGG using a four-parameter logistic equation (Softmax Pro 3.1 software; Molecular Devices, Sunnyvale, CA).

Microscopy

Spleens were harvested and immediately frozen in OCT tissue-freeze medium. Sections were cut to 6-μm thickness on a cryostat and stained for immunofluorescence using CD4 Pacific Blue (eBioscience), PNA biotin (Vector Laboratories), IgD FITC (BD Biosciences), and streptavidin Alexa-555 (Invitrogen). Unconjugated PSGL1 (BD Biosciences) was directly coupled to Alexa-647 using a mAb labeling kit (Invitrogen). All images were acquired on a Zeiss LSM 510 NLO confocal microscope (×25) equipped with a MaiTai titanium:sapphire 2-photon laser (Spectra-Physics) for Pacific Blue detection.

Gene expression microarrays

CD62L^{hi}PSGL1^{hi}, CD62L^{lo}PSGL1^{lo}, and CD62L^{lo}PSGL1^{hi} subsets (all of which were CD4⁺TCR⁺B220⁻CD44^{lo}) were sorted from spleens of aged (16–24 wk old) female lupus-prone MRL/Fas⁺mice, with control naive (CD4⁺CD44⁺CD62L⁺) cells sorted from young 6- to 7-wk-old female animals. RNA from three independent sorts was submitted to the W. M. Keck Foundation Biotechnology Resource Laboratory at Yale University for amplification and hybridization to Affymetrix Mouse Genome 430 2.0 GeneChips. Data were analyzed using a GeneSpring GX Analysis Platform (Agilent, Palo Alto, CA). Genes that were differentially expressed (p ≤ 0.05) among CD62L^{hi}PSGL1^{hi}, CD62L^{lo}PSGL1^{hi}, and CD62L^{lo}PSGL1^{lo}, and naive subsets (n = 3) were identified using two-way ANOVA. The gene expression data discussed in this publication have been deposited in National Center for Biotechnology Information’s Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) and are accessible through GEO Series accession number GSE20735.
Data were analyzed with Student t test with Prism4 or 5 (GraphPad Software; GraphPad, San Diego, CA). Number of asterisks represents the degree of significance with respect to p value. Bar graphs for experiments involving cell percentages and RT-PCR show mean ± SEM.

Results

Tfh Cells are marked by downregulation of PSGL1

We recently demonstrated that lupus-prone MRL/Fas^{lo} mice have a subset of activated CD4 T cells with reduced surface expression of PSGL1 (Fig. 1A) (37). In MRL mice, PSGL1^{lo} cells were capable of promoting isotype-switched autoantibody formation, a process dependent upon their secretion of IL-21, and one associated with upregulation of activation-induced cytidine deaminase in plasma cells. To further characterize these cells, we compared their gene expression profile to that of naive and activated PSGL1^{hi} CD4 T cells, also from MRL mice. Several gene products were upregulated in the PSGL1^{lo} population compared with naive and activated PSGL1^{hi} cells, including those that encode Bcl6, PD-1, IL-4, and IL-21 (Fig. 1B). Blimp-1 (<i>prdm1</i>) was downregulated in PSGL1^{lo} cells compared with activated PSGL1^{hi} cells, consistent with the finding that Bcl6 can repress Blimp-1 and vice versa (18, 45–47).

We hypothesized that Tfh cells are characterized by reduced surface expression of PSGL1, because IL-21 secretion and PD-1 expression are known markers of this population, as is Bcl6 (12, 17). To address this hypothesis, we tracked development of Ag-specific PSGL1^{lo} cells following immunization of B6 mice. We adoptively transferred H-2^d-restricted OVA-specific TCR-transgenic cells to BALB/c recipients followed by immunization with OVA mixed in the adjuvant alum and analysis of splenocytes 8 d later. Following immunization, PSGL1^{lo} cells made up ~15–20% of activated OT-II Thy1.1 CD4 T cells, whereas unimmunized controls retained a small number of naive transferred cells (Fig. 1C). PSGL1^{lo} cells in immunized mice were enriched for cells expressing PD-1, consistent with our array data, as well as upregulation of CXCR5 and ICOS, additional markers of Tfh cells (Fig. 1D, 1E). Similar results were obtained when H-2^k-restricted DO11.10 TCR-transgenic cells were transferred to BALB/c recipient following immunization of OVA in alun (Supplemental Fig. 1A).

To rule out the possibility that development of PSGL1^{lo} cells was an artifact of adoptive transfers of TCR transgenic T cells, we immunized B6 mice with NP-CGG in alum, followed by analysis of spleens 8 d later. In this study, as in mice with adoptively transferred TCR transgenic cells, there was expansion of PSGL1^{lo} as well as CXCR5^{lo} and PD-1^{lo} cells (Supplemental Fig. 1B).

CXCR5, PD-1, and ICOS are upregulated following Ag encounter, as well as on Tfh cells (48). To help determine whether PSGL1 downregulation is a specific marker of the latter, we asked whether PSGL1^{lo} cells expressed IL-21 and Bcl6, other constituents of Tfh cells. Activated OT-II Thy1.1 CD4 T cells following transfer and immunization were sorted into PSGL1^{lo} and PSGL1^{hi} subsets, with mRNA expression analyzed by RT-PCR. OT-II PSGL1^{lo} T cells had upregulation of transcripts for <i>il21</i> and <i>bcl6</i> in comparison with PSGL1^{hi} cells (Fig. 1F), as did PSGL1^{lo} cells from B6 mice immunized with NP-CGG in alum (Supplemental Fig. 1C). PSGL1^{hi} cells expressed Blimp-1 (<i>prdm1</i>) transcripts, whereas PSGL1^{lo} cells expressed relatively little Blimp-1 (Fig. 1F), consistent with the findings that Bcl6 represses Blimp-1 (45–47) and that Bcl6 and Blimp-1 distinguish separate populations of effector CD4 T cells (18, 49). Because Th17 cells produce IL-21, we also determined the mRNA expression of <i>rorc</i>, the gene encoding ROR-γt, the transcription factor required for their development (50). We found that <i>rorc</i> expression was downregulated in PSGL1^{lo} cells in comparison with PSGL1^{hi} cells (Fig. 1F), indicating that the presence of IL-21 in PSGL1^{lo} cells was not due to a Th17 phenotype.

As we have previously demonstrated that extrafollicular PSGL1^{lo} cells from MRL/Fas^{lo} mice expressed high levels of CXCR4, but not CXCR5 (37), we assessed the former on PSGL1^{lo} Tfh cells in nonautoimmune mice (37). Seven days following transfer of OT-II Thy1.1 cells into WT mice and immunization, we found that CXCR4 was not upregulated on PSGL1^{lo} Tfh cells; however, the presence of CXCR4 was detected on a subset of B cells, presumably extrafollicular plasma cells, as expected after immunization (Fig. 1G) (38).

To explore concomitant expression of the markers CXCR5, PD-1, and PSGL1, we analyzed activated CD4 T cells isolated from mice 8 d following immunization with NP-CGG in alum. As expected from previous reports, we found that activated CD4 T cells with the highest expression of expression profile of CXCR5 also had high expression of CD44.
PD-1. Similarly, CD4 T cells with the highest expression of CXCR5, or PD-1, had the lowest levels of PSGL1 (Fig. 2A). This finding indicated that downregulation of PSGL1 is part of a TFH cell program of differentiation that includes upregulation of PD-1 and CXCR5.

A principal criterion for identifying TFH cells is their location in GCs (3, 4). Thus, we asked whether GC T cells lacked expression of PSGL1. B6 mice were immunized with NP-CGG in alum, and 8 d later, their spleens were harvested and examined by immunofluorescence confocal microscopy (Fig. 2B). Splenic GCs, identified by staining with PNA, contained CD4 T cells that lacked PSGL1. CD4 T cells in the B cell follicle also lacked PSGL1, whereas the majority of cells in the T zone expressed high levels of PSGL1 (Fig. 2B). The CXCR5hiPD-1hiPSGL1lo population was also found in the T zone of GCs, similar to our previous result (Fig. 1D). This indicated that downregulation of PSGL1 and upregulation of CXCR5 and PD-1 were not necessarily coordinated. To further investigate the relationship among CD4 T cells expressing these markers, we sorted splenic PSGL1lo cells into CXCR5loPD-1lo and CXCR5hiPD-1hi populations 8 d after immunization of B6 mice with NP-CGG in alum, followed by analysis of bcl6 and il21 transcript expression. The CXCR5hiPD-1loPSGL1lo population expressed significantly more il21 than the CXCR5loPD-1loPSGL1hi cells (Fig. 2C, right panel); however, both populations had equal amounts of bcl6 (Fig. 2C, left panel). These data suggested that Bcl6 expression and PSGL1 downregulation can occur independently of upregulation of CXCR5, PD-1, and IL-21.

Bcl6 drives PSGL1 downregulation

Because TFH cells require Bcl6 for their development (18, 27, 28), we next asked whether PSGL1lo cells would have similar requirements. To accomplish this goal, we crossed Bcl6-deficient mice to OT-II TCR-transgenic animals to use in adoptive transfer and immunization experiments. To avoid the spontaneous activation of Bcl6-deficient T cells (43), we used as transfer donors lethally irradiated B6 mice reconstituted with bone marrow from Bcl6-deficient animals as described previously (18). We transferred small numbers of naive OT-II Bcl6-intact or OT-II Bcl6-deficient CD4 T cells into congenically mismatched B6 recipients, followed by immunization with OVA in alum. Six days after immunization, spleens of recipient mice were harvested and analyzed for the percentages of PSGL1lo cells. Roughly 15% of activated Bcl6-intact OT-II Thy1.1 T cells became PSGL1lo (Fig. 3A, 3B), similar to our previous result (Fig. 1C). By contrast, OT-II Thy1.2 Bcl6-deficient T cells failed to give rise to a significant number of PSGL1lo cells.
This observation indicated that Bcl6 is required for development of PSGL1lo cells.

In these adoptive transfer experiments, we noted that the mean fluorescence intensity of PSGL1 on all activated CD4 T cells and on gated PSGL1hi cells (Fig. 3C, 3D, respectively) was significantly increased in the absence of Bcl6, suggesting a direct role for Bcl6 in repression of PSGL1. To test this possibility, we overexpressed Bcl6 in OT-II Thy1.1 T cells using a GFP-bearing retrovirus, followed by transfer into B6 hosts and immunization with OVA in alum (Fig. 3E). When Bcl6 was overexpressed, the percentage of PSGL1lo cells among Thy1.1 CD44GFP+ cells increased ~3-fold compared with cells expressing a control retrovirus (Fig. 3F, 3G). These data indicate that Bcl6 expression drives PSGL1 downregulation, further strengthening the concept that PSGL1 is part of the program for TFH cell differentiation controlled by this transcriptional repressor.

FIGURE 4. Bcl6 is required for development of extrafollicular helper T cells and formation of IgG-producing plasma cells in MRL/Fas−/− mice. A, Expression of PD-1 on naive, CD62LhiPSGL1hi, CD62LloPSGL1hi, and CD62LloPSGL1lo cells from MRL/Fas−/− mice. Gray shaded is isotype control, black line is PD-1. B and C, Expression of bcl6 and prdm1 (Blimp-1) transcripts in sorted CD62LhiPSGL1hi, CD62LloPSGL1hi, and CD62LloPSGL1lo cells isolated from spleens of 12- to 16-wk-old MRL/Fas−/− mice. Results are representative of three experiments. In B, *p = 0.0029 (comparing CD62LloPSGL1hi and CD62LloPSGL1lo cells), *p = 0.0093 (CD62LhiPSGL1hi versus CD62LloPSGL1lo cells), and in C, *p = 0.0427 (CD62LloPSGL1hi versus CD62LloPSGL1lo cells). D, Protein expression of Bcl6 and Blimp-1 in sorted CD62LhiPSGL1hi, CD62LloPSGL1hi, and CD62LloPSGL1lo cells isolated from spleens of 12- to 16-wk-old MRL/Fas−/− mice. The human B cell line BJAB was used as a positive control for Bcl6 and purified B cells activated in vitro with LPS for 48 h served as a positive control for Blimp-1. Actin was used as a loading control. Results are representative of two experiments. E and F, Spleens from 7- to 8-wk-old Bcl6-intact or -deficient MRL/Fas−/− mice were analyzed for the presence of PSGL1lo cells. Results are representative of three independent experiments from three cohorts of mice, with four to five mice per group; **p < 0.0001 (Bcl6+/+ versus Bcl6−/−); *p = 0.0038 (Bcl6+/+ versus Bcl6−/−). G-I, Percentage and number of CD138+ plasma cells analyzed for intracellular expression of IgM and IgG isolated from spleens of 7- to 8-wk-old Bcl6-intact or -deficient MRL/Fas−/− mice. In I, open bars represent Bcl6+/+, gray bars represent Bcl6−/−, and black bars represent Bcl6−/− MRL/Fas−/− mice. Results are representative of three independent experiments from three cohorts of mice, with four to five mice per group. In H, p = 0.1497 (Bcl6+/+ versus Bcl6−/−); p = 0.0817 (Bcl6−/− versus Bcl6−/−). In I, IgM p = 0.1591 (Bcl6+/+ versus Bcl6−/−), *p = 0.0491 (Bcl6−/− versus Bcl6−/−); IgG, p = 0.1209 (Bcl6+/+ versus Bcl6−/−); and *p = 0.0285 (Bcl6+/+ versus Bcl6−/−).
Bcl6 is required for development of extrafollicular helper T cells

We previously described the presence of CXCR4^{hi}, CXCR5^{lo}, and IL-21–producing B helper T cells that migrate to extrafollicular sites in lupus-prone murine strains (37). Microarray analysis of these extrafollicular helper cells from MRL/Fas^{lpr} mice suggested additional similarities to T_{FH} cells, such as upregulation of PD-1 and Bcl6 (Fig. 1 A,1 B). Indeed, we found increased expression of surface PD-1 (Fig. 4A) and Bcl6 at the transcript and protein level in PSGL1^{lo} extrafollicular Th cells isolated from the spleens of aged MRL/Fas^{lpr} mice (Fig. 4B, 4D). Conversely, Blimp-1 transcript levels and protein were decreased, compared with PSGL1^{hi} CD4 effector T cells, similar to our findings in T_{FH} cells (Fig. 4C, 4D) (18).

To test whether Bcl6 played a role in the development of extrafollicular Th cells, we generated Bcl6-intact and -deficient Fas^{lpr} mice. Although these animals develop robust extrafollicular foci

FIGURE 5. B cells are required for development of CXCR5^{hi} PD-1^{hi} T_{FH} cells, but not downregulation of PSGL1. A. Expansion of OT-II Thy1.1 CD4 T cells 6 d after adoptive transfer and immunization of recipient B6 mice with OVA in alum in the presence or absence of B cells (left panels). Expression of CD62L and PSGL1 (middle panels) and PD-1 and CXCR5 (right panels) on the expanded OT-II Thy1.1 CD4^{hi} CD4 T cells in B cell-intact or -deficient recipients. B. Percentages of T_{FH} cells of OT-II Thy1.1 CD4⁴⁰ CD4 T cells taken from B cell-intact and -deficient mice are shown, with p = 0.0049 (PSGL1^{hi} T cells) and p = 0.0093 (CXCR5^{hi} PD-1^{hi} T cells). Data shown are representative of that in A, and of four independent experiments, using four mice per group. C. Percentages of T_{FH} cells of OT-II Thy1.1 CD4⁴ CD4 T cells 7 d after immunization of B6 (WT) or HEL Ig transgenic (MD4) mice with OVA in alum; p = 0.4702 (PSGL1^{lo} T cells) and p = 0.0370 (CXCR5^{hi}PD-1^{hi} T cells). Data are representative of two independent experiments using four mice per group. D. Percentages of T_{FH} cells of OT-II Thy1.1 CD4⁴ CD4 T cells 7 d after immunization of CD19-intact or -deficient recipients with OVA in alum. Bar graph shows data representative of two independent experiments using four mice per group; p = 0.7029 (PSGL1^{lo} cells); p = 0.0036 (CXCR5^{hi} PD-1^{hi} cells). E. Percentages of CXCR5^{hi}PD-1^{hi} cells of OT-II Thy1.1 CD4⁴ cells 3 d after transfer (7 d after immunization) from B cell-intact or B cell-deficient mice. Bar graph shows data representative of three independent experiments using two to three mice per group; p = 0.0129 (WT[→]WT versus KO[→]KO), p = 0.6576 (WT[→]WT versus KO[→]WT); p = 0.0354 (WT[→]WT versus WT[→]KO); and p = 0.0218 (KO[→]WT versus KO[→]KO). F. Percentages of PSGL1^{lo} cells of OT-II Thy1.1 CD4⁴ cells 3 d after transfer (7 d after immunization) to B cell-intact or B cell-deficient mice. Bar graph shows data representative of three independent experiments using two to three mice per group; p = 0.4327 (WT[→]WT versus KO[→]KO); p = 0.8822 (WT[→]WT versus KO[→]WT); p = 0.3921 (WT[→]WT versus WT[→]KO); and p = 0.3920 (KO[→]WT versus KO[→]KO). G. Expression of bcl6 mRNA in naive CD4 T cells and OT-II Thy1.1 CD4⁴ T cells sorted 7 d after transfer to B6 WT or B cell-deficient (μMT) hosts, followed by immunization with OVA in alum; p = 0.0112, transfer to naive versus WT recipients; p = 0.0138, transfer to WT versus μMT recipients; and p = 0.0163, transfer to naive versus μMT recipients. Data are representative of three independent experiments.
in conjunction with the accelerated autoimmunity seen in the Fas-deficient background (data not shown), we did not attempt to assess development of lupus phenotypes, given their shortened lifespan (Bcl6-deficient mice succumb to lymphoproliferation by 10–12 wk of age [43]) and the lack of the full complement of lupus-potentiating MRL genes. Nonetheless, there was expansion of PSGL1lo extrafollicular T cells in Bcl6-intact or Bcl6-heterozygous Fas-deficient mice by 7–8 wk of age, whereas in the absence of Bcl6, the percentage and number of PSGL1lo cells were dramatically reduced (Fig. 4E, 4F). To determine whether such reduced development affected plasma cell formation and Ab responses, we assessed the percentage and number of syndecan (CD138)-positive IgM and IgG plasma cells. Similar to our findings in ICOS-deficient MRL/Fas(−/−) mice (37), the reduced number of extrafollicular T cells had no effect on the total number of syndecan+ plasma cells (Fig. 4H), with only a slight decrease in the number of such cells that were IgM+ (Fig. 4G, 4H). However, IgG-producing plasma cells were reduced ~10-fold in the absence of Bcl6 (Fig. 4G, 4H), suggesting that extrafollicular T cells, likely through their ability to produce IL-21 and express CD40L (37), are required for isotype switch to occur. Although not excluded in this study, it is unlikely that deficiency in Bcl6 could directly affect the formation of Ab-producing GC B cells or Tfh cells in these animals, as CXCR5hi Tfh cells have not been observed in our hands in these animals (37), and Blimp-1–dependent extrafollicular foci are the primary site of isotype-switched somatically mutated autoantibody production in the MRL/Fas(−/−) model, whereas GC formation is largely absent (51). This supports a model in which deficiency of Bcl6 leads to the absence of IL-21–producing extrafollicular Th cells, resulting in reduced isotype switch autoantibody production. Collectively, these data suggest that Tfh and extrafollicular Th cells share similar function in terms of B cell maturation and reliance upon Bcl6 for development.

B cells are not required for downregulation of PSGL1

The primary function of Tfh cells is to promote GC B cell survival and maturation, including IL-21 secretion and CD40 engagement (48). B cells are also required for Tfh cell development (14, 17, 18) indicating that T–B interactions are bidirectional. To determine whether development of PSGL1lo T cells also requires B cells, we transferred OT-II Thy1.1 splenocytes into B cell-intact or -deficient hosts, followed by immunization of OVA in alum, with splenic T cells analyzed 6 d later. Following immunization of B cell-deficient recipients, we observed a 6- to 8-fold reduction in CXCR5hiPD-1hi cells as a percentage of transferred Thy1.1 cells, compared with B cell-intact control mice; however, by comparison, PSGL1lo cells exhibited only a 2-fold decrease.
that were B cell intact to mice that were B cell deficient, the KO nals. To further explore this idea, we used a model wherein TFH downregulation possible in the absence of Ag-specific B cell sig-

lar latter molecules dependent on the presence of B cells and PSGL1 were independent events, with expansion of cells expressing the downregulation of PSGL1 and upregulation of CXCR5 and PD-1 were equivalent among HEL Ig transgenics, CD19-deficient mice, and controls (Fig. 5C, 5D). However, there was a statistically significant decrease in CXCR5hiPD-1lo cells, a finding in concert with previous analysis using these markers to identify T\textsubscript{FH} cells (9, 17, 18). These data indicated that activated Ag-specific B cells are required for development of CXCR5hiPD-1lo cells but not necessarily PSGL1lo cells.

The formation of PSGL1lo cells in the absence of robust development of CXCR5hiPD-1lo cells (Fig. 5A–D) indicated that downregulation of PSGL1 and upregulation of CXCR5 and PD-1 were independent events, with expansion of cells expressing the latter molecules dependent on the presence of B cells and PSGL1 downregulation possible in the absence of Ag-specific B cell signals. To further explore this idea, we used a model wherein T\textsubscript{FH} cells initially developed in the presence or absence of B cells, followed by transfer to a new set of previously immunized B cell-deficient or B cell-intact hosts for a short maintenance phase. In these experiments, OT-II Thy.1.1 CD4 T cells were initially transferred into either WT or B cell-deficient (μMT) B6 hosts, followed by priming with OVA in alum. Four days later, CD4 T cells were sorted and transferred into immunized B cell-intact or -deficient recipients. Four conditions were tested: 1) primed in and then transferred to WT hosts (WT→WT); 2) primed in and transferred to μMT mice (knockout [KO]→KO); 3) primed in B cell-sufficient, and transferred to, B cell-deficient hosts (WT→KO); and 4) primed in B cell-deficient, and transferred to, B cell-sufficient hosts (KO→WT). The percentages of PSGL1lo cells and CXCR5hiPD-1lo cells were analyzed 3 d after the second T cell transfer, a time point that was 7 d after initial immunization. In comparison with mice that were B cell sufficient throughout, there was significantly reduced development of CXCR5hiPD-1lo T\textsubscript{FH} cells in animals in which B cells were absent during both the priming and maintenance phases (compare WT→WT to KO→KO; Fig. 5E), similar to our results following immunization of μMT, HEL Ig transgenic, or CD19-deficient mice (Fig. 5B–D, respectively). By contrast, PSGL1lo cells were slightly reduced in conditions where B cells were absent throughout, but this decrease was not statistically significant (Fig. 5F). CXCR5hiPD-1lo and PSGL1lo T\textsubscript{FH} cells that developed in mice initially in the absence of B cells, followed by transfer to mice that were B cell intact, expanded to percentages similar to those observed in WT mice (compare WT→WT to KO→WT; Fig. 5E, 5F). When T cells were transferred from mice that were B cell intact to mice that were B cell deficient, the percentage of CXCR5hiPD-1lo cells dropped significantly, with percentages in the latter comparable to those that were in a B cell-deficient environment for the duration of the experiment; by contrast, there was again less effect on the recovery of PSGL-1lo cells (compare WT→WT to WT→KO; Fig. 5E, 5F). In all groups, the reduction in CXCR5hiPD-1lo cells was more dramatic than PSGL-1lo cells, suggesting that expression of these surface molecules is not coordinated and that B cells play an important role in regulating these markers, particularly CXCR5 and PD-1. These data also suggest that B cells are dispensable for early development of CXCR5hiPD-1lo T\textsubscript{FH} cells following priming, yet they are critical later in the immune response.

These findings, in concert with our observation that PSGL1lo cells expressed Bcl6, regardless of the expression of CXCR5 and PD-1 (Fig. 2C), and that Bcl6 drives PSGL1 downregulation (Fig. 3C–F) suggested that Bcl6 upregulation and subsequent PSGL-1 downregulation occurred prior to interaction with B cells. To directly test the role of B cells in induction of Bcl6, we transferred OT-II Thy.1.1 CD4 T cells to WT and B cell-deficient B6 mice, followed by immunization with OVA in alum, and 7 d later, we sorted OT-II CD4 Thy.1+ cells from recipients for assessment of bcl6 transcripts. Expression of bcl6 was dramatically reduced in the absence of B cells (Fig. 5G), consistent with our published data (18); however, transcript levels were increased in comparison with naive CD4 T cells, indicating some bcl6 expression can occur.

FIGURE 7. IL-6 is not required for development of T\textsubscript{FH} cells following infection with LCMV. A and B, Expansion of activated (CD44hiCD62L−) CD8 (A) and CD4 (B) T cells from spleens of IL-6-intact and −deficient mice isolated 8 d after LCMV infection. C, Expression of BTLA and CXCR5 on CD44hiCD4 T cells 8 d after LCMV challenge in IL-6-intact or −deficient mice. D, Percentages of T\textsubscript{FH} cells among CD44hiCD4 T cells 8 d after LCMV challenge in IL-6-intact or −deficient mice. Data are compiled from three independent experiments, using nine mice per group; *p = 0.0441. E, Intracellular staining for IFN-γ production in CD4 T cells from spleens isolated 8 d after LCMV infection in IL-6-intact or −deficient mice. Cells were restimulated with LCMV I-Ab binding peptide gp61–80 for 5 h in vitro. F, Expression of CXCR5 on LCMV-specific (CD44hiIFN-γ+) CD4 T cells. Gray shaded line represents naive CD4 T cells; red line represents CD44hiIFN-γ+ CD4 T cells from IL-6-intact mice; red line represents CD44hiIFN-γ+ CD4 T cells from IL-6-deficient mice. G, Percentages of T\textsubscript{FH} cells of LCMV-specific (IFN-γ+) CD4 T cells 8 d after LCMV infection with LCMV .
in the absence of B cell interactions. This result was surprising, given that we only saw a 2-fold reduction in PSGL1^{lo} cells in B cell-deficient mice (Fig. 5B), whereas we expected to see levels of Bcl6 more similar to WT levels. Taken together, these data suggest that once PSGL1 is downregulated, B cells play a role in robust upregulation of Bcl6 that is necessary for expression of certain TFH cell features, such as CXCR5 and PD-1.

IL-21 is not required for TFH cell development

IL-21 produced by TFH cells promotes GC B cell maturation and production of isotype-switched Abs. It is also produced by Th17 cells, acting in an autocrine manner to maintain Th17 phenotypes (23–25). It has been proposed that IL-21 can similarly act in an autocrine manner to promote development of the T_{FH} cell subset (8, 9), a notion based in part upon the observation that in vitro, IL-21 is able to upregulate levels of Bcl6 (9, 27). To explore the roles of IL-21 in PSGL1 downregulation and T_{FH} cell differentiation in vivo, we immunized IL-21–intact or –deficient mice with NP-CGG in alum and analyzed T_{FH} cell formation, GC development, and Bcl6 levels. Surprisingly, we did not observe a difference in the percentage of T_{FH} cells in the presence or absence of IL-21 when gating on the activated CD4 T cell population using either PSGL1 or CXCR5 and PD-1 as markers (Fig. 6A–C). In accordance with this finding, we also did not observe a difference in the levels of Bcl6 in PSGL1^{lo} cells taken from either IL-21–intact or –deficient animals (Fig. 6D). There was a significant decrease in GC B cells in the IL-21–deficient animals (Fig. 6E, 6F), as well as a decrease in total IgG- and IgG1-specific Abs, whereas IgM levels remained intact (Fig. 6G). In aggregate, these data indicate that IL-21 plays an important functional role in GC formation or maintenance in vivo (at least up to 7 d following immunization) but is not absolutely required for the upregulation of Bcl6 or the initial development of T_{FH} cells following immunization of mice with protein in alum.

IL-6 is not required for the development or function of TFH cells

We hypothesized that IL-6 might be responsible for Bcl6 upregulation and PSGL1 downregulation in vivo in T_{FH} cells, given its in vitro role in Bcl6 induction (27), and in development of T_{FH} cells in vivo following protein immunization (9). To investigate this idea, we transferred sorted naive OT-II Thy1.1 CD4 T cells into IL-6–intact or –deficient recipients, followed by immunization with OVA in alum, with splenic PSGL1^{lo} T_{FH} cell development and Bcl6 expression in the sorted Thy1.1 population analyzed 6 d later. Contrary to a previous report, we did not see differences between IL-6^{−/−} and IL-6^{+/+} hosts in the percentages of Thy1.1⁺ PSGL1^{lo} or CXCR5^{hi}PD-1^{hi} OT-II cells (Supplemental Fig. 2A,B) or in the amounts of <i>bcl6</i> and <i>il21</i> mRNA expression (Supplemental Fig. 2C). One explanation for our results that contrast with data...
indicating a role for this cytokine in T_{FH} cell development may be our use of alum as an adjuvant, compared with CFA in published experiments (9).

We next used a second strategy to analyze the requirement for IL-6 in T_{FH} cell development and function. IL-6-deficient mice were infected with LCMV, a virus that elicits a robust T cell and GC response (54–56). Eight days following viral challenge, activated CD4^{+} splenic CD4 and CD8 T cells expanded comparably in both IL-6-intact and -deficient mice (Fig. 7A, 7B). Using CXCR5 and BTLA as markers of T_{FH} cell (9,18), a small decrease in the percentage of CD4^{+} T_{FH} cells was observed in the absence of IL-6 (Fig. 7C, 7D); however, the decrease was diminutive, indicating IL-6 did not play a major role in T_{FH} cell development. To directly quantify T_{FH} cell differentiation of virus-specific CD4 T cells, splenocytes 8 d after viral infection were restimulated with the immunodominant LCMV I-A^{b} binding peptide gp61–80, followed by staining for IFN-γ to reveal the Ag-specific population. The percentages of IFN-γ^{+} cells (Fig. 7E) and Ag-specific CXCR5^{hi} cells (Fig. 7F, 7G) were unchanged between IL-6-deficient and -intact controls. These data suggested that IL-6 is not required for the development of T_{FH} cells during LCMV infection.

To determine whether IL-6 had a role in IL-21 secretion, splenocytes from infected mice were stimulated with either gp61 or PMA plus ionomycin, followed by intracellular staining for IL-21. CD4^{+} CD4 T cells produced similar levels of IL-21 in the absence or presence of IL-6 (Fig. 8A, 8B [gp61] and Fig. 8C–E [PMA/ionomycin]). In addition, there was no difference in bcl6, il21, or prdm1 transcripts in the T_{FH} cell subsets sorted from IL-6-intact or -deficient recipients (Fig. 8F and data not shown).

To further address the effects of IL-6 on T_{FH} cell function, we analyzed the formation of GCs in IL-6-intact or IL-6-deficient mice. After LCMV infection, large GC B cell responses (GL7^{+}) in spleens isolated 8 d after LCMV infection from IL-6-intact or -deficient mice are intact at day 15 postinfection (Fig. 9). Using IL-6–deficient mice, we were able to regulate expression of PSGL1 by several mechanisms.

B cells play a critical role in T_{FH} cell development and perhaps in Bc6 expression, although the timing of T-B cell interaction in this process is not well understood (17, 18, 33). Our results suggest that B cells play a more critical role in the maintenance of the expression of Bc6, rather than initiation of its upregulation. We base these conclusions upon the findings that PSGL1^{lo} CD4 T cells that are CXCR5^{lo}PD-1^{lo} express Bc6 and develop in the absence of B cells. Bc6 expression likely precedes downregulation of PSGL1, because Bc6 is necessary and sufficient for reduced surface expression of this molecule (Fig. 3). Because a significant percentage of PSGL1^{lo} cells develop in B cell-deficient mice, or in animals that lack specific B cell activation, it follows that Bc6 upregulation should precede contact with B cells. We were surprised then when we found low levels of Bc6 in activated OT-II CD4 T cells that had developed in B cell-deficient hosts. On the basis of the lower percentage of PSGL1^{lo} cells that developed in these animals, we expected Bc6 to be somewhat reduced; yet, we found that the reduction was quite striking. Despite this finding, we did consistently observe an increase in its expression compared with naive CD4 T cells, supporting the conclusion that Bc6 upregulation can occur in the absence of B cells and that this is sufficient to induce downregulation of PSGL1.

These results indicate that B cells may play a role in stabilizing or increasing Bc6 levels, an explanation in line with our findings that B cells are more critical at later stages of T_{FH} cell differentiation. This is a time of more robust development of CXCR5^{lo}PD-1^{hi} cells that synthesize IL-21, a result demonstrated here using a transfer model. A day 4 time point for the initial analysis was chosen; however, we do not presume that this is the point at which
T cells begin their interaction with B cells. It is likely that some T–B interaction occurs even earlier (2, 66). Regardless, ongoing interaction with B cells appears necessary for full commitment to TFH cell development. More work is needed to further explore the exact time and location at which this critical T–B interaction takes place and when and where Bcl6 is upregulated.

These data do not contradict our recently published work (18), in which we demonstrated that overexpression of Bcl6 in the absence of Ag-specific B cell interaction can drive TFH cell development. Data presented in this paper suggest that B cells are necessary to stabilize or increase levels of Bcl6, a step that is required for development of fully functional CXCR5^{BID1} IL-21–secreting TFH cells. By overexpressing Bcl6 using a retrovirus, the levels of Bcl6 protein are experimentally enhanced, and the requirement for signals from B cells is negated, allowing TFH cell development to occur in the absence of this critical interaction. However, as noted above, our findings indicate that B cells are not the signal that drives initial Bcl6 upregulation, as we find Bcl6 expression in PSGL1^{lo}CXCR5^{lo}PD-1^{lo} cells, and these cells can develop in the absence of interaction with Ag-specific activated B cells.

Previous studies have indicated that IL-21 is necessary for TFH cell development in vivo (8, 9). Our data contrast with these results and are in line with more recent data (67, 68), indicating that TFH cells can develop independently of this cytokine. Our finding that Bcl6 upregulation in T cells was also independent of IL-21 supports this conclusion, given the former’s requirement in TFH cell genesis, although these findings too are at odds with in vitro studies (9, 27). Nonetheless, our data indicate the type and route of immunization may determine the dependency of TFH cell development on an inflammatory cytokine, a notion supported by the recent finding that TFH cells arise independently of IL-21 following viral challenge (69) and unchanged frequencies of TFH cell in the absence of IL-21 (70). We do note, though, that GC B cell maturation does require this cytokine, as shown by others (8, 9, 67, 68) (also Fig. 6E, 6F).

We next focused our efforts upon the role of IL-6 in Bcl6 induction and TFH cell formation, as it too has been shown to play a role in TFH cell and GC development in vivo following protein immunization (9) and to drive Bcl6 upregulation in vitro (27). We therefore were surprised to find that it was not required for the development or function of TFH cells, or in their upregulation of Bcl6, following protein immunization of IL-6–deficient and –sufficient mice. Variations in experimental systems may account for the differences between our results and those previously published (9), such as differences in adjuvant use and routes of immunization. We also used transfer of TCR-transgenic CD4 T cells, creating a system where Ag-specific cells were specifically tracked, rather than analysis of global CD4 T cell responses.

As the TCR-transgenic cells we transferred in these experiments were IL-6 sufficient, it was also formally possible that autocrine production of cytokine was sufficient to drive Bcl6 upregulation and TFH cell development. Therefore, we turned to a second in vivo system, acute LCMV infection. Upon viral infection, TFH cell formation and function (the latter measured by IL-21 mRNA levels and protein secretion) and Bcl6 upregulation were normal in the absence of IL-6. Although we observed a difference in LCMV-specific IgG Ab responses 8 d following viral challenge, this presumably was due to the direct effect of IL-6 on B cells (57–59), because the numbers of GC B cells were equivalent between IL-6–deficient and –sufficient mice, and IgG titers were normal at day 15. Ab defects have been previously reported in IL-6–deficient mice (20, 22, 71). These results demonstrate that there is an IL-6–independent mechanism for TFH cell development and Bcl6 upregulation in vivo. One additional possibility that may explain these disparate results, and those obtained upon challenge of IL-21–deficient mice (8, 9), is that IL-6 and IL-21 may be functionally redundant with respect to the upregulation of Bcl6 and consequently TFH cell development. This notion finds support in the observation that protein immunization of STAT3-deficient mice revealed a defect in TFH cell formation (9). This hypothesis would explain the incongruent results seen in vitro and in vivo while also suggesting a reason why different model systems may reveal distinct roles for IL-21 or IL-6. Taken together with our data demonstrating that B cells are more critical for maintenance of TFH cells, we would argue that the precise signal, or more likely, combination of signals, that drives initial upregulation of this transcriptional repressor in vivo remains to be defined.

On the basis of the data presented in this paper, we propose a model in which CD4 T cells upregulate Bcl6 levels upon activation in the T cell zone, with consequent repression of PSGL1 expression (Supplemental Fig. 3). Diminished expression of PSGL1 removes a T zone retention signal via a loss of ability to bind CCL19 and CCL21 in concert with reduced CCR7 expression (72, 73), allowing Bcl6^{lo}PSGL1^{lo} cells to move toward the B cell follicle (74). At the T-B cell border, additional signals from B cells promote TFH cell differentiation and expansion by promoting increased levels of Bcl6 and consequently upregulation of PD-1 and CXCR5 (17, 18). The upregulation of CXCR5 allows TFH cells to move into the B cell follicle where they promote survival and maturation of B cells in the GC via CD40L, IL-21, and other activating signals (48, 75).

Acknowledgments

We thank G. Lyon, Z. Zhao, T. Ardito, R. Rutishauser, S. Kerfoot, A. Haberman, T. Hand, and members of the Kaech and Craft laboratories for technical expertise, reagents, and helpful discussions.

Disclosures

The authors have no financial conflicts of interest.

References

Supplemental Figure Legends

SFig. 1. Development of PSGL1lo cells is not restricted to OT-II TCR transgenic cells.

(A) Development of PSGL1lo cells among KJ1-26 CD4 T cells 6 days after transfer to BALB/c mice immunized with OVA in alum, or PBS-treated. Left panels gated on CD4+ B220lo cells.

(B) Expression of CD62L and CD44 (left panels) on CD4 T cells in unimmunized or B6 mice immunized with NP-CGG in alum. Expression of CD62L and PSGL1, and CXCR5 and PD-1 on activated CD44hi T cells in the middle and right panels, respectively.

(C) Expression of \textit{bcl6} and \textit{il21} transcripts in sorted CD44hi CD4 T cell subsets isolated from spleens of B6 mice 8 days after immunization with NP-CGG in alum. Fold change is compared to sorted naïve CD4 T cells. \textit{bcl6}, *p = 0.0383, \textit{il21}, *p = 0.0123, in both cases comparing transcripts from CD62Llo PSGL1lo cells to those from the CD62Llo PSGL1hi subset. Data are representative of 2 independent experiments.

SFig. 2 IL-6 in recipient mice is not required for development and function of T\textsubscript{FH} cells and their upregulation of Bcl6 among adoptively transferred cells.

(A) Expansion of OT-II Thy1.1 CD4 T cells (left panels), with expression of CD62L and PSGL1 (middle panels), or CXCR5 and PD-1 (right panels) on OT-II Thy1.1 CD44hi CD4 T cells 6 days following transfer and immunization of IL-6-intact and –deficient B6 mice with OVA in alum.

(B) Percentages of T\textsubscript{FH} cells among total transferred T cells. Data are representative of that shown in the middle and right panels of (A), and of 2 independent experiments using 5 mice per group.
(C) Expression of bcl6 and il21 mRNA transcripts in OT-II Thy1.1 CD44hi CD4 T cells sorted 6 days after transfer to IL-6-intact and –deficient hosts immunized with OVA in alum. Fold change is versus sorted naïve CD4 T cells, with data representative of 2 independent experiments.

SFig. 3. A model of T
FH cell development in the spleen is shown. Upon interaction of naïve T cells with an activated APC in the T cell zone, a portion of T cells will be driven to upregulate Bcl6 and subsequently downregulate PSGL1 (1). In concert with downregulation of CCR7, PSGL1lo T cells migrate from the T cell zone and towards the B cell follicle. At the T-B border (2), PSGL1lo Bcl6+ T cells interact with activated B cells that have downregulated CXCR5 and upregulated CCR7, allowing them to move towards the T cell zone. During this interaction at the T-B border, PSGL1lo Bcl6+ T cells receive additional signals and antigen stimulation which will further commit these cells to the T
FH cell fate, allowing them to upregulate and maintain expression of CXCR5 and move further into the B cell follicle and to the GC (3). In the GC, T
FH cells secrete IL-21 and provide maturation signals to B cells including CD40L, that along with antigen-specific stimulation of B cells, drives upregulation of activation induced cytidine deaminase (AID), resulting in Ig isotype switch and hypermutation (4).