An Imbalance of Two Functionally and Phenotypically Different Subsets of Plasmacytoid Dendritic Cells Characterizes the Dysfunctional Immune Regulation in Multiple Sclerosis

Nicholas Schwab, Alla L. Zozulya, Bernd C. Kieseier, Klaus V. Toyka and Heinz Wiendl

J Immunol 2010; 184:5368-5374; Prepublished online 31 March 2010; doi: 10.4049/jimmunol.0903662
http://www.jimmunol.org/content/184/9/5368

Supplementary Material
http://www.jimmunol.org/content/suppl/2010/03/31/jimmunol.0903662.DC1

References
This article cites 38 articles, 17 of which you can access for free at:
http://www.jimmunol.org/content/184/9/5368.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
An Imbalance of Two Functionally and Phenotypically Different Subsets of Plasmacytoid Dendritic Cells Characterizes the Dysfunctional Immune Regulation in Multiple Sclerosis

Nicholas Schwab,*1 Alla L. Zozulya,*1,2 Bernd C. Kieseier,† Klaus V. Toyka,* and Heinz Wiendl*1

Plasmacytoid dendritic cells (pDCs) are instrumental in peripheral T cell tolerance and innate immunity. How pDCs control peripheral immunotolerance and local parenchymal immune response and contribute to the altered immunoregulation in autoimmune disorders in humans is poorly understood. Based on their surface markers, cytokine production, and ability to prime naïve allogenic T cells, we found that purified BDCA-2+BDCA-4+ pDCs consist of at least two separate populations, which differed in their response to oligodeoxynucleotides and IFNs (IFN-β), and differently induced IL-17– or IL-10–producing T cells. To evaluate the potential immunoregulatory role of these two types of pDCs in multiple sclerosis (MS) and other human autoimmune disorders (myasthenia gravis), we studied the phenotype and regulatory function of pDCs isolated from clinically stable, untreated patients with MS (n = 16). Patients with MS showed a reversed ratio of pDC1/pDC2 in peripheral blood (4.4:1 in healthy controls, 0.69:1 in MS), a phenomenon not observed in the other autoimmune disorders. As a consequence, MS pDCs had an overall propensity to prime IL-17–secreting cells over IL-10–secreting CD4+ T cells. Immunomodulatory therapy with IFN-β induced an increase of the pDC1 population in vivo (n = 5). Our data offer a plausible explanation for the disturbed immune tolerance in MS patients and provide evidence that immunomodulatory therapy acts at the level of reconstituting homeostasis of pDC, thus reconstituting the disturbed balance. The Journal of Immunology, 2010, 184: 5368–5374.
Materials and Methods

Patients

Fresh blood samples were obtained from 16 patients referred to the Department of Neurology (University of Wuerzburg). Diagnoses of MS were made according to the criteria of McDonald et al. (16). Patients included in the study were clinically stable and had not yet received immunomodulatory treatment except for corticosteroids, with the last dose at least 6 mo prior to inclusion. In addition, we included five patients who had not received IFN-β and were followed for 12 mo. All patients gave informed consent in accordance with the Declaration of Helsinki and a protocol approved by the Ethics Committee of the University of Wuerzburg Medical School. Thirty to 50 ml of blood was collected by venous puncture and tourniquet. In parallel, 21 sex- and age-matched healthy donors (HDs), and 15 autoimmune disease controls (other disorders [OD]) were included in the study (15 patients with myasthenia gravis [MG]).

Isolation and stimulation of pDCs

pDCs were purified from freshly collected peripheral blood samples (<24 h processing time). PBMCs were isolated by density gradient centrifugation using lymphocyte separation medium (PAA Laboratories, Linz, Austria), followed by positive sorting using anti-BDCA-4-conjugated magnetic beads (Miltenyi Biotec, Bergisch-Gladbach, Germany). The purity of the recovered cells was determined by flow cytometry and was >90%. Where indicated, BDCA-4–isolated pDCs were stained with anti-CD123/anti-CD58 and sorted by flow cytometry based on CD123_{high}CD58_{low} (named pDC1) expression and CD123_{low}CD58_{high} (named pDC2) using a fluorescence-activated cell sorter (MoFlo; Cytomation, Freiburg, Germany).

Isolated and purified pDCs were cultured on 96-well culture plates (Nunc, Langenselbold, Germany) at a concentration of 2 × 10⁴ well in RPMI 1640 (PAA, Linz, Austria) supplemented with 2 mmol/l L-glutamine, 1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany), and 10% human AB serum (AB serum; PAA). The cells were stimulated with type A (CpG_A) or type B (CpG_B) unmethylated CpG oligodeoxynucleotides (ODN) (2 μg/ml; CpG 2216 and CpG 2016, respectively; TIB MOLBIOL, Berlin, Germany), unless specified otherwise in results. IFN-β concentration was 10,000 U/ml.

Flow cytometry

Ex vivo isolated or cultured pDCs were washed with FACS-buffer (PBS supplemented with 1% BSA and 0.1% sodiumazide) and stained with fluorescence-labeled mAbs together with blocking mouse IgG (Sigma-Aldrich, Munich, Germany) at 4°C for 30 min. Cells were then analyzed with FACS-Calibur using Cell Quest (BD Biosciences, Heidelberg, Germany) and FlowJo (Tree Star, Ashland, OR) software. The following mAbs were used for counterstaining of BDCA-4^{high}–isolated pDCs: anti–HLA-DR (L243; BD Biosciences), anti–CD123 (9F5, BD Pharmingen), anti–IL-17 (eBio64DEC17; eBiosciences, Frankfurt, Germany), and anti–IFN-γ (17–19). Unlike CpG A, both pDC subsets (Fig. 1) could be differentially in-duced in pDC1 in response to CpG A and in pDC2 by CpG B (Fig. 1, middle rows). Using mAbs to CD123 (IL-3Rα), this population was not further phenotyped (Fig. 1, left panel). CD45RA⁺ T cells (allogeneic) were isolated from PBMCs from HDs were isolated using lymphocyte separation medium (PAA) and washed twice with PBS. CD4⁺ CD45RA⁺ T cells were purified by negative isolation with FACS-Calibur using Cell Quest (BD Biosciences, Heidelberg, Germany) at a concentration of 2 × 10⁵ per well. Either the entire population or the fraction of CD58^{low}CD123^{high} CD86⁺ pDCs was used as APCs for the primary T cell cultures.

Statistical analysis

Statistical significance of differences was determined by ANOVAs without assuming Gaussian distribution (Kruskal-Wallis test) and subsequent Dunn’s multiple comparison test. Differences were considered statistically significant with p values < 0.05 and highly significant with *p < 0.01 and ***p < 0.001. Software for statistical assessment was Prism 5 (GraphPad).

Results

Purified pDCs contain at least two phenotypically different subsets

pDCs represent a population of DCs with relatively low frequency (~0.4%) in human peripheral blood (1). Recently, two additional markers (BDCA-2 and BDCA-4) were identified with a restriction to human pDCs in peripheral blood and bone marrow (15). Since then, these markers have been used widely to identify and purify pDCs from human blood. We found that pDCs purified by BDCA-4⁺ contain at least two distinct subpopulations in the peripheral blood of HDs that can be identified based on the cell size and granularity (Fig. 1A, left panel). Using mAb to CD123 (IL-3Rα) we could distinguish between CD123^{high} (pDC1 subset) and CD123^{low} (pDC2 subset). A subpopulation that was negative for CD123 expression could also be identified (Fig. 1A, left panel). Because CD123 negative cells were also negative for other important cell surface proteins (e.g., CD80, CD86, MHCII, TLRs, ICOS-L), this population was not studied in detail here.

Further phenotypic analysis revealed a lower expression of MHC class II and other markers associated with DC maturation (e.g., CD86, TLR2, and CD58) by pDC1 in comparison with pDC2 (Fig. 1A, right panel). In addition to MHCII, CD123, and CD86, pDC1 and pDC2 differed in the expression of CD58, ILT2, ILT3, ILT4, CD1c, CD303, and TLR2 (Fig. 1A, right panel). No differences between pDC1 and pDC2 could be observed in the expression of CD8, TLR4, CD86, TLR5, TLR7, TLR8, and TRAIL_A (data not shown). To rule out the autofluorescence-non-specific Ab binding common for matured DCs, isotype stains were performed differentially on pDC1 and pDC2 (Supplemental Fig. 1). The stains revealed a weak increase in the fluorochromes FITC, PE, and APC and some increase on pDC2 in the PE-Cy5-channel.

Functional differences in pDC1 and pDC2 subsets in response to stimulation

We also observed profound differences in the cytokine secretion by both pDC subsets (Fig. 1B). pDCs were analyzed either directly (no stimulus) or after stimulation using CpG_A (ODN 2216), which was shown to induce high amounts of IFN-α/β in pDCs, or CpG_B (ODN 2006), which strongly promotes pDC maturation and activation but induces only small amounts of IFN-α/β (17–19). Unlike CpG_A, pDC stimulation with CpG_β altered the pDC1/pDC2 ratio observed under noninflammatory conditions. CpG_B treatment stimulated a profound shift of total pDCs into pDC2, as indicated by lower expression of CD123 (Fig. 1B) and high expression of various maturation markers (not shown). In our assays, pDC1 was the main source of IFN-α under both steady state and proinflammatory stimulus delivered by CpGs, whereas pDC2 was a poor cytokine producer at a steady state and produced TNF-α upon CpG treatment (Fig. 1C, left and middle rows). TNF-α could be differentially induced in pDC1 in response to CpG_A and in pDC2 by CpG_B (Fig. 1C, middle and lower rows). pDC2 also produced more IL-6 than did pDC1 (data not shown). This behavior further corroborates our finding that pDCs in human blood contain at least two phenotypically different subsets.

We next studied whether the two identified pDC populations would change phenotype and/or function in response to CpGs. As already indicated in Fig. 1, pDC1 displayed a more immature
phenotype with low expression of MHCII, CD86, and CD58 molecules. As a result, this cell population was more prone to mature upon CpG stimulation. CpG A and CpG B treatments both resulted in an increase of CD86 and MHCII expression by pDC1 with a percentage of double-positive cells increasing from 36% (unstimulated) to 58% (upon CpG A) and 83% (upon CpG B) (data not shown). pDC2 consistently revealed CD86 and MHCII expression before or after CpGs treatment (data not shown). Therefore, we suggest that CpG A activated total pDCs, but did not induce their maturation, whereas CpG B appeared to result in maturation of pDC1 into cells with pDC2 phenotype. Thus, blood-derived pDCs could be converted by CpG B into pDC2, whereas the immunomodulatory agent IFN-β, had an opposite effect on pDCs, inducing a pDC1 phenotype (Fig. 2A).

After demonstrating the behaviors of pDC1 (CD123highCD58low) and pDC2 (CD123lowCD58high) in response to different stimuli, and their relative changes, we were interested in the effects these cells could have under conditions of allogeneic T cell priming. Thus, we sorted pDC1 (CD123highCD58low) and pDC2 (CD123lowCD58high) by flow cytometry from human blood-derived pDCs and directly cocultured them with allogeneic naive T cells. Interestingly, pDC1 induced 3.8-fold more IL-10–producing T cells (Tr1) (Fig. 2B) than did pDC2, whereas pDC2 induced 4.8-fold more IL-17–secreting IL-17–producing T cells (Th17) than did pDC1 (Fig. 2B). Because matured DCs are generally prone to reduced viability, we included 7-AAD staining to control the ability of pDC subsets to survive over time and under different experimental conditions. Although both pDC1 and pDC2 were stable and viable in culture under all conditions, CpG A treatment resulted in reduced viability of mainly pDC2 (Supplemental Fig. 2 and data not shown).
numbers demonstrate the percentage of IL-10 secreting cells. Data acquired treated with CpG A or CpG B for 48 h prior to coculture with allo-corroborate our previous observations. Total pDCs were isolated and We next investigated the influence of prestimulated total pDCs (Fig. 2A), we compared how in vitro-shifted pDCs differed in the pDC1/pDC2 distribution influences the generation of pDC1/pDC2 in peripheral blood of patients with MS. Because an inverted ratio of pDC1 to pDC2 could be required for the instruction of lineage (data not shown).

The ratio of pDC1 versus pDC2 is inverted in peripheral blood-derived pDCs of patients with MS

To investigate whether MS might be associated with a disturbance of the pDC1/pDC2 ratio, we next evaluated phenotype and distribution of pDC1/pDC2 in peripheral blood of patients with MS, pDCs isolated from human peripheral blood of stable, untreated, relapsing-remitting MS cases were compared with HDs and another autoimmune disease (OD), MG. In HDs, the ratio of pDC1 to pDC2 was rather stable at an average number of 4.4 to 1 (pDC1 to pDC2: n = 21, range, 0.6:1–18.2:1; Fig. 3A). Interestingly, pDCs of patients with MS showed a reversed ratio of pDC1 to pDC2 (n = 16; average, 0.69:1; range, 0:1–1.81:1), which was not observed in OD. Patients with MG (n = 15), a prototypic Ab-mediated neurologic disorder, had a slightly altered pDC1/pDC2 balance in the same direction as MS (average ratio, 0.9:1), but this ratio did not reach the level of significance and the pDC1/pDC2 distribution was not as apparent as in MS blood samples (Fig. 3A). In addition, we investigated several patients with rheumatoid arthritis, where the pDC1/pDC2 ratio was not altered (data not shown). We did not observe significant differences in cell surface markers expression for both pDC1 and pDC2 when compared between HD and MS (Supplemental Fig. 3).

pDC derived from patients with MS induce more T_H17 in comparison with HD controls

To address whether the inverted pDC1-to-pDC2 ratio in the total pDCs from patients with MS might have consequences for the balance of primed immune responses—similar to our in vitro experiments (Fig. 2)—we compared the properties of HD- and MS-derived pDCs in coculture assays with naive allogeneic T cells. MS-derived pDCs, predominantly containing the pDC2 subset (Fig. 3A), induced a higher amount of IL-17–secreting T_H17-type cells in individual experiments in comparison with HD controls (Fig. 3B). In addition, T cells that were double positive for IL-17 and IFN-γ secretion were also detected in cocultures with MS-derived pDCs. Interestingly, these cells were not found in assays with HD-derived pDCs (Fig. 3B). Using a Transwell membrane separating pDCs and T cells, we could not detect any induction of IL-17 and IFN-γ production by T cells in the absence of pDCs, suggesting that a direct contact, possibly in a form of costimulation, could be required for the instruction of lineage (data not shown).

Immunomodulatory treatment with IFN-β reconstitutes the pDC1/pDC2 imbalance in MS

Because an inverted ratio of pDC1 to pDC2 toward pDC2 could be shown for patients with MS (Fig. 3A) and IFN-β treatment could induce a pDC1 phenotype in vitro (Fig. 2A), we finally questioned whether immunomodulatory therapy with IFN-β, a well-established basic therapy in clinical practice, would exert its effects by influencing the pDC phenotype. We investigated samples from MS cases that were serially acquired before and at different times during clinical treatment. Blood-derived pDCs were analyzed in the samples before IFN-β therapy and at 6 and 12 mo after treatment. Analogous to our observations in vitro, systemic IFN-β therapy resulted in

FIGURE 2. In vitro inflammatory stimuli change pDC phenotype and function. A, Freshly isolated pDCs were incubated with CpG_α (solid line), CpG_β (gray line), and IFN-β (dashed line) for 48 h, and the expression of CD58 was checked on different pDC subpopulations. The frequency of pDC1 and pDC2 based on CD58 expression is shown (one representative experiment), the black vertical line divides pDC1 (left) and pDC2 (right). Filled histograms show the isotype-matched control Ab when gated on pDC1 (black) and pDC2 (gray). B, FACS isolated BDCA-4⁺ pDCs were cell-sorted into pDC1 (CD123^{high}CD58^{low}) and pDC2 (CD123^{low}CD58^{high}) and cocultured with allogeneic naive CD4⁺ T cells. The secretion of IL-17 and IL-10 by T cells was analyzed after 7 d in vitro by intracellular cytokine staining and the x-fold induction of cytokine-producing T cells was calculated based on percentage of cytokine-producing T cells without pDCs (normalized to 1). Data are the mean ± SEM of four independent experiments using HD samples. C, Flow cytometric staining on purified pDCs pretreated with CpG_α or IFN-β for 48 h and cocultured with allogeneic naive T cells for 7 d. The left panels show the control staining of the pDC populations (numbers indicate percentages of pDCs), and the right panels show dot plots gated on CD4⁺ T cells, where the numbers demonstrate the percentage of IL-10 secreting cells. Data acquired are representative of five independent experiments performed.
The functions of pDCs are not fixed, but can be modulated by a variety of environmental factors (e.g., innate stimuli). Thus, pDC act as immune regulators and contain a high percentage of the pDC1 subset under steady-state conditions. However, under pathogenic conditions (e.g., with viral or other inflammatory stimuli resulting in pDC maturation) pDCs effectively switch into pDC2-containing immunogenic cell population to presumably fight pathogens during infection (27).

IFN-β, an approved immunomodulatory drug for MS (28), had a long-lasting effect on the pDC1 to pDC2 distribution, shifting the ratio of the two subsets to a pDC1 phenotype in MS blood samples. IFN-β–modulated pDCs with enhanced CD123 expression and IL-10 production were previously described as a subset of myeloid DCs (29–31). Interestingly, these cells resemble the pDC1 subset described in this study and suggest that both pDC1 and pDC2 are a subset of plasmacytoid DCs and not, as hypothesized earlier (22), a possible subtype of myeloid DCs.

An impaired maturation profile and a lower cytokine secretion in response to innate stimulation of pDCs derived from patients with MS have been demonstrated recently (11, 23). However, the factors responsible for this impairment remained elusive, as was the link with the disordered immunoregulation in MS. We found a remarkable imbalance in the distribution of pDC1 versus pDC2 subsets in MS. Although the overall frequency of pDCs in peripheral blood did not differ between MS and HDs, and the cell

Discussion

Our study addressed the questions of how human pDCs contribute to the immune regulatory networks and how phenotype and function of blood-derived pDCs might differ in a common autoimmune disorder of the CNS (i.e., MS) from healthy volunteers, thereby providing a further hint to the immunopathogenesis of MS.

We could show that human peripheral pDCs contain at least two major subpopulations, which we propose to be called pDC1 and pDC2 subsets. Under basal conditions, these subpopulations exist in a certain ratio and have different effects on the generation of Tr1 and FoxP3+ regulatory T cells. Specifically, our results proved to be in accordance with other work (26) showing that the pDC1 subset could induce Tr1.

It is generally accepted that the functions of pDCs are not fixed, but can be modulated by a variety of environmental factors (e.g., innate stimuli). Thus, pDC act as immune regulators and contain a high percentage of the pDC1 subset under steady-state conditions. However, under pathogenic conditions (e.g., with viral or other inflammatory stimuli resulting in pDC maturation) pDCs effectively switch into pDC2-containing immunogenic cell population to presumably fight pathogens during infection (27).

FIGURE 3. An inverted ratio of MS-derived pDC1 and pDC2 populations directly correlates with increased production of IL-17 and IFN-γ cytokines by T cells. A, The percentage of pDC1 (closed circle) and pDC2 (open circle) subpopulations within total pDCs from samples of HDs (n = 21), clinically stable, untreated MS (n = 16), and MG (n = 15). The black bars represent the mean for each group. B and C, The percentage of IL-17– and IL-17/IFN-γ–double positive T cells was calculated in T cells cocultured directly with HD- or MS-derived pDCs (n = 3).

FIGURE 4. IFN-β therapy restores pDC1 population in the blood of patients with MS. Blood was analyzed before and after 6 and 12 mo of IFN-β therapy. A, The pDC distribution in the blood of one especially interesting patient is shown. The dot plots demonstrate the percentage of pDC1 and pDC2 based on the expression of CD58 and CD123. B, The pDC1 percentages in five analyzed patients are shown for 0, 6, and 12 mo on IFN-β treatment. Different symbols represent individual patients. C, The pDC2 percentages in five analyzed patients are shown for 0, 6, and 12 mo on IFN-β treatment. Different symbols represent individual patients.

Thus, pDCs can induce Tr1 (26) and FoxP3+ (20) regulatory T cells in direct coculture assays. Although we could not induce FoxP3 expression in naive T cells by pDC (data not shown), we observed a generation of Tr1-type T cells through direct, cell-to-cell contact dependent pDC interaction. Specifically, our results proved to be in accordance with other work (26) showing that the pDC1 subset could induce Tr1.

A recovery of the underrepresented pDC1 population in MS blood (Fig. 4). In an extreme case, before therapy, there was no detectable pDC1 population (Fig. 4A). The pDC1 population reached 39% after 6 mo and 52% after 12 mo of treatment. We examined five patients in whom this shift could be observed in differing frequencies (Fig. 4B, 4C). The first sign of a recovery of the pDC1-to-pDC2 ratio could be observed as early as after 2 mo of therapy (data not shown). Similar to earlier observations (11), this finding rules out that the subset imbalance is a fixed abnormality not amenable to therapeutic modification.
surface markers on both pDC1 and pDC2 between MS and HDs proved to be similar, the functional consequences of pDC–T cell interactions were significantly different. Thus, the number of T_{H}17 after pDC interaction was clearly higher in the presence of MS-derived pDCs. In addition, unlike pDCs from HD controls, MS-derived pDCs induced double-positive IFN-γ/IL-17+ T cells in vitro, which are believed to represent a highly proinflammatory and, in the proper antigenic setting, encephalitogenic subpopulation of CD4+ T cells. The generation of these cells has recently been reported (32), suggesting a synergistic action of two cytokines. As a side note, our results differ in one data point from those of Stasi olek et al. (11); whereas they found CD86 to be expressed less in MS pDCs ex vivo, we observed that pDC2 is CD86+ and patients with MS have a much higher percentage of pDC2. Other discrepancies between our studies can be attributed to cell preparation (PBMCs versus leukaphereses) and general differences in scientific questioning (cocultures versus monocultures).

The description of two phenotypically and functionally different pDC populations in conjunction with their alteration in MS raises several important questions, such as: 1) Is the imbalance between pDC1/pDC2 a phenomenon associated with autoimmune conditions in general or is it specifically associated with MS, and 2) could the reversibility of the pDC1/pDC2 imbalance be a strategy of reconstituting parts of the disordered immunoregulatory networks in MS?

First, the significant imbalance in pDC1 to pDC2 subset distribution could be observed only in MS and not in MG, which we used as a neurologic autoimmune disease control. This finding suggests that the detected imbalance of pDC1/pDC2 is characteristic of MS. Therefore, it is tempting to speculate about specific pathogenic conditions that might induce this phenomenon in MS. For example, through its stimulation, a viral infection present in patients with MS could drive the pDC maturation toward the pDC2 phenotype. Indeed, the contribution of viruses (e.g., herpesviruses) to the development of MS (33, 34) and modulation of pDC populations in conjunction with their alteration in MS raises questions about the role of viruses and the cellular and molecular mechanisms involved in this process. The contribution of viruses (e.g., herpesviruses) to the development of MS (33, 34) and modulation of pDC populations in conjunction with their alteration in MS raises questions about the role of viruses and the cellular and molecular mechanisms involved in this process.

As a note of caution, we did not purify and test the remaining pDC population with negative CD123 expression. It cannot be excluded that this subset has also some regulatory functions in the disordered immune network of MS.

Our work identifies and characterizes that human blood-derived pDCs contain at least two different subpopulations. These subpopulations differ in cell surface markers, cytokine expression, and their ability to prime naive T cells toward tolerogenic or immunogenic/inflammatory directions. The phenotype of these pDC subpopulations can be modulated in vitro. There is a clear underrepresentation of immature pDC1 in conjunction with functional evidence in MS, and immunomodulatory therapy IFN-β recovers the pDC1 population, regenerating a pDC1/pDC2 ratio as observed in healthy controls. Our work provides an additional mechanism of action for IFN-β in vivo and shows how immunomodulatory therapy can act at the cellular level in recovering immunoregulatory dysfunctions in patients with MS.

Acknowledgments
We thank Barbara Reuter, Barbara Wrobel, Andrea Staudigel, and Theresa Moritz for technical assistance and the blood donors for cooperation. We are grateful to our MS patients for donating blood.

Disclosures
The authors have no financial conflicts of interest.

References

