Chemerin Peptides Promote Phagocytosis in a ChemR23- and Syk-Dependent Manner

Jenna L. Cash, Annabel R. Christian and David R. Greaves

J Immunol 2010; 184:5315-5324; Prepublished online 2 April 2010;
doi: 10.4049/jimmunol.0903378
http://www.jimmunol.org/content/184/9/5315

Supplementary Material
http://www.jimmunol.org/content/suppl/2010/04/02/jimmunol.0903378.DC1

References
This article cites 50 articles, 24 of which you can access for free at:
http://www.jimmunol.org/content/184/9/5315.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Chemerin Peptides Promote Phagocytosis in a ChemR23- and Syk-Dependent Manner

Jenna L. Cash, Annabel R. Christian, and David R. Greaves

Chemerin peptides represent a recently identified component of the endogenous anti-inflammatory network that act via the G protein-coupled receptor ChemR23. The role of the chemerin peptide/ChemR23 pathway in phagocytosis, the clearance of apoptotic cells (efferocytosis), and the resolution of inflammation is unknown. In this article, we report that low picomolar concentrations of the chemerin peptide chemerin15 (C15) enhance macrophage (MΦ) phagocytosis of microbial particles and apoptotic cells by up to 360% in vitro. These prophagocytic effects of C15 are significantly impaired in ChemR23−/− MΦs and are associated with increased actin polymerization and localization of F-actin to the phagocytic cup. Importantly, pharmacological inhibition of Syk activity completely abrogates the prophagocytic activities of C15 and associated changes in actin polymerization and phagocytic cup formation, suggesting that C15 promotes phagocytosis by facilitating phagocytic cup development in a Syk-dependent manner. During peritoneal inflammation, C15 administration (8 pg/mouse) enhances microbial particle clearance and apoptotic neutrophil ingestion by MΦs in wild-type but not ChemR23−/− mice, such that levels of apoptotic and necrotic cells at the inflammatory site are profoundly reduced. In contrast, neutralization of endogenous chemerin species during peritoneal inflammation significantly impairs MΦ ingestion of apoptotic neutrophils and zymosan. Our data identify a key role of the chemerin peptide/ChemR23 axis in the efficient clearance of foreign material, efferocytosis, and, hence, the resolution of inflammation. Manipulation of the chemerin peptide/ChemR23 axis may represent a novel therapeutic approach for the treatment of inflammatory pathologies, especially if failure to efficiently clear phagocytic targets has been implicated in their pathogenesis. The Journal of Immunology, 2010, 184: 5315–5324.

Macrophages (MΦs) are innate immune cells that can recognize, phagocytose, and kill microbial pathogens; as such, they represent an important component of the body’s defense against infection (1–3). Efficient clearance of pathogenic material by MΦs is important in limiting the magnitude and duration of the ensuing inflammatory response, although recognition and engulfment of microbial particles by MΦs typically result in their activation and the secretion of inflammatory cytokines (4, 5). In contrast, MΦ ingestion of apoptotic cells is nonphlogistic (noninflammatory) because it does not provoke inflammatory mediator expression and is associated with active suppression of proinflammatory mediator release and upregulation of anti-inflammatory mediator expression, including TGF-β (6–9). Thus, apoptotic cell phagocytosis (efferocytosis) plays an important role in the resolution of inflammation and the maintenance of peripheral immune tolerance (1, 2, 7, 9, 10). Inefficient clearance of apoptotic cells, resulting in the accumulation of secondary necrotic cells, can result in the exacerbation of inflammation, because necrotic cell ingestion elicits MΦ activation, and necrotic cell lysis releases cytotoxic, proinflammatory, and immunogenic material (11–17). Thus, failure to efficiently clear apoptotic cells favors inflammatory and autoimmune reactions rather than inflammatory resolution, and it promotes a persistent state of inflammation seen in systemic lupus erythematosus (SLE), as well as in atherosclerosis and diabetes mellitus (18–22). Studies in experimental animal models combined with clinical evidence from human inflammatory diseases, including SLE, highlight the importance of efficient phagocytosis of apoptotic material during inflammation and also suggest its potential as a therapeutic target for the treatment of certain inflammatory diseases (12, 19, 20, 22–24).

We previously reported that picogram quantities of C-terminal peptides derived from the chemoattractant chemerin, in particular chemerin15 (C15; AGEDPHGYFLPGQFA), inhibit MΦ activation and suppress peritonitis induced by the yeast cell wall component zymosan (25). We hypothesized that chemerin peptides may achieve this effect, in part, by enhancing MΦ phagocytosis of the inciting stimulus, zymosan, and/or modulating the nonphlogistic ingestion of apoptotic cells at the site of inflammation.

In this study, we show for the first time that chemerin peptides potently and profoundly enhance MΦ clearance of microbial particles and apoptotic cells in a nonphlogistic and ChemR23-dependent manner, a process that requires Syk-dependent changes in F-actin polymerization and phagosome formation.

Materials and Methods

Animals

All animal studies were conducted with ethical approval from the Dunn School of Pathology Local Ethical Review Committee and in accordance with the U.K. Home Office regulations (Guidance on the Operation of Animals, Scientific Procedures Act, 1986). ChemR23−/− mice on an Sv129Ev background were a kind gift of Takeda (Cambridge, U.K.).
Mφ culture and zymosan phagocytosis assays

Mφs were obtained and cultured, as previously described (25). Briefly, Bio-Gel P100 polyacrylamide beads (1 ml 2% w/v in PBS; Bio-Rad, Hemel Hempstead, U.K.) were injected into the peritoneal cavities of 8–12-wk-old C57BL/6 mice. Mice were killed 4 d later, and peritoneal exudate cells (PECs) were collected in PBS 2 mM EDTA (Lonza, Slough, U.K.). Harvested cells were centrifuged and resuspended in OptiMEM supplemented with 2 mM l-glutamine, 50 U/ml penicillin, and 50 μg/ml streptomycin (all from Invitrogen, Paisley, U.K.). Cells were plated in 24-well suspension plates (0.4 × 10^6/well; Greiner Bio-One, Stonehouse, U.K.) and allowed to adhere for 1 h at 37°C in a humidified atmosphere containing 5% CO2 to permit Mφ populations by adherence. Nonadherent cells and Bio-Gel beads were removed by washing with PBS after 1 h. Mφs were preincubated with 10^11–10^12 M C15 (Biosynthesis, Lewisville, TX), C15-S (scrambled C15 peptide; GLFHDQAGPPAGYEF; Bio-synthesis), or chemerin (R&D Systems, Minneapolis, MN) for 45 min at 37°C and then transferred to ice for 10 min prior to the addition of zymosan-FITC (Invitrogen) or serum-opsonized zymosan (Opz-FITC) in a 1:10 ratio (zymosan:Mφ). Cells were challenged with zymosan/Opz-FITC for 5, 15, 30, 45, or 60 min at 37°C, and the assay was terminated by transferring cells to ice and vigorously washing off noningested material with ice-cold PBS four times. Cells were lifted from tissue culture plastic using lidocaine-EDTA (Sigma-Aldrich, St. Louis, MO) and scraping and were fixed using 4% v/v formalin. In control experiments, fluorescence from extracellularly bound FITC particles was neutralized by quenching with Na2CO3. Blue fluorescence of trypan blue and the reconstructions of individual Z-series confocal images confirmed that extracellularly bound particles were not present following stringent washing. Opsonized FITC- zymosan was generated by incubating zymosan-FITC (20 mg/ml) and 100% mouse serum in a 1:1 v/v ratio for 1 h at 37°C with gentle shaking. The OpZ was then washed three times in PBS to remove excess serum. Where appropriate, the Syk inhibitor, picatinem (PIC; 10 μM; Tocris Cookson, Bristol, U.K.), was administered 20 min before C15 pre- treatment. Results obtained with PIC were confirmed using a second Syk inhibitor, BAY 61-3606 (10 μM; Tocris Cookson, Bristol, U.K.), and was administered 20 min before C15 pre- treatment. Results obtained with PIC were confirmed using a second Syk inhibitor, BAY 61-3606 (1 M; Sigma-Aldrich; data not shown). Lack of cytotoxicity of 10 μM PIC and 1 μM BAY 61-3606 was determined using CellTiter-Glo assay (Promega, Madison, WI). In separate experiments, the effect of C15 treatment on Mφ binding of zymosan was determined by pretreating with C15 at 37°C and then performing the above phagocytosis assay at 4°C. All in vitro experiments were performed in OptiMEM supplemented as described above, and all peptides were reconstituted in filter- sterilized PBS 0.1% BSA. Data from all in vitro phagocytosis assays are expressed as a relative recognition index (RI), as described below. For collection of Mφ supernatants, the above zymosan-phagocytosis assays were carried out in six-well plates (1 × 10^6 cells/well; Costar, Lowell, MA) in C15 pretreated (45 μM) C15-S (scrambled C15 peptide; GLFHDQAGPPAGYEF; Bio-synthesis), or chemerin (R&D Systems, Minneapolis, MN) for 45 min at 37°C; challenged with zymosan-FITC, as described above, for 5 min; and then transferred to ice where media were removed; were washed and actin staining solution (4% v/v formalin in PBS, 5 U/ml Alexa Fluor 488-phalloidin (Invitrogen) and 5 mg/ml lysopatmilmyophosphati- dylcholine (Sigma-Aldrich)) was added for 20 min. After 20 min on ice, the staining solution was removed, and cells were washed three times with cold PBS. Coverslips were mounted, and polymerized actin, phagocytic cups, and phagosomes were visualized by confocal microscopy. Early and late phagocytic cups and early phagosomes were judged from phalloidin-Alexa Fluor 546- stained images. Early phagocytic cups were defined as the presence of an actin cup-like structure around ~10–25% of the circumference of the zymosan par- ticle. Late phagocytic cups were defined as the presence of an actin cup around ~50% of the zymosan particle. Phagosomes were defined by 100% enclosure of the zymosan particle by F-actin where early phagocytosis were located at the cells periphery, and late phagosomes were found near the center of the cell.

In vivo phagocytosis

C57BL/6d mice were administered 500 μl C15 (0.32 ng/kg), C15-S (0.32 ng/ kg), neutralizing anti-murine Chemerin Ab (ChAb, R&D Systems; 100 ng/ mouse), control IgG (R&D Systems; 100 ng/mouse), or vehicle (PBS; Lonza). i.p. 1 h before injection of 500 μl 10 μg unlabeled zymosan (for Ly6G+ cell phagocytosis; Sigma Aldrich) or zymosan-FITC (for zymosan phagocytosis; Invitrogen). For Ly6G+ cell phagocytosis, PECs were collected by lavage with 5 ml PBS, 2 mM EDTA after 2, 4, 8, 16, or 24 h. For zymosan phagocytosis, PECs were collected after 0.5, 1, 2, or 4 h. PECs (1 × 10^7) were fixed (4% v/v formalin), permeabilized, and blocked (3% BSA [Sigma-Aldrich], 0.1% Triton X-100 [Sigma-Aldrich], 2.5 μg/ml 2.4G2 FcγRIII [AbD Serotec, Kidlington, U.K.]) prior to staining with F4/80-Alexa Fluor 647 (4 μg/ml; BD Biosciences, Oxford, U.K.) and Ly6G-PE (2 μg/ml, only for Ly6G+ cell phagocytosis; BD Biosciences). Zymosan+ F4/80+, and Ly6G+F4/80+ cells, as a percentage of the total PECs and total F4/80+ cells, were obtained using FlowJo (Tree Star, Ashland, OR).

ChAb effect on leukocyte recruitment

C57BL/6d mice were administered 500 μl ChAb (100 ng/mouse) or isotype control IgG (100 ng/mouse; both from R&D Systems) i.p. 1 h before i.p. injection of 500 μl 10 μg zymosan (Sigma-Aldrich). After 2, 4, 8, 16, 24, or 48 h and humanice sacrifice, PECs were collected by peritoneal lavage with 5 ml sterile PBS-2 mM EDTA. Total cell counts were determined, and the percentage of neutrophils and monocytes in the peritoneal lavage fluid were obtained by FACs analysis, as previously described (25). Briefly, cells (1 × 10^6) were blocked with anti-mouse 2.4G2 FcγRIII (2.5 μg/ml) for 10 min and stained for 15 min with FITC-conjugated anti-mouse 7/4 (10 μg/ml; AbD Serotec) and PE-conjugated anti-mouse Ly6G (4 μg/ml; BD Biosciences). Gates were constructed around two populations: the neutrophils (7/4high, Ly6Ghigh) and inflammatory monocytes (7/4high, Ly6Glow).

Statistics

Values for all measurements are expressed as mean ± SEM. The Student t test, one-way ANOVA with the Dunnett post hoc test, and two-way ANOVA with the Bonferroni post hoc test were performed to determine the levels of significance between groups using GraphPad Prism 5.0 software (GraphPad, San Diego, CA).

Results

C15 promotes phagocytosis of zymosan and Opz in vitro

To determine the effect of C15 and control agents on Mφ phagocytosis of zymosan, Mφs were pretreated with 0.1 pM–1

Calculation of the RRI

RRI was calculated using the equation RRI = % (unknown geometric mean fluorescent intensity [GeoMFI] / vehicle GeoMFI), where % is the percentage of zymosan-FITC+ Mφs, Opz-FITC+ Mφs, or CFSE-labeled apoptotic cell+ Mφs, and "unknown" GeoMFI is the GeoMFI of C15-, C15-S, or chemerin-treated samples.
nM C15 (AGEDPHYGFLPGQFA), C15-S (GLFHDQAGPPAGYEF; scrambled C15 peptide), or chemerin for 45 min and challenged with zymosan-FITC over a 5–60-min time course. C15 elicited a dose-dependent increase in zymosan phagocytosis that was optimal at a dose of 10 pM (360% increase) at the 15-min time point (Fig. 1A, 1C, Supplemental Fig. 1A). Zymosan particles were readily phagocytosed by MΦs without opsonization; however, particles are unlikely to exist for extended periods in vivo without becoming opsonized. Therefore, we tested the effect of C15 on phagocytosis of OpZ. C15 induced a dose- and time-dependent increase in OpZ phagocytosis that was optimal with 10 pM C15 at the 15-min time point (230% increase; Fig. 1B, 1D).

Maximal phagocytosis occurred in vehicle-treated MΦs at 45-min postzymosan or OpZ challenge, whereas C15 (10 pM)-pretreated MΦs reached the saturation point at 15 min (Fig. 1C, 1D). At the 45- and 60-min time points, when vehicle- and C15-treated MΦ phagocytosis had reached a plateau, a 45% and 34% increase in zymosan and OpZ phagocytosis with C15 was noted (Fig. 1C, 1D). Thus, picomolar concentrations of C15 peptide enhanced the rate of MΦ zymosan uptake and increased overall MΦ phagocytic capacity for zymosan. The parent molecule, chemerin, and the control peptide, C15-S, had no effect on zymosan or OpZ phagocytosis by MΦs (Fig. 1A, 1B).

C15 promotes zymosan phagocytosis in a nonphlogistic manner

Phagocytosis of zymosan is a widely used model of microbial recognition by the innate immune system that typically results in MΦ activation and the secretion of proinflammatory cytokines (5, 26, 27). Given the prophagocytic effect of C15 on zymosan clearance, we determined whether C15 induces corresponding increases in inflammatory cytokine release in association with its effects on zymosan phagocytosis. In contrast, we found that C15-treated MΦs, which have phagocytosed up to 360% more zymosan, released reduced levels of proinflammatory cytokines and chemokines, including TNFα (53% decrease), IL-6 (48% decrease), IL-12 p40 (47% decrease), and JE (64% decrease), 15 h postphagocytosis (Fig. 1E). These data demonstrate that low picomolar doses of C15 peptide enhance zymosan phagocytosis in a nonphlogistic manner. To our knowledge, C15 peptide is the first mediator shown to induce phagocytosis of an inflammatory stimulus in a nonphlogistic manner. This may halt inflammation by removing the inciting stimulus and preventing the release of further proinflammatory mediators by MΦs.

C15 promotes nonphlogistic MΦ ingestion of apoptotic cells in vitro

Phagocytosis of apoptotic cells is the classic example of phagocytic clearance without the provocation of an inflammatory response and is an important determinant of the resolution of inflammation (7, 9, 28). To probe the effect of chemerin-derived peptides on apoptotic cell phagocytosis in vitro, MΦs were pretreated with C15 (0.01–10 pM) for 45 min and then exposed to CFSE-labeled apoptotic Jurkat cells for 1 h. C15 enhanced MΦ phagocytosis of apoptotic cells with an optimal dose of 1 pM;
a 247% increase in phagocytosis was observed (Fig. 2A, Supplemental Fig. 1B). However, similar prophagocytic effects were still seen with 0.1 pM C15: doses that are 10× and 100× lower than that required for optimal enhancement of zymosan and OpZ phagocytosis (Fig. 1A, 1B). We postulate that reduced C15 concentrations are required for optimal enhancement of apoptotic cell phagocytosis because C15 may act in concert with prophagocytic mediators that are known to be released by apoptotic cells, including nucleotides and Annexin A1 (29–31). Intriguingly, the parent protein chemerin, which failed to enhance zymosan ingestion (Fig. 1A), promoted phagocytosis of apoptotic cells with an optimal dose of 0.1 pM (Fig. 2B). These prophagocytic effects were abolished when chemerin was administered in the presence of the serine and cysteine protease inhibitor (leupeptin), demonstrating that chemerin promotes phagocytosis in a proteolysis-dependent manner (Fig. 2B). These data mirror our previous observations that chemerin suppresses MΦ activation in a proteolysis-dependent manner (25), suggesting that classically activated MΦs and apoptotic cells are capable of releasing proteases that cleave chemerin to generate anti-inflammatory and prophagocytic peptides. We postulate that chemerin is cleaved during this assay by apoptotic cell-derived proteases, because chemerin did not exert any prophagocytic effects on zymosan and OpZ phagocytosis (Fig. 1A, 1B). In addition, C15-treated MΦs, which had ingested up to 2.5-fold more apoptotic cells, released reduced levels of proinflammatory cytokines TNF-α (63%; Fig. 2C) and JE (54%; Fig. 2D) and exhibited increased TGF-β expression (108%; Fig. 2E) with an optimal dose of 1 pM C15.

ChemR23−/− MΦs exhibit impaired phagocytosis in response to C15

To assess the involvement of the G-protein coupled receptor ChemR23 in mediating C15 enhancement of zymosan and OpZ phagocytosis, we compared the effect of C15 on phagocytosis of these targets by wild-type and ChemR23−/− MΦs at the 15-min time point. The prophagocytic effects of C15 on zymosan phagocytosis were completely abolished in ChemR23−/− MΦs, indicating that C15-enhanced clearance of zymosan requires the involvement of ChemR23 (Fig. 3A). In contrast, ChemR23−/− MΦs displayed a 71% reduction in C15 enhancement of OpZ phagocytosis at the optimal 10-pM dose (Fig. 3B). These data suggest the existence of an additional C15R that may be required for optimal enhancement of OpZ clearance in vitro (Fig. 3B). Furthermore, the level of zymosan (***, 22 RRI; **, 20 RRI; Fig. 3A) and OpZ (**, 49 RRI; **, 51 RRI; Fig. 3B) phagocytosis in untreated wild-type and ChemR23−/− MΦs was of equivalent magnitude.

We next assessed the involvement of ChemR23 in mediating C15 enhancement of apoptotic cell clearance, finding that the prophagocytic effects of C15 on apoptotic cell phagocytosis were completely abolished in ChemR23−/− MΦs, indicating that C15-enhanced clearance of this phagocytic target also requires the involvement of ChemR23 (Fig. 3C). In addition, the basal level of apoptotic cell ingestion in ChemR23−/− MΦs (14.5 RRI) was significantly lower than that of wild-type MΦs (22.7 RRI), providing the first indication of a phenotype for ChemR23−/− MΦs in the absence of an inflammatory stimulus (25).

C15 enhances MΦ zymosan phagocytosis during peritonitis

We previously showed that C15 ameliorates zymosan-induced peritonitis, reducing leukocyte recruitment by up to 65%, with a concomitant suppression of inflammatory mediator expression (25). Having demonstrated that C15 is capable of enhancing zymosan phagocytosis in vitro, we next assessed the effect of C15 (8 pg/mouse; 0.32 ng/kg) on MΦ zymosan phagocytosis in vivo in the zymosan peritonitis model. PECs were analyzed for uptake of zymosan-FITC and expression of the MΦ marker F4/80 (32). The maximum level of MΦs engaged in the clearance of zymosan occurred in control animals 1 h postzymosan challenge, where 23% of total cells were zymosan-F4/80+ (Fig. 4A, Supplemental Fig. 1C). A single 8-pg dose of C15 enhanced MΦ zymosan clearance by 38%, increasing the percentage of zymosan-F4/80+ PECs to 34% (Fig. 4A). C15 also enhanced MΦ zymosan clearance in vivo because C15-injected animals exhibited a 247% increase in phagocytosis.
wild-type M̃ FITC (background were pretreated with C15 (0.01 pM–1 nM) or vehicle for by FACS analysis. Graphs show mean values quantification of ingested zymosan, OpZ, and apoptotic cells was carried out dependent experiments.

We have clearly demonstrated the ability of C15 to potently enhance the clearance of apoptotic neutrophils in vivo; therefore, we next analyzed the effect of C15 on the level of apoptotic and necrotic cells at the inflammatory site during peritonitis. We used the standard approach of PI and Annexin V staining to quantitate apoptotic and necrotic cells in the peritoneal cavity. In control animals 4 h postzymosan challenge, apoptotic cells represented 18% of total PECs, whereas necrotic cells accounted for 4%. When mice were pretreated with a single 8-pg dose of C15, the percentage of apoptotic cells decreased by 31%, to 12% of total PECs (Fig. 5A, Supplemental Fig. 1), whereas the necrotic cell population was reduced by 53% to only 1.9% of total PECs (Fig. 5B, Supplemental Fig. 1E). These data indicate that the prophagocytic effects of C15 on apoptotic cell clearance result in a quantifiable reduction in the level of apoptotic cells present at the inflammatory site. This may then lead to the observed reduction in necrotic cells because fewer apoptotic cells escape phagocytic clearance and undergo secondary necrosis.

Our data show for the first time that the chemerin peptide C15 can promote inflammatory resolution through its ability to potently enhance apoptotic neutrophil phagocytosis during peritonitis in vivo.

Blockade of endogenous chemerin species results in impaired phagocytosis in vivo

We assessed the role of endogenous chemerin peptides in phagocytosis and leukocyte recruitment during peritoneal inflammation using ChAb. We completed a zymosan-induced peritonitis time-course in which animals received pretreatment with control IgG or ChAb (100 ng/mouse) prior to a 0–48 h zymosan challenge. Neutralization of endogenous chemerin species resulted in elevated neutrophil and monocyte recruitment at all time points, except for the earliest (2 h), with a maximum increase of 170% (Fig. 6A, 6B). These data strongly support the existence of
anti-inflammatory chemerin-derived peptides in vivo that are involved in modulating leukocyte recruitment during peritoneal inflammation. In light of the potent prophagocytic effects of the chemerin peptide C15 on zymosan and apoptotic cell phagocytosis, we postulated that endogenous chemerin peptides may modulate the inflammatory response by promoting clearance of these phagocytic targets, in addition to suppressing leukocyte recruitment. Neutralization of endogenous chemerin species resulted in a reduction of up to 46% in zymosan phagocytosis (Fig. 6C,6D) and Ly6G+ cell (neutrophil) phagocytosis (Fig. 6E,6F). These data provide evidence that endogenous chemerin species are an important component of the endogenous resolution system, involved in mediating the clearance of microbial particles and apoptotic cells in vivo.

C15 enhances phagocytosis and phagocytic cup formation through Syk-dependent changes in F-actin polymerization

Because C15 enhances the phagocytosis of multiple phagocytic targets, which are cargo for a variety of MΦ receptors, including dectin-1 for zymosan ingestion (36) and CD36 for apoptotic cell engulfment (37), it is likely that C15 enhances a common pathway of phagocytosis rather than having an effect on specific phagocytic receptor expression. This is particularly likely because FACS analysis showed no significant C15-elicited changes in dectin-1 expression during the course of the zymosan phagocytosis assay (data not shown), and C15 exerted no effect on MΦ binding of zymosan, as gauged by phagocytosis assays performed at 4°C (Supplemental Fig. 3).

Remodeling of the actin cytoskeleton is a prerequisite for phagocytosis, enabling the formation of phagocytic cups and, subsequently, the phagosome to internalize the phagocytic target (38-41). Therefore, we evaluated the effect of C15 on phagocytic cup formation and F-actin polymerization and localization. In addition, we further probed the mechanism by which C15 promotes phagocytosis using the Syk inhibitor PIC. Syk is a tyrosine kinase required for lysosome–phagosome fusion in unopsonized yeast phagocytosis (42), but it is not required for yeast or apoptotic cell internalization (43-45). In agreement with these observations, Syk inhibition had no effect on basal MΦ zymosan or apoptotic cell phagocytosis (Fig. 7A, 7B). However, pretreatment...
of MΦs with PIC prior to C15 treatment resulted in complete abrogation of C15-induced enhancement of zymosan (Fig. 7A) and apoptotic cell phagocytosis (Fig. 7B). Therefore, these data demonstrate that C15 enhances zymosan and apoptotic cell phagocytosis in a Syk-dependent manner.

Subsequently, we probed the effect of C15 on phagocytic cup formation, finding that C15 treatment elicited a significant increase in the percentage of cells with phagocytic cups, from 25% of cells with vehicle treatment up to 40% of cells following treatment with 10 pM C15. This increase in phagocytic cup formation was completely abrogated by treatment with the Syk inhibitor PIC (Fig. 7C). Importantly, vehicle-treated and C15 + PIC-treated MΦs predominantly possessed early phagocytic cups, whereas higher levels of early phagosomes and late phagocytic cups were observed following C15 treatment (Supplemental Fig. 4). These data suggest that C15 may increase the kinetics of phagosome formation in a Syk-dependent manner. C15 also enhanced F-actin polymerization at the early phagocytic cup (Fig. 7D), the late phagocytic cup (Fig. 7E), and the early phagosome (Fig. 7F). C15-mediated alterations in local F-actin polymerization were inhibited by PIC, indicating an essential role for Syk in this process (Fig. 7D–F). In light of these observations, we assessed the effect of C15 on Syk activation, finding that C15 (10 pM) triggered phosphorylation of Syk (Tyr352) in a time-dependent manner (Supplemental Fig. 5). Since phagocytosis, phagocytic cup formation, and F-actin polymerization at the phagocytic cups and early phagosomes were enhanced by C15, and C15-mediated effects were abrogated by the Syk inhibitor PIC, we suggest that C15 enhances phagocytosis through Syk-mediated alterations in F-actin polymerization, which likely aid phagocytic cup formation and, thus, enhances MΦ phagocytosis.

Discussion
In this study, we identify the chemerin peptide C15 as a new mediator capable of promoting inflammatory resolution following microbial challenge by stimulating MΦ clearance of the inciting stimulus and apoptotic neutrophils in a nonphlogistic manner. Efficient clearance of invading microorganisms at sites of inflammation is an indispensable role of MΦs. The ability of C15 to potently enhance this process, in vitro and in vivo, further highlights the dynamic nature of the MΦ and its capacity for phagocytosis while providing novel insights into the regulation of innate immune responses by endogenous anti-inflammatory pathways.
Furthermore, this study indicates that manipulation of the chemerin peptide/ChemR23 axis may be an attractive avenue for therapeutic intervention in inflammation.

Perhaps the most striking characteristic of C15 is the dose at which it exerts its effects. C15 suppresses leukocyte recruitment by up to 65% (25) and enhances phagocytosis in vivo by up to 100% when administered in low picogram quantities. The lipid-resolution mediators resolvin E1, protectin D1, and lipoxin A4 exert less dramatic effects at much higher doses (27). Although these mediators enhance zymosan phagocytosis (27), it is unknown whether this occurs in a nonphlogistic manner, whereas the prototypical anti-inflammatory drug dexamethasone inhibits MΦ phagocytosis (46). To our knowledge, C15 peptide is the first mediator shown to induce MΦ phagocytosis of an inflammatory stimulus in a nonphlogistic manner. This may halt inflammation by removing the inciting stimulus and preventing the release of further proinflammatory mediators by MΦs.

Interestingly, the dose required for optimal enhancement of apoptotic cell phagocytosis in vitro by C15 was 10-fold lower than that required for other phagocytic targets. This observation may reflect differences in the nature of these assays; phagocytosis of zymosan can be viewed as a proinflammatory event because MΦ activation and the release of proinflammatory mediators ensues, whereas apoptotic cell engulfment is a nonphlogistic process. Alternatively, apoptotic cells were shown to release prophagocytic signals, including Annexin A1 and Annexin-derived peptides (30), which could act in concert with the C15 peptide administered in this assay to promote MΦ clearance of apoptotic cells.

We have described for the first time a mechanism through which C15 enhances MΦ phagocytosis, which involves Syk-dependent changes in F-actin polymerization. Syk−/− MΦs, along with DAP12−/− MΦs, have been shown to display a phenotype characterized by elevated proinflammatory cytokine production in comparison with their wild-type counterparts.
(47). It is plausible that C15 and endogenous chemerin species may harness this endogenous DAP12/Syk signaling pathway to elicit their anti-inflammatory and prophagocytic effects. If this is the case, OsSyk-deficient mice could be rendered unresponsive to C15 treatment.

We have demonstrated that the anti-inflammatory and prophagocytic effects of C15 are absent in ChemR23−/− MDs and ChemR23−/− mice, but we were unable to detect a significant difference between zymosan-elicted neutrophil and monocyte recruitment in wild-type and ChemR23−/− at the 4-h time point (25). Therefore, it is intriguing that ChemR23 ablation also has no discernible effect on phagocytosis in vitro or in vivo, when we have clearly demonstrated that neutralization of endogenous chemerin species results in deficits in zymosan and apoptotic neutrophil phagocytosis. Our previous studies demonstrated that the full-length protein chemerin is cleaved into anti-inflammatory peptides that act on ChemR23, in addition to other unidentified receptor(s) (25). Thus, the absence of impaired phagocytosis in ChemR23−/− mice may be due to redundancy in the receptors for chemerin peptides in the anti-inflammatory/proresolution system. Additional receptors for chemerin, and potentially the chemerin peptides, are GPR1 and CCR2 (48, 49). Therefore, ablation of the chemerin gene (RARRES-2) may result in mice with a more overt phenotype than the ChemR23−/− mice through the removal of chemerin-derived ligands for ChemR23 and other potential receptors.

Taken together, our novel data suggest that C15’s potent anti-inflammatory effects in vivo are a result of a combination of direct suppression of MΦ activation (25) and enhancement of MΦ phagocytosis of the incubating stimulus and apoptotic neutrophils. We provide compelling evidence for the role of chemerin peptides and ChemR23 in MΦ phagocytosis and the resolution of inflammation. Therefore, manipulation of the chemerin peptide/ChemR23 axis may represent a novel therapeutic approach for the treatment of inflammatory pathologies, such as atherosclerosis and SLE, in which failure to efficiently clear apoptotic cell debris has been implicated in their pathogenesis (50).

Acknowledgments
We thank E. McNeil, P. Taylor, and G. White for advice.

Disclosure
The authors have no financial conflicts of interest.

References

Supplementary figure legends

Figure S1. Representative FACS data sets. Raw FACS histograms for (A) zymosan phagocytosis *in vitro*; Fig.1 (B) apoptotic cell phagocytosis *in vitro*; Fig.2, (C) zymosan phagocytosis *in vivo*; Fig.4 (D) apoptotic neutrophil phagocytosis *in vivo*; Fig.4 and (E) apoptotic and necrotic cells *in vivo*; Fig.5.

Figure S2. Control peptide C15-S has no effect on phagocytosis *in vivo*. C57Bl/6J mice were injected ip with vehicle, 0.3 ng/kg C15 or 0.3 ng/kg C15-S followed by (A) zymosan-FITC or (B) zymosan 1h later. PECs were harvested (A) 4 h or (B) 8 h later and analysed for zymosan⁺, F4/80⁺ or Ly6G⁺, F4/80⁻ cells as percentage of total cells by FACS as described in Fig.4.

Figure S3. C15 has no effect on MΦ zymosan binding. The *in vitro* zymosan phagocytosis assay described in Figure 1 was repeated at 4°C with 0.1 pM – 1 nM C15 pre-treatment at 37°C. Quantification of phagocytosed zymosan was carried out by FACS analysis and the RRI calculated as described in the Materials and Methods section.

Figure S4. Effect of C15 on the kinetics of phagosome formation. MΦs were pre-treated with piceatannol or vehicle for 30 m followed by treatment with C15 (10 pM) or vehicle for 45 m and subsequent challenge with zymosan for 5 m. Cells were fixed and stained with Alexa Fluor 546-phalloidin to visualise phagocytic cups and phagosomes. Early and late phagocytic cups and early phagosomes were counted and expressed as percentage of total events, where total events represents the sum of early phagocytic cups, late phagocytic cups and early phagosomes counted. Graph shows mean values ± SEM from 3 independent experiments **, P<0.01 relative to vehicle-treated samples, Student’s t test.

Figure S5. Chemerin15 induces Syk phosphorylation. MΦs were treated with C15 (10 pM) for 0 – 45 m or LPS (1 μg/ml; 10 m) as a positive control. Proteins were western blotted and probed with monoclonal anti-pSyk (Tyr352) antibody or anti-Syk antibody; a representative experiment of 4 independent experiments is shown.
Fig.S1 Representative FACS data sets

Fig.S2 Control peptide C15-S has no effect on phagocytosis in vivo
Fig S3 C15 has no effect on MØ zymosan binding

Fig S4 C15 – treated MØs possess a larger proportion of phagosomes

Fig S5 C15 induces Syk phosphorylation in MØs