Central Nervous System Destruction Mediated by Glutamic Acid Decarboxylase-Specific CD4+ T Cells

Amanda R. Burton, Zachary Baquet, George S. Eisenbarth, Roland Tisch, Richard Smeyne, Creg J. Workman and Dario A. Vignali

J Immunol 2010; 184:4863-4870; Prepublished online 26 March 2010; doi: 10.4049/jimmunol.0903728 http://www.jimmunol.org/content/184/9/4863

Supplementary Material http://www.jimmunol.org/content/suppl/2010/03/25/jimmunol.0903728.DC1

References This article cites 32 articles, 8 of which you can access for free at: http://www.jimmunol.org/content/184/9/4863.full#ref-list-1

Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Central Nervous System Destruction Mediated by Glutamic Acid Decarboxylase-Specific CD4+ T Cells

Amanda R. Burton,* Zachary Baquet,†,1 George S. Eisenbarth,‡ Roland Tisch,§ Richard Smyne,† Greg J. Workman,* and Dario A. A. Vignali*

High titers of autoantibodies against glutamic acid decarboxylase (GAD) 65 are commonly observed in patients suffering from type 1 diabetes as well as stiff-person syndrome (SPS), a disorder that affects the CNS, and a variant of SPS, progressive encephalomyelitis with rigidity and myoclonus (SPS). These findings suggest that GAD65-reactive CD4+ T cells alone mediate a lethal encephalomyelitis-like disease that may serve as a useful model to study GAD65-mediated diseases of the CNS. The Journal of Immunology, 2010, 184: 4863–4870.

Glutamic acid decarboxylase (GAD) catalyzes the conversion of glutamic acid to γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. There are two different isoforms of GAD, GAD65 and GAD67, that are generated from two different genes. GAD is expressed in the pancreas and CNS and has been implicated as a target Ag in type 1 diabetes (TID) (1, 2), stiff-person syndrome (SPS), a rare autoimmune disorder thought to occur because of an impairment of GABA production, and a variant of SPS, progressive encephalomyelitis with rigidity and myoclonus (PERM) (3, 4).

Autoantibodies against GAD are a hallmark of T1D, with 80% of new-onset TID patients showing detectable levels of anti-GAD Abs prior to clinical onset of disease (5). High titers of anti-GAD Abs are also detected in patients with SPS, suggesting a prominent role of the GAD Ag in this disease. In fact, there is some suggestion that the anti-GAD Abs may inhibit the function of GABA, leading to the neurologic symptoms observed in these patients (6, 7). Although there is considerable evidence for the presence of anti-GAD Abs in SPS and PERM, far less is known about the role and relative importance of GAD reactive T cells in these diseases.

We had previously generated a number of GAD65-reactive CD4+ T cell hybridomas or clones from NOD mice either immunized with a series of peptides comprising the major immunogenic GAD65 epitopes (8, 9) or left untreated (10). The TCRs were cloned and expressed using a retroviral-mediated stem cell gene transfer system (referred to hereafter as retrogenic [Rg] mice) in which sublethally irradiated NOD/scid mice were reconstituted with NOD.scid bone marrow transduced with retrovirus containing a self-cleaving 2A-peptide–linked TCR and a GFP in the same vector (11–14). Our previous studies have shown that T cells expressing GAD65-specific TCRs did not mediate diabetes or cause insulitis (8, 9), consistent with other studies (15). In the current study, we describe the surprising finding that three of these GAD65-reactive clonotypes (4B5, PA19.9G11, and PA17.9G7) induce a lethal encephalomyelitis-like disease and ataxia in Rg mice. In addition to detailing these observations, we also addressed the following questions: 1) Do the GAD65-reactive T cells infiltrate the CNS and cause inflammation? 2) In the presence of B cells, are GAD65 Abs generated, and do these affect the disease phenotype? 3) Is there a link among T cell pathogenesis, GAD65 reactivity, and cytokine secretion in the inflammation observed in the CNS?

Materials and Methods

Mice

NOD.scid, NOD.Tcrαδ−/−, and Rag1−/− mice were obtained from The Jackson Laboratory (Bar Harbor, ME) and bred in-house. B6129 mice were a gift from C. Benoist and D. Mathis (Harvard Medical School, Boston, MA). All mice were bred and housed at the St. Jude Animal Resources Center (Memphis, TN) in a Helicobacter-free specific pathogen-free facility following state, national, and institutional mandates. The St. Jude Animal Resources Center is accredited by the American Association for the Accreditation of Laboratory Animal Care. All animal experiments followed animal protocols approved by the St. Jude Institutional Animal Care and Use Committee.

The online version of this article contains supplemental material.

Abbreviations used in this paper: Ant, anterior; EAE, experimental autoimmune encephalomyelitis; GABA, γ-aminobutyric acid; GAD, glutamic acid decarboxylase; HEL, hen egg lysozyme; Int, intermedia; PERM, progressive encephalomyelitis with rigidity and myoclonus; Post, posterior; Rg, retrogenic; SPS, stiff-person syndrome; TID, type 1 diabetes.

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10S16.00

*Department of Immunology and †Department of Developmental Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105; ¦Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO 80045; and ‡Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599

†Current address: United States Agency for International Development, Washington, D.C.

Received for publication November 19, 2009. Accepted for publication February 22, 2010.

This work was supported by funds from the Juvenile Diabetes Research Foundation International (1-2004-141, The Robert and Janice Compton Research Grant, in honor of Elizabeth S. Compton, and 1-2006-847), the National Institutes of Health (AI072239), a pilot project from the Cooperative Study Group for Autoimmune Disease Prevention (U19 AI050864-05), the St. Jude Cancer Center Support (CORE) Grant (CA-21765), and the American Lebanese Syrian Associated Charities.

Address correspondence and reprint requests to Dr. Dario Vignali, Department of Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678. E-mail address: vignali.laboratory@stjude.org

The online version of this article contains supplemental material.

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0903728
TCR retroviral constructs

All TCRs were generated as 2A-linked single open reading frames using pCR and cloned into a murine stem cell virus-based retroviral vector with a GFP marker as previously described (11, 12, 14). Details of cloning strategies and primer sequences are available upon request (vignali_lab@stjude.org). The PA19.9G1, PA17.9G7, and PA17.9G7 TCRs were cloned from hybridomas generated by immunizing NOD mice with hen egg lysozyme (HEL) 11–25 (PA21.14H4), GAD 221–237 (PA19.9G11), and GAD 284–300 (PA17.9G7), respectively. The 4B5 TCR was cloned from a GAD65-specific CD4+ T cell clone established from unimmunized 4-wk-old NOD female mice using rGAD65 protein for in vitro expansion (10). The PA21.14H4 and 4B5 TCRs have a glycine-only linker between the Cα and Tα2A (PA21.14H4) or TPTV1.2A (4B5) sequence. The PA19.9G11 and PA17.9G7 TCRs have a glycine-serine-glycine linker between the Cα and TPTV1.2A sequences.

Retroviral-mediated stem cell gene transfer

Retroviral-mediated stem cell gene transfer was performed as previously described (11–14). Briefly, bone marrow was harvested from the humerus, pelvis,ibia, and femur of 5FU-treated mice. The bone marrow was incubated with murine IL-3, human IL-6, and murine stem cell factor for 48 h and then cultured on plates seeded with irradiated TCR retroviral producer cells. After 48 h, the transduced bone marrow was harvested from the plates, and 4 × 10^6 bone marrow cells were injected into the tail veins of NOD.scid mice that had been irradiated with 300 rad.

For experiments requiring both T cells and B cells, NOD.scid bone marrow was transduced with TCR→GFP+ virus and either NOD.Tcra2−/− (B cells) or NOD.scid (control) bone marrow transduced with vector containing only virus. Mice received 2 × 10^6 NOD.scid/TCR-transduced bone marrow and either 2 × 10^6 NOD.Tcra2−/−YFP+ transduced bone marrow or 2 × 10^6 NOD.scid YFP+ transduced bone marrow.

Flow cytometric analysis and cell sorting

For flow cytometric analysis, cells were stained with CD4-APC Cy7 or CD4-PE and TCRγ-APC or TCRβ-PE (BD Biosciences, San Jose, CA, and ebBiosciences, San Diego, CA). Live GFP+ cells were gated for analysis unless otherwise indicated. For analysis of activation markers, cells were stained with CD69-PerCP-Cy5.5 (BD Biosciences). For intracellular cytokine staining, the spleen or pituitary was teased into a single-cell suspension, and cells were then stained as outlined above. Functional assays and cytokine analysis

Biosciences). For purification of cells by FACS, splenocytes were stained with CD69-PerCPCy5.5 (BD Biosciences). For intracellular cytokine staining, the spleen or pituitary was teased into a single-cell suspension, unless otherwise indicated. For analysis of activation markers, cells were gaged on GFP+CD4+ TCR+ cells.

Isolation of lymphocytes from brain

Brains were extracted and homogenized through a 70-μm filter, rinsed with PBS, refiltered, and centrifuged at 1200 rpm for 5 min. Cells were then resuspended in 70% Percoll (GE Healthcare, Piscataway, NJ), placed in a 40–70% Percoll gradient, and centrifuged at 2400 rpm for 30 min with no brake. The interface was collected and washed twice with PBS. The cells were then stained as outlined above.

Functional assays and cytokine analysis

Functional assays were performed by culturing 2.5 × 10^5 GFP+CD4+ TCR+ cells purified by FACS with 5 × 10^5 irradiated NOD splenocytes and a titration of GAD65 whole protein or peptides (Diamyd, Pittsburgh, PA) in 1% FBS-supplemented Eagle’s MEM for 48 h. Cells were pulsed with 1 μCi [3H]thymidine for 24 h and harvested. All values were corrected for background. Prior to pulsing, 50 μl supernatant was removed and analyzed for IL-2, IL-17, and IFN-γ using a Milliplex kit (Millipore, Billerica, MA) and Bioplex machine (Bio-Rad, Philadelphia, PA).

Histology

Spleens were harvested and mice perfused with 2.5% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA) in PBS (pH 7.4). The brain, pituitary, and spinal cord were removed from each mouse and placed in fixative overnight at 4°C. All tissues were cryoprotected in 30% sucrose in PBS for 3 d, embedded in freezing medium (Triangle Biomedical Sciences, Durham, NC), flash frozen on dry ice, and stored at −80°C for later use. Twenty-micrometer-thick sections of brain and spinal cord and 10-μm sections of pituitary were cut on an HM 560 cryostat (Microm, Walldorf, Germany), then thaw-mounted on Superfrost/Plus slides (Fisher Scientific, Pittsburgh, PA). Sections were air-dried overnight then stored at −20°C. The following primary Abs were used: rat anti-CD4 (1:50; eBioscience), rabbit anti–Iba-1 (1:500; Wako Chemicals, Richmond, VA), and rabbit anti-GAD65 (1:500; Chemicon, Temecula, CA). To demonstrate the presence of CD4+ cells in the brains of mice possessing GAD65-reactive T cells, sagittal sections were treated with anti-CD4 primary then biotinylated goat anti-rat secondary (1:500; BD Biosciences). Visualization was by diaminobenzidine reaction using Vectastain ABC kit as per the manufacturer’s directions. For double labeling of GAD65 with CD4, goat anti-rat Alexa Fluor 546 and goat anti-rabbit Alexa Fluor 647 (Invitrogen, Carlsbad, CA) were used on all tissues. Slides were coverslipped with Prolong Gold Antifade Reagent with DAPI (Invitrogen) to counterstain nuclei.

GAD65-specific autoantibody detection

GAD65 autoantibodies were measured using a radio-binding assay as described previously (16, 17). Briefly, sera from the TCR Rg mice detailed were incubated with [3H]thymidine-labeled GAD65 and precipitated with protein A-Sepharose (Amersham Biosciences, Piscataway, NJ). The assay was performed on a 96-well filtration plate (Fisher Scientific), and radioactivity was counted on a Topcount 96-well plate counter (PerkinElmer, Wellesley, MA). Ab levels were expressed as an index. The interassay coefficient of variation is 10% (n = 50) for GAD65 autoantibodies. The upper limits of normal controls (0.032 for GAD65 autoantibodies) were established as the 99th percentile of 198 healthy controls. In the most recent Diabetes Autoantibody Standardization Program workshop, the sensitivity and specificity were 76% and 99%, respectively, for GAD65 autoantibodies.

Results

GAD65-specific TCRs cause an encephalomyelitis-like disease

To investigate the role of GAD65-specific CD4+ T cells in T1D, we had previously established Rg mice expressing 10 different GAD65-specific TCRs (8, 9 and data not shown). Although none of the GAD65-specific TCRs mediated insulitis or T1D, surprisingly, NOD.scid Rg mice expressing three of these GAD65-specific monoclonal TCRs—4B5, PA19.9G11 and PA17.9G7—developed a lethal encephalomyelitis-like disease (Fig. 1A, 1B, Table I). As a control, Rg mice expressing an H-2Aβ-restricted TCR specific for HEL (PA21.14H4) were used. It is important to note that because retroviral-transduced bone marrow from NOD.scid mice was used, no additional T or B cells were present in the recipient animals. Beginning on day 28 post bone marrow transplant, the mice expressing the GAD65-specific TCRs 4B5, PA17.9G7, and PA19.9G11 began to lose weight. Strikingly, weight loss was followed by symptoms that resemble experimental autoimmune encephalomyelitis (EAE) including a flaccid tail, abnormal righting reflex, impaired balance, involuntary movements, paralysis, and eventual death (Fig. 1A, 1B, Table I). As a control, Rg mice expressing an H-2Aβ-restricted TCR specific for HEL (PA21.14H4) were used. It is important to note that we have never observed diabetes in Rg mice expressing any GAD-specific TCR in this or previous studies (9, 18 and data not shown). In addition, Rg mice expressing 4B5, PA17.9G7, and PA19.9G11 TCRs did not develop any insulitis or peri-insulitis.

We also tested the ability of 4B5 to cause disease in a non-autoimmune-prone background using Rag1−/−.B6Scid bone marrow and sublethally irradiated Rag1−/−.B6Scid mice as recipients. This resulted in a disease incidence of 60% with all mice that displayed symptoms progressing to grade 5 (Supplemental Fig. 1). However, this incidence was less than that seen on a NOD.scid background. It was apparent from the symptoms that there was a high probability of encephalopathy in the experimental animals; therefore, we examined brain sections from experimental and control NOD.scid Rg mice to determine if the GAD65-reactive T cells were infiltrating the brain. Interestingly, analysis of mouse brain sagittal
sections revealed that there were CD4+ T cells infiltrates throughout the brain of experimental but not control animals (Supplemental Fig. 2). The location of the cellular infiltrates in the brain was consistent with the position of the circumventricular organs; the structures lining the cavity of the third and fourth ventricles where the blood-brain barrier is incomplete. These regions include the pituitary gland, the vascular organ of the lamina terminalis, the subfornical organ, the pineal gland, and the area postrema (19, 20).

Next, we determined if CD4+ T cell infiltration correlated with areas of GAD65 expression in the brain. T cell infiltration was localized to the regions within the brain that have been shown to express GAD65, including the pituitary gland, thalamus (Fig. 1C), olfactory bulb (Supplemental Fig. 2), and spinal cord (Supplemental Fig. 3) (21). CD4+ T cell infiltration induced localized inflammation as determined by expression of Iba-1, a marker for microglial and macrophage activation predominantly in the intermediate and posterior lobes of the pituitary gland (Fig. 1C) (22).

Taken together, these data suggest that some GAD65-reactive T cells infiltrate the brain in the absence of B cells and cause localized inflammation concordant with GAD65 expression that results in a lethal encephalomyelitis-like disease.

GAD-reactive T cell development appears normal

Given the striking phenotype of the GAD65-specific TCR Rg mice, we first verified that 4B5, PA19.9G7, and PA19.9G11 T cell reconstitution was equivalent by GFP and TCR expression to the PA21.14H4 control (Fig. 2A,2B). Although the percentage and number of T cells in the spleens of 4B5 and the control PA21.14H4 TCR NOD.scid Rg mice were comparable, significant reductions were seen in PA17.9G7 and PA19.9G11 Rg mice (Fig. 2A, 2C). Although these differences may underlie the basis for the reduced incidence of disease in PA17.9G7 and PA19.9G11...
compared with 4B5 Rg mice (Fig. 1A), the rate of disease onset and severity was nevertheless comparable in all three GAD-specific TCR Rg mice (Fig. 1A, 1B). The basis for the reduced splenic cellularity is unknown but may be due to inefficient thymic selection due to the availability of selecting peptides, differential homeostatic expansion, and/or Ag-driven stimulation in the periphery or partial exertion of central or peripheral tolerance. The level of TCR expression on the T cells was also slightly lower in PA17.9G7 and PA19.9G11 compared with 4B5 and the PA21.14H4 control Rg mice (Fig. 2B). It is important to point out that although there was some variability in the levels and expression of 4B5, PA17.9G7, and PA19.9G11, all three were broadly equivalent to the other GAD65-reactive TCRs expressed that did not cause the lethal encephalomyelitis-like disease (8, 9 and data not shown).

GAD-reactive B cells do not alter the disease incidence or severity

In addition to anti-GAD Abs being a hallmark of T1D, they are also prevalent at high levels in SPS and are thought to be instrumental in mediating the disease. Thus, we determined if the incidence and/or severity of the encephalomyelitic-like disease observed in 4B5, PA17.9G7, and PA19.9G11 Rg mice was enhanced by the presence of B cells and potentially anti-GAD65 Abs. Accordingly, chimeric Rg mice were generated by transferring a 1:1 ratio of NOD.scid bone marrow transduced with retrovirus containing TCR.GFP and either NOD.Tcrα2/2 bone marrow transduced with YFP only or NOD.scid bone marrow transduced with YFP only into NOD.scid mice. The NOD.Tcrα2/2 mice, which lack expression of the TCRα-chain, fail to develop T cells but not B cells. The chimeric Rg mice expressing 4B5, PA17.9G7, PA19.9G11, and the control PA21.14H4 TCR that received the YFP-transduced NOD.Tcrα2/2 bone marrow exhibited equivalent numbers of T cells and B cells in the spleen (Fig. 3A). All of the GAD65-specific TCR chimeric Rg mice that had B cells developed encephalitic disease that was comparable to B cell-deficient mice. Notably, there were no differences in the incidence, rate, or severity of disease (Fig. 3B).

Histological analysis of sagittal sections of the brain further demonstrated no significant difference in pathology between Rg

<table>
<thead>
<tr>
<th>TCR Name</th>
<th>Ag Specificity</th>
<th>Vα</th>
<th>Vβ</th>
<th>TCR Generated From NOD Mice by</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA17.9G7</td>
<td>GAD221–237 and GAD284–300</td>
<td>4.5</td>
<td>10</td>
<td>Immunization with GAD284–300</td>
</tr>
<tr>
<td>PA19.9G11</td>
<td>GAD221–237</td>
<td>17.1</td>
<td>5.2</td>
<td>Immunization with GAD221–237</td>
</tr>
<tr>
<td>4B5</td>
<td>GAD217–236 and GAD290–309</td>
<td>2.4</td>
<td>6</td>
<td>Unimmunized</td>
</tr>
</tbody>
</table>

FIGURE 2. T cell reconstitution is equivalent between Rg mice expressing GAD65-specific and control TCRs. A. Representative flow cytometric plot illustrating GFP+TCR+ cells (top panels) and CD4+TCR+ cells (bottom panels) in the spleens of representative TCR NOD.scid Rg mice. The GFP+TCR+ plots were gated on live cells, and the CD4+TCR+ plots were gated on live GFP+ cells. B, Mean fluorescence of TCR expression of GFP+ cells in spleens of Rg mice represented in A. C, Number of GFP+TCR+CD4+ cells in the spleens of TCR Rg mice represented in A. Data are representative of six experiments with 4–11 mice per TCR group.
mice that receive only T cells versus T plus B cells (Supplemental Figs. 2, 4). Although there was no difference in the disease phenotype, B cells infiltrating the brain and the pituitary gland were clearly detected in the chimeric Rg mice (Fig. 3C and data not shown). In the pituitary gland, the majority of the cells were found in the intermediate and posterior lobes. Although the localization of cells was similar, there was a difference in the number of T cells present in the brain of 4B5 Rg mice deficient of or replete with B cells (Figs. 1C, 3C). Interestingly, the location of B cell infiltrates correlated directly with T cell localization and GAD65 expression (Fig. 3C). Similar to T cell-only Rg mice, infiltration resulted in localized inflammation as determined by expression of Iba-1 by activated microglia and/or macrophages. Finally, we assessed if anti-GAD65 Abs were generated in the presence of B cells and GAD65-reactive T cells in the chimeric Rg mice. High titers of anti-GAD specific Abs were generated in all three groups compared with the PA21.14H4 plus B cell-only control (Fig. 3D). These results suggest that GAD65-reactive T cells alone mediate an EAE-like disease and that the presence of B cells and anti-GAD65 Abs have no marked effect on the phenotype and severity of the disease.

GAD65-reactive CD4+ T cells in Rg mice exhibit a proinflammatory phenotype

Although the GAD-specific 4B5, PA17.9G7, and PA19.9G11 TCR Rg mice described in this study develop a lethal encephalomyelitis-like disease, this was not observed with other GAD-specific TCR Rg

![Figure 3](http://www.jimmunol.org/)

FIGURE 3. The presence of B cells and GAD65 autoantibodies in Rg mice has no effect on the disease mediated by GAD65-specific CD4+ T cells. **A,** Number of CD4+ T cells and CD19+ B cells in spleens of chimeric Rg mice receiving NOD.scid bone marrow transduced with retrovirus encoding the TCR and either NOD.Tcra2/2 or NOD.scid bone marrow transduced with retrovirus encoding YFP only. Numbers were determined by gating on live GFP+ (T cells) or YFP+ (B cells) cells. **B,** Left panels depict incidence of disease, and right panels indicate disease severity of chimeric Rg mice receiving 2 × 10^6 TCR retroviral-transduced bone marrow cells from NOD.scid and vector-transduced bone marrow from either NOD.scid (T cells alone) or NOD.Tcra2/2 (T cells plus B cells) mice. The T cells alone group is depicted as closed symbols, and the T cells plus B cells group is depicted as open symbols with a dashed line. The number of mice followed for incidence is as follows: PA21.14H4 (4), PA21.14H4 plus B cells (7), 4B5 (7), 4B5 plus B cells (15), PA19.9G11 (4), PA19.9G11 plus B cells (10), PA17.9G7 (5), and PA17.9G7 plus B cells (8), whereas five mice from each group were monitored for disease score as outlined. **C,** Pituitary gland sections from NOD.scid mice receiving 4B5- or PA19.9G11-transduced NOD.scid bone marrow plus NOD.Tcra2/2 YFP-only transduced bone marrow and an unmanipulated NOD.scid mouse as control. Sections were stained with anti-mouse CD4 (T cells), anti-mouse CD19 (B cells), anti-mouse GAD65 (GAD65), or anti-mouse Iba-1 (activated macrophages/microglial) (green) and counterstained with DAPI (blue). Original magnification ×40. Mice in the 4B5 plus B cells and PA19.9G11 plus B cells groups displayed clinical signs of disease at the time of euthanasia. **D,** GAD65-specific autoantibody titers in serum from the chimeric Rg mice at various states of disease are depicted. Data are representative of four experiments with 4–15 mice per TCR group.
mice analyzed previously (8, 9). The PA17.9G7 and PA19.9G11 TCRs were cloned from T cell hybridomas that were generated by immunizing NOD mice with the GAD65 peptides 284–300 and 221–237, respectively (Table I). PA19.9G11 recognizes GAD221–237, whereas PA17.9G7 exhibits dual specificity for GAD221–237 and GAD284–300. On the other hand, the GAD65-specific 4B5 CD4⁺ T cell clone was established from unimmunized NOD mice using rGAD65 in vitro and is specific for both the GAD217–236 and GAD290–309 peptides (10, 23). Although CD4⁺ T cells from 4B5, PA17.9G7, and PA19.9G11 Rg mice proliferated strongly to their respective peptides, only 4B5 and PA17.9G7 Rg T cells proliferated in response to GAD65 protein (Fig. 4A and A.R. Burton and D.A. Vignali, unpublished observations). Interestingly, whereas the three CD4⁺ T cell populations produced comparable amounts of IL-2, 4B5 and PA19.9G11 produced significant amounts of IFN-γ upon stimulation with GAD65 protein in vitro, and 4B5 and PA17.9G7 produced IL-17 (Fig. 4B).

We next determined if the GAD65-specific T cells were activated and secreting IFN-γ in the brain and pituitary of TCR Rg mice. T cells in the brain and pituitary expressed elevated levels of CD69, indicating an activated phenotype (Supplemental Fig. 5). Furthermore, an increased frequency of GAD65-specific CD4⁺ T cells expressing intracellular IFN-γ was detected in the brain and pituitary of 4B5 and PA19.9G11 TCR Rg mice (Fig. 4C, 4D). These results suggest that CD4⁺ T cells expressing the 4B5, PA17.9G7, and PA19.9G11 clonotypic TCRs recognize GAD65 in the brain and pituitary and exhibit a proinflammatory phenotype.

Discussion

GAD is a critical enzyme involved in the production of GABA, the main inhibitory neurotransmitter in the CNS, and is a primary target for autoantibodies in patients suffering from SPS and PERM. These patients present with symptoms ranging from muscular rigidity and superimposed spasms to stiff limbs and progressive encephalomyelitis with rigidity (24). However, with the exception of a few publications (25–28), little information is available on the extent of T cell involvement in SPS and PERM despite reports of lymphocyte infiltration into the CNS of these patients (29, 30).

Although the fortuitous discovery that certain GAD65-reactive CD4⁺ T cell populations can cause a lethal encephalomyelitis-like disease in mice was important, the phenotype of the disease versus the clinical features of PERM/SPS is different. However, this may be the consequence of anti-GAD TCR clonality in the Rg system.
and/or the severity and rapid lethality of the disease, which may supersede the typical clinical features associated with PERM/SPS. Consequently, the GAD65-reactive CD4\(^+\) T cell-induced encephalomyelitis-like disease may provide some insight into the encephalomyelitis observed in PERM. The three GAD65-specific T cell clonotypes, 4B5, PA17.9G7, and PA19.9G11, infiltrated the brain, secreted IFN-\(\gamma\), and mediated inflammation as determined by microglial activation, resulting in a lethal encephalomyelitis-like disease. Although seen throughout the CNS, the primary sites of T cell infiltration were localized in and around the GAD-positive GABAergic cells located proximal to the circumventricular organs, where there is an interface between the brain parenchyma and the blood (19, 20). Additionally, throughout the experiments, it appeared that the number of CD4\(^+\) T cells as well as the depth of their penetration into the parenchyma increased with disease progression. However, further analysis is required to validate these observations. We also found that the encephalomyelitic disease was mediated in the absence of B cells and, importantly, GAD65-specific autoantibodies. Indeed, despite high titers of anti-GAD65 autoantibodies in B cell-replete chimeric Rg mice, no significant differences were detected in disease frequency or severity relative to B cell-deficient Rg mice. Taken together, these findings show that GAD65-specific autoantibodies are neither required nor participate in mediating the lethal encephalomyelitis-like disease observed in GAD65-specific Rg mice. It is tempting to speculate that the high-titer GAD65-specific autoantibodies seen in patients with PERM may not be the only contributors to disease onset or progression and that perhaps GAD65-specific T cells may also play a role in mediating pathology at sites where GABAergic cells are located.

It is currently unclear why T cells expressing these particular GAD65-specific TCRs mediate the lethal encephalomyelitic disease observed, whereas other GAD65-specific TCR Rg mice that we have previously analyzed fail to develop this disease (8, 9 and data not shown). There are four possibilities. First, it is interesting to note that with the exception of one TCR, PA19.9G11, PA17.9G7 and 4B5 were the only TCRs from a panel of 10 GAD65-specific TCRs that recognize the 217–236 epitope. The other TCR, IA4, not studied in detail in this study as it is expressed poorly, caused an encephalomyelitic disease albeit at a reduced incidence compared with PA19.9G11, PA17.9G7, and 4B5 (data not shown). This suggests that GAD65 217–237 may represent a key immunogenic epitope in the disease. Second, 4B5 and PA17.9G7 TCRs, which were particularly pathogenic, share the unusual feature of exhibiting dual specificity (GAD 217–236/GAD 290–309 and GAD 221–237/GAD 284–300, respectively), which might contribute to their escape from tolerance and their ultimate pathogenicity. Third, relatively few of the GAD65-specific Rg T cell populations we have tested respond strongly to the whole GAD65 protein. However, it seems less likely that this alone is a deciding factor, as 4B5, PA17.9G7, and PA19.9G11 Rg T cells exhibit quite different reactivities to GAD65 protein despite mediating comparable levels of disease incidence and severity (Figs. 1, 4). Lastly, it is important to note that the avidity/affinity of the respective TCRs could be a key determinant in regulating T cell pathogenicity. For example, GAD65-specific T cell clones exhibiting polyspecificity appear to express TCR with increased avidity/affinity relative to monospecific TCRs (23). It is clear that more studies will be required to establish a link among epitope specificity, TCR avidity/affinity and/or GAD protein reactivity, and disease pathogenicity. It is noteworthy that the versatility of the TCR Rg system provides an ideally flexible and powerful platform to test these issues in the future (9, 11, 12).

In summary, we show for the first time that GAD65-specific CD4\(^+\) T cells directly mediate pathology in the CNS, leading to a lethal encephalomyelitis-like disease. This system may represent a useful model for studying GAD65-related CNS diseases. Furthermore, given that GAD65-specific T cells have been observed in patients with T1D, our observations question whether these might be implicated in some of the neurologic complications that are occasionally observed in patients with T1D. In addition, there has recently been increased interest in the potential use of Ag-specific therapies in T1D. Even though a recent trial involving GAD immunization did not report any SPS-like observations (31), our data suggest that caution should be exercised in the use of any therapy involving GAD or GAD-specific T cells.

Acknowledgments

We thank Paula Arnold for contributions during the early stages of this project, Liping Yu for testing the sera for anti-GAD Abs, C. Benoist and D. Mathis for B6\(^{gf}\) mice, Richard Cross, Jennifer Smith, Greig Lennon, and Stephanie Morgan for FACS, the Vignali Laboratory for assistance with harvesting bone marrow and discussion, the staff of the St. Jude Hartwell Center for oligosynthesis and DNA sequencing, and the staff of the St. Jude ARC Histology Laboratory and Animal Husbandry Unit.

Disclosures

The authors have no financial conflicts of interest.

References

