Regulatory B Cells (B10 Cells) Have a Suppressive Role in Murine Lupus: CD19 and B10 Cell Deficiency Exacerbates Systemic Autoimmunity

Rei Watanabe, Nobuko Ishiura, Hiroko Nakashima, Yoshihiro Kuwano, Hitoshi Okochi, Kunihiko Tamaki, Shinichi Sato, Thomas F. Tedder and Manabu Fujimoto

J Immunol 2010; 184:4801-4809; Prepublished online 5 April 2010; doi: 10.4049/jimmunol.0902385
http://www.jimmunol.org/content/184/9/4801

References

This article cites 72 articles, 26 of which you can access for free at:
http://www.jimmunol.org/content/184/9/4801.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Regulatory B Cells (B10 Cells) Have a Suppressive Role in Murine Lupus: CD19 and B10 Cell Deficiency Exacerbates Systemic Autoimmunity

Rei Watanabe,*† Nobuko Ishiura,*† Hiroko Nakashima,*† Yoshihiro Kuwano,† Hitoshi Okochi, † Kunihiko Tamaki,* Shinichi Sato,* Thomas F. Tedder,‡ and Manabu Fujimoto*†,‡,§

B cells play critical roles in the pathogenesis of lupus. To examine the influence of B cells on disease pathogenesis in a murine lupus model, New Zealand Black and New Zealand White F1 hybrid (NZB/W) mice were generated that were deficient for CD19 (CD19−/− NZB/W mice), a B cell-specific cell surface molecule that is essential for optimal B cell signal transduction. The emergence of anti-nuclear Abs was significantly delayed in CD19−/− NZB/W mice compared with wild type NZB/W mice. However, the pathologic manifestations of nephritis appeared significantly earlier, and survival was significantly reduced in CD19−/− NZB/W mice compared with wild type mice. These results demonstrate both disease-promoting and protective roles for B cells in lupus pathogenesis. Recent studies have identified a potent regulatory B cell subset (B10 cells) within the rare CD1dhi B cell subset of the spleen that regulates acute inflammation and autoimmunity through the production of IL-10. In wild type NZB/W mice, the CD1dhiCD5+B220+ B cell subset that includes B10 cells was increased by 2.5-fold during the disease course, whereas CD19−/− NZB/W mice lacked this CD1dhiCD5+ regulatory B cell subset. However, the transfer of splenic CD1dhiCD5+ B cells from wild type NZB/W mice into CD19−/− NZB/W recipients significantly prolonged their survival. Furthermore, regulatory T cells were significantly decreased in CD19−/− NZB/W mice, but the transfer of wild type CD1dhiCD5+ B cells induced T regulatory cell expansion in CD19−/− NZB/W mice. These results demonstrate an important protective role for regulatory B10 cells in this systemic autoimmune disease.

S
ystemic lupus erythematosus (SLE) is a prototypic multisystem autoimmune disease characterized by the production of autoantibodies and the involvement of most organ systems (1). Recent studies have demonstrated a critical role for B cells in SLE pathogenesis (2–4). In addition to autoantibody production, abnormal B cell activities or functions, such as cytokine production and Ag presentation, are likely to contribute to SLE development. Indeed, B cell-targeted therapies including mAbs to CD20, CD22, and BAFF are currently under evaluation in the treatment of human SLE (5–8).

B cell activation depends on BCR-generated signals during immune responses to self and foreign Ags (9). Cell surface and intracellular molecules that inform B cells of their microenvironment, such as CD19, CD22, Fc receptors, and TLRs, also play critical roles in controlling B cell responses (10). Among these molecules, CD19 serves as a positive response regulator that amplifies the strength and duration of BCR and other signaling events by regulating Src-family protein tyrosine kinases, and other effector molecules (11–19). CD19 is a 95-kDa member of the Ig superfamily and is expressed on B cells and potentially follicular dendritic cells. CD19−/− mice are hyporesponsive to a variety of transmembrane signals (20, 21), whereas B cells from transgenic mice that overexpress CD19 are hyperresponsive to transmembrane signals and generate autoantibodies spontaneously (22, 23), suggesting that altered CD19 function or expression can influence B cell susceptibility to autoimmunity (24). Therefore, selective targeting of CD19 might be a less invasive B cell-directed strategy for treating SLE rather than total B cell depletion.

As a well-established murine lupus model, New Zealand Black (NZB) and New Zealand White (NZW) F1 hybrid mice (NZB/W mice) spontaneously develop as SLE-like disease in which IgG anti-dsDNA autoantibody production is associated with immune complex-mediated glomerulonephritis (25). Aged NZB/W mice have increased numbers of splenic CD23hiCD21hi marginal zone B cells as well as increased numbers of peritoneal B220intCD5+B1 cells, although their significance in the pathogenesis has been unclear (26–29). Recent studies have identified a phenotypically unique subset of spleen regulatory B cells that share phenotypic markers with both B1 and marginal zone B cells (30–33). A portion of these rare CD1dhiCD5+B cells are competent for IL-10 production and are therefore called B10 cells (34). B10 cells and potentially other regulatory B cell subsets negatively regulate inflammation and autoimmunity in mice, including contact hypersensitivity, experimental autoimmune encephalomyelitis, inflammatory bowel diseases, and arthritis (30–40). Both contact

*Department of Dermatology, Faculty of Medicine, University of Tokyo; †Department of Regenerative Medicine, Research Institute, International Medical Center of Japan, Tokyo; ‡Department of Dermatology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan; and §Department of Immunology, Duke University Medical Center, Durham, NC 27710.

Received for publication July 29, 2009. Accepted for publication December 23, 2009.

This work was supported by a Grant-in-Aid from the Ministry of Education, Science, and Culture of Japan (to R.W. and M.F.) and Grants A156363, CA105001, and CA96547 from the National Institutes of Health (to T.F.T.).

Address correspondence and reprint requests to Dr. Manabu Fujimoto, Department of Dermatology, Kanazawa University Graduate School of Medical Science, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan. E-mail address: fujimoto-m@umin.ac.jp

Abbreviations used in this paper: ANA, anti-nuclear Ab; Cx, threshold cycle; DNP-KLH, 2, 4-dinitrophenyl-keyhole limpet hemocyanin; NZB, New Zealand Black; NZW, New Zealand White; NZB/W, New Zealand Black and New Zealand White F1 hybrid; PAS, periodic acids Schiff; SLE, systemic lupus erythematosus; Treg, regulatory T; WT, wild type.

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0902385
hypersensitivity responses and experimental autoimmune encephalomyelitis are augmented in CD19−/− mice because of the absence of B10 cells (34, 41, 42). Whereas B cells and autoantibodies play major pathogenic roles in NZB/W mice, B cells can also contribute to the suppression of the disease. In this context, we assessed the effect of CD19 deficiency on disease initiation and progression in NZB/W mice.

Materials and Methods

Mice
NZB, NZW, and C57BL/6 mice were purchased from Japan SLC (Shizuoka, Japan). CD19−/− mice were generated as described (21) and backcrossed onto a C57BL/6 background ≥12 times. CD19−/− mice were also backcrossed 12 times onto the NZB or NZW genetic backgrounds to obtain CD19−/− NZB mice and CD19−/− NZW mice. Female NZB/W mice were generated by mating female NZB and male NZW mice. Female CD19−/− NZB/W mice were generated by mating female CD19−/− NZB and male CD19−/− NZW mice. Mice were housed in a specific pathogen-free barrier facility. All procedures were approved by the Animal Committee of International Medical Center of Japan.

Measurement of serum autoantibodies
Serum samples were obtained from NZB/W mice and CD19−/− NZB/W mice every 2 wk for determining serum IgG anti-nuclear Ab (ANA) levels. To determine ANA positivity, serum was diluted 1:100 and added to fixed Hep-2 cell ANA slides (MBL, Nagoya, Japan) with FITC-conjugated goat anti-mouse IgG (H+L; ICN Biomedical, Costa Mesa, CA) used as the indirect immunofluorescence detection reagent at predetermined optimal concentrations. Also, sera at 12, 20, 28, and 36 wk old were diluted 1:40, 80, 160, 320, 640, and 1280, and 2560 to determine ANA titers, and were assessed as above. Immunofluorescence staining of the slides was evaluated on a fluorescent microscope at ×400 magnification. The serum levels of IgG anti-dsDNA Abs were measured using dsDNA-coated 96-well ELISA plates (Merscap; MBL). Sera were diluted 1:100, added to the ELISA plates, and allowed to react for 1 h at room temperature. Subsequently, the plates were washed three times followed by adding prediluted horseradish peroxidase-conjugated HRP-conjugated anti-mouse IgG (AAbbott; MP Biomedical, Irvine, CA). Ab binding was evaluated using TMB substrate (Bethyl Laboratories, Montgomery, TX), with the reactions stopped using 1N H2SO4, and read at a wavelength of 450 nm. A high-titer serum was developed using TMB substrate and a fluorometric plate reader at a wavelength of 450 nm. A high-titer serum was subjected to SDS-PAGE with subsequent electrophoretic transfer to nitrocellulose membranes. These membranes were incubated with anti-phospho Akt Ab (Ser473; Cell Signaling, Beverly, MA), anti-active ERK Ab (Promega, Madison, WI), or anti-active JNK Ab (Promega), followed by incubation with HRP-conjugated donkey anti-rabbit IgG Abs (Jackson ImmunoResearch Laboratories, West Grove, PA). These blots were developed using an ECL kit (Pierce, Rockford, IL). To verify the presence of equivalent amounts of protein in each lane, the blots were stripped and reprobed with anti-ERK2 Ab (Santa Cruz Biotechnology, Santa Cruz, CA).

Measurement of Src-family kinase activity
After spleen B cells had been stimulated with goat anti-mouse IgM F(ab′)2, Ab and lysed as described above, the lysates were analyzed using ProFluor Src-Family Kinase Assays (Promega) according to manufacturer’s protocol. The lysates were mixed with Src-family kinase R110 substrate, with ATP added to initiate the kinase reaction. After incubating the plate at room temperature for 60 min, protease solution was added to each well and incubated for 60 min at room temperature. After terminating the protease reaction, the fluorescence of the liberated R110 was read at a wavelength of 525 nm. The fluorescence of each well inversely relates to kinase activity within the cell lysate. The kinase activity of wild type (WT) B cells stimulated for 3 min was defined as 100%.

Measurement of intracellular calcium concentration
Spleen cells (1 × 10^7/ml) in RPMI 1640 medium containing 5% BSA and 10 mM HEPES buffer were loaded with 1 μM Fluo-4 (Molecular Probes, Eugene, OR) at 37°C for 30 min. The cells were washed and stained with PE-Cy5-conjugated anti-B220 Ab for 20 min on ice and washed. The fluorescence ratio (525/405 nm) of B220+ cells was determined using an Epics Altra flow cytometer (Beckman Coulter, Miami, FL) with fluorescence intensity shown on a four-decade log scale. Fluorescence contours are shown as 50% log density plots. Positive and negative populations of cells were determined using nonreactive isotype-matched Abs (Southern Biotechnology Associates, Birmingham, AL) as controls for background staining. Baseline fluorescence ratios were collected in real time for 1 min before goat anti-mouse IgM (F(ab′)2) Abs fragment (Cappel) were added. The results were plotted as fluorescence ratios at 10-s intervals, with increasing fluorescence ratios indicating increasing intracellular calcium concentration.

Immunization and isotype-specific ELISA
Eight-week-old mice were immunized i.p. with 100 μg 2,4-dinitrophenylated keyhole limpet hemocyanin (DNP-KLH; LSL, Tokyo, Japan) in CFA and were boosted 21 d later with 100 μg DNP-KLH in IFA. The mice were bled before and after immunizations. Serum DNP-specific Ab titers were measured by adding diluted sera to ELISA plates coated with DNP-BSA (5 μg/ml) for 1 h at room temperature. After washing the plates five times, bound Abs was detected using HRP-conjugated goat anti-mouse IgM or anti-mouse IgG1 Ab (Southern Biotechnology Associates) at predetermined optimal concentrations. The ELISA plates were developed using TMB substrate (Bethyl Laboratories, Montgomery, TX), washed with 1N H2SO4, and read at a wavelength of 450 nm.

Immunofluorescence analysis
The following mAbs were used: FITC-, PE-, and PE-Cy5–conjugated goat anti-mouse B220 (CD45R, RA3-6B2; BD Pharmingen, San Diego, CA), FITC-conjugated anti-CD19 (MBL), PE-conjugated CD1d (1B1; BD Pharmingen), PE-Cy5–conjugated CD4 (H129.19; BD Pharmingen), PE-conjugated CD5 (53.7.3; BD Pharmingen), and FITC-conjugated anti-Thy-1.2 (30-H12; BD Pharmingen) mAbs.

Single-cell spleen suspensions were stained for two/three-color immuno- fluorescence analysis at 4°C using Abs at predetermined optimal concentrations for 20 min as described (14). Cell numbers were counted using a hemocytometer, with relative lymphocyte percentages among viable cells (based on scatter properties) determined by flow cytometric analysis. Ethyrcocytes were lysed after staining using FACS Lysing Solution (BD Biosciences, San Jose, CA). A PE-conjugated anti-mouse/rat/human FPOX3 Flow Kit (clone 150D; Biolegend, San Diego, CA) was used to detect intracellular Foxp3 expression by regulatory T (Treg) cells according to the manufacturer’s protocol. The labeled cells were analyzed on an Epics Altra flow cytometer (Beckman Coulter) with fluorescence intensity shown on a 4-decade log scale. Positive and negative populations of cells were identified using nonreactive isotype-matched Abs (Southern Biotechnology Associates) as controls for background staining.

B cell activation and Western blot analysis
B cells were purified from single cell splenocyte suspensions by removing T cells with anti-Thy-1.2 Ab-coated magnetic beads (Dynal, Lake Success, NY). B cell suspensions were always > 95% B220+, as determined by flow cytometric analysis. B cells were resuspended (2 × 10^7/ml) in RPMI 1640 medium containing 5% FCS at 37°C. The cells were stimulated with goat anti-mouse IgM Ab F(ab′)2, fragments (40 μg/ml; Cappel) and subsequently lysed in buffer containing 1% NP-40, 150 mM NaCl, 50 mM Tris-HCl (pH 8.0), 1 mM Na orthovanadate, 2 mM EDTA, 50 mM NaF, and protease inhibitors. Protein concentrations were determined by light absorbance at 280 nm. The obtained lysates were subjected to SDS-PAGE with subsequent electrophoretic transfer to nitrocellulose membranes. These membranes were incubated with anti-phospho Akt Ab (Ser473; Cell Signaling, Beverly, MA), anti-active ERK Ab (Promega, Madison, WI), or anti-active JNK Ab (Promega), followed by incubation with HRP-conjugated donkey anti-rabbit IgG Abs (Jackson ImmunoResearch Laboratories, West Grove, PA). These blots were developed using an ECL kit (Pierce, Rockford, IL). To verify the presence of equivalent amounts of protein in each lane, the blots were stripped and reprobed with anti-ERK2 Ab (Santa Cruz Biotechnology, Santa Cruz, CA).
Quantitative RT-PCR

Spleen B cells and T cells were purified with B220 mAb- and Thy1.2 mAb-coated microbeads (Miltenyi Biotech, Auburn, CA) by positive selection following the manufacturer’s instructions. In addition, CD1d[−]CD5[−] B cells were isolated from purified B cell preparations using an Epics Altra flow cytometer (Beckman Coulter) with purities of 85–95%. These cells were homogenized in Isogen S (Wako, Tokyo, Japan), with total RNA isolated according to the manufacturer’s instructions. Total RNA was reverse transcribed to cDNA using a RevertAid First-Strand cDNA Synthesis Kit (Fermentas, St. Leon-Rot, Germany). Quantitative RT-PCR was performed using the TaqMan system (Applied Biosystems, Foster City, CA) with analysis using an ABI Prism 7000 Sequence Detector (Applied Biosystems) according to the manufacturer’s instructions. TaqMan probes and the primers for IL-10 and GAPDH were purchased from Applied Biosystems. Relative expression of the real-time PCR products was determined using the ΔΔC_T technique. Each reaction was performed in triplicate at the least. The development of autoantibodies to dsDNA was also delayed in CD19^{−/−} NZB/W mice as determined by ELISA (Fig. 1C). Although most CD19^{−/−} NZB/W mice eventually produced anti-dsDNA autoantibodies, their mean serum titers were significantly lower than those of WT NZB/W mice after 20 wk old. Consequently, CD19 expression positively regulates autoantibody production in NZB/W mice.

CD19 deficiency accelerates renal disease and shortens survival in NZB/W mice

To assess renal disease in NZB/W mice, the relationship between proteinuria and IgG deposition in the basement membranes of glomeruli were first investigated. Protein levels correlated with histologic nephritis based on H&E and PAS staining in NZB/W mice after 20 wk old. Consequently, CD19 expression positively regulates autoantibody production in NZB/W mice.

FIGURE 1. CD19 deficiency attenuates ANA and anti-dsDNA Ab production in NZB/W mice. A, ANA positivity was determined in sera from WT and CD19^{−/−} NZB/W mice that were collected every 2 wk. Sera were diluted 1:100 and ANA was detected by indirect immunofluorescence using HEP-2 cells. B, ANA titers and C, anti-dsDNA Ab titers were determined in sera from WT and CD19^{−/−} (19^{−/−}) NZB/W mice at 12, 20, 28, and 36 wk old. ANA was determined in sequentially diluted sera by indirect immunofluorescence on HEP-2 cells. IgG anti-dsDNA Abs were measured in sera diluted 1:100 by ELISA. Serial dilutions of a high-titer serum are shown in the right panel. The OD units were determined arbitrarily by taking a ratio between the OD values obtained for the test sample and the high-titer sample at the same dilution. Each group contained 25 mice. *p < 0.05; **p < 0.01; ***p < 0.001.

Results

CD19 deficiency inhibits ANA development in NZB/W mice

The age of ANA production in WT and CD19^{−/−} NZB/W mice was compared using a fluororescent ANA assay with HEP-2 cells as substrates. Spleen ANA was first detected in NZB/W mice between 16 and 24 wk old. However, the appearance of serum ANA was significantly delayed in CD19^{−/−} NZB/W mice (p < 0.001; Fig. 1A). ANA titers were also significantly lower in CD19^{−/−} NZB/W mice than in WT NZB/W mice at all the ages examined (Fig 1B). ANA staining had a homogenous to speckled nuclei staining pattern, with no difference observed between WT and CD19^{−/−} mouse sera (data not shown). The development of autoantibodies to dsDNA was also delayed in CD19^{−/−} NZB/W mice as determined by ELISA (Fig. 1C). Although most CD19^{−/−} NZB/W mice eventually produced anti-dsDNA autoantibodies, their mean serum titers were significantly lower than those of WT NZB/W mice after 20 wk old. Consequently, CD19 expression positively regulates autoantibody production in NZB/W mice.

CD19 deficiency accelerates renal disease and shortens survival in NZB/W mice

To assess renal disease in NZB/W mice, the relationship between proteinuria and IgG deposition in the basement membranes of glomeruli were first investigated. Protein levels >300 mg/dl in urine correlated with histologic nephritis based on H&E and PAS staining in both WT and CD19^{−/−} NZB/W mice (Fig. 2A). Therefore, urinary protein excretion >300 mg/dl was defined as proteinuria onset. Proteinuria was monitored every 2 wk in WT and CD19^{−/−} NZB/W mice. Proteinuria developed slightly but significantly earlier in CD19^{−/−} NZB/W mice than WT NZB/W mice (p < 0.05 from 23 to 32 wk; Fig. 2C). Pathologic examination of the kidneys from 32-wk-old mice revealed that glomerulonephritis and interstitial nephritis...
developed both in WT and CD19−/− NZB/W mice. Glomerulonephritis and interstitial nephritis tended to be even more severe in CD19−/−/NZB/W mice than WT mice (Fig. 2B,2D). The deposition of IgG in the basement membrane of glomeruli was also observed in both WT and CD19−/− mice. The fluorescence intensity of glomerular IgG staining was also slightly higher in CD19−/− mice, although the difference was not statistically significant (Fig. 2B,2D). Glomerular IgG deposition was even detected in the kidneys of CD19−/− NZB/W mice that had been found to be ANA negative (data not shown). Therefore, CD19−/− NZB/W mice developed glomerulonephritis earlier than did WT NZB/W mice, despite their low frequency and titers of anti-dsDNA Abs (Fig. 1).

WT NZB/W mice begin to succumb to disease at ~25 wk old (Fig. 2C), following the development of nephritis. In contrast, CD19−/− NZB/W mice begin to succumb to disease at ~20 wk old, consistent with their accelerated proteinuria development. Median survival in CD19−/− NZB/W mice was significantly shorter in comparison with WT NZB/W mice (30 versus 35 wk; p < 0.05). Death in CD19−/− NZB/W mice followed the development of nephritis, although some mice did not have detectable ANA or minimal anti-dsDNA Abs (data not shown). Collectively, CD19 expression negatively regulates the development of renal disease, which accelerated mortality.

FIGURE 2. CD19 deficiency accelerates nephritis and shortens survival in NZB/W mice. A, The relationship between proteinuria levels and nephritis histopathology. Kidneys were harvested from NZB/W WT and CD19−/− mice with various levels of proteinuria and were fixed in 4% formalin for H&E and PAS staining. The sections were scored for interstitial (left panel) and glomerular (right panel) disease. Each group contained 20 mice. B, Kidneys from NZB/W WT and CD19−/− mice at 32 wk old were evaluated for interstitial and glomerular diseases (left panel) and glomerular IgG deposition (right panel). Mean glomerular fluorescence staining intensity (arbitrary units) was determined for quantification. Each group contained seven mice. C, Proteinuria (urinary protein excretion > 300 mg/dl) in WT and CD19−/− NZB/W mice was monitored every 2 wk. Each group contained 25 mice. D, Histopathologic analysis of nephritis. Representative kidney sections from WT and CD19−/− NZB/W mice were stained with H&E, PAS, or FITC-conjugated goat anti-mouse IgG (H+L) Ab for the detection of glomerular immune-complex deposits. Original magnification ×200. E, Survival of WT and CD19−/− NZB/W mice. Each group contained 25 mice. ∗p < 0.05.
The phenotype of CD19−/− mice on the NZB/W strain

Because CD19 deficiency generally leads to an immunodeficient B cell phenotype in both mice and humans (20, 21, 44), the finding that CD19 deficiency accelerated disease progression in NZB/W mice was paradoxical. Therefore, it was determined whether strain differences might result in an unanticipated phenotype for B cells from CD19−/− NZB/W mice. Cell surface CD19 expression on B cells from the blood, spleen, and lymph nodes was identical between C57BL/6 and NZB/W mice (data not shown). In functional studies, IgM ligation generated augmented intracellular calcium responses by splenic B cells from NZB/W mice relative to C57BL/6 mice (Fig. 3A), which is consistent with previous reports of polyclonal B cell activation in NZB/W mice (45–48). When WT and CD19−/− NZB/W B cells were compared, IgM-induced intracellular calcium responses were delayed in CD19−/− B cells (Fig. 3B), which is consistent with results obtained with CD19−/− B cells from C57BL/6 mice (49). IgM-induced Src-family kinase activation and Akt phosphorylation were also significantly reduced in CD19−/− NZB/W B cells compared with B cells from WT NZB/W mice (Fig. 3C, 3D), as previously reported for CD19−/− B cells from C57BL/6 × 129 mice (14, 50). Impaired ERK and JNK activation were also observed in CD19−/− NZB/W mice.
Reduced CD1dhiCD5+ B cells and IL-10 production in CD19

CD19 expression is critical for regulatory B10 cell development in C57BL/6 mice (34, 40, 41, 51). Therefore, the development of the spleen CD1dhiCD5+ B cell subset, which includes B10 cells, was assessed in NZB/W mice. A spleen CD1dhiCD5+B220+ B cell subset was identified in NZB/W mice that was increased in 28-wk-old WT NZB/W mice when compared with 12-wk-old mice (0.9 ± 0.2% at 12 wk and 2.3 ± 0.5% of B220+ cells at 28 wk). In contrast, splenic CD1dhiCD5+ B cells were virtually absent in CD19−/− NZB/W mice at both 12 and 28 wk old (0.07 ± 0.03% at 12 wk and 0.13 ± 0.03% at 28 wk; p < 0.05 versus WT mice at each equivalent age; Fig. 4A, Table I). CD19−/− NZB/W mice also had reduced numbers of splenic marginal zone B cells with a CD23loCD21hi phenotype as well as reduced numbers of peritoneal B1 cells with a B220loCD5+ phenotype (Table I), both of which increase with age in NZB/W mice (29).

Because IL-10 production is the hallmark of B10 cells, IL-10 secretion by CD1dhiCD5+ B cells was investigated. At 12 wk old, IL-10 mRNA expression in splenic B cells was comparable between WT and CD19−/− NZB/W mice. IL-10 mRNA levels of splenic B cells from WT NZB/W mice were increased by 2.5-fold at 28 wk old compared with those at 12 wk (Fig. 4B, left). IL-10 mRNA levels in splenic B cells from CD19−/− NZB/W mice remained unaltered at 28 wk old. Whereas B10 cells are not only IL-10 secreting B cells in the spleen, increased numbers and enhanced activation of B10 cells can at least partially contribute to the increase of IL-10 expression in splenic B cells from WT mice, because CD1dhiCD5+ B cells from WT NZB/W mice produced augmented IL-10 levels at 28 wk compared with CD1dintCD5+ B cells (p < 0.05; Fig. 4B, right). IL-10 secretion from B cells was 11.2-fold higher in WT mice by 12 wk old and 11.4-fold at 28 wk old, respectively, than in CD19−/− mice (p < 0.05 for each; Fig. 4C, left). When splenic B cells from WT

Table I. Frequency and number of splenic B cell subsets in NZB/W mice

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>WT</th>
<th>CD19−/−</th>
<th>WT</th>
<th>CD19−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 wk</td>
<td>28 wk</td>
<td>12 wk</td>
<td>28 wk</td>
</tr>
<tr>
<td></td>
<td>Percentage of each B cell subset relative to B220+ cells</td>
<td></td>
<td>Percentage of each B cell subset relative to B220+ cells</td>
<td></td>
</tr>
<tr>
<td>CD1dhiCD5+</td>
<td>11.3 ± 2.5</td>
<td>1.5 ± 0.3*</td>
<td>17.0 ± 1.4</td>
<td>1.9 ± 0.4**</td>
</tr>
<tr>
<td>B220loCD5+</td>
<td>6.1 ± 1.1</td>
<td>2.1 ± 0.6*</td>
<td>7.1 ± 1.0</td>
<td>2.1 ± 0.8**</td>
</tr>
<tr>
<td>CD1dhiCD5+</td>
<td>0.9 ± 0.2</td>
<td>0.07 ± 0.03*</td>
<td>2.3 ± 0.5</td>
<td>0.13 ± 0.03*</td>
</tr>
</tbody>
</table>

Number of each B220+ cell subset

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>WT</th>
<th>CD19−/−</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 wk</td>
<td>28 wk</td>
</tr>
<tr>
<td>CD1dhiCD5+</td>
<td>5.7 ± 0.5</td>
<td>0.5 ± 0.1*</td>
</tr>
<tr>
<td>B220loCD5+</td>
<td>3.1 ± 0.5</td>
<td>0.7 ± 0.2**</td>
</tr>
<tr>
<td>CD1dhiCD5+</td>
<td>0.5 ± 0.1</td>
<td>0.02 ± 0.01*</td>
</tr>
</tbody>
</table>

Values represent means (± SEM) results obtained from three mice of each genotype. Values represent the percentage of lymphocytes expressing the indicated cell surface molecules out of total B220+ lymphocytes, or B cell numbers calculated based on the total number of splenic lymphocytes.

*p < 0.05; **p < 0.01.

NZB/W mice were separated into CD1dhiCD5+ cells and non-CD1dhiCD5+ cells, CD1dhiCD5+ cells secreted 4- to 5-fold more IL-10 compared with non-CD1dhiCD5+ B cells (p < 0.05; Fig. 4C, right). Thus, CD1dhiCD5+ B cells were increased in number and produced significant levels of IL-10 during disease, whereas these cells were severely reduced in CD19−/− NZB/W mice at all time points.

Reduced CD1dhiCD5+ B cells and IL-10 production in CD19−/− NZB/W mice

To determine whether the absence of regulatory B10 cells in CD19−/− NZB/W mice explains their accelerated disease progression, CD1dhiCD5+B220+ B cells from 20-wk-old WT NZB/W mice were transferred into CD19−/− NZB/W mice of the same age. As a control, spleen B220+ follicular B cells were also transferred into CD19−/− NZB/W mice. The transfer of WT CD1dhiCD5+B220+ B cells into CD19−/− NZB/W mice normalized nephritis onset (p < 0.05 at 23 wk; Fig. 5A) and prolonged survival until 35 wk old (p < 0.05; Fig. 5B) to the extent seen in WT NZB/W mice. In fact, CD19−/− NZB/W mice that received WT CD1dhiCD5+ B cells lived even longer than WT NZB/W mice (median survival, 37 versus 35 wk). Nephritis and survival were not significantly altered in CD19−/− NZB/W mice that received WT CD1dintCD5+ B cells (36 wk old; 2.1 ± 0.8%; 1.8 ± 0.8 × 106 cells in CD19−/− NZB/W mice).

CD1dhiCD5+ B cells induce Treg cells in CD19−/− NZB/W mice

CD4+Foxp3+ Treg cell numbers increase in WT NZB/W mice during disease (Fig. 6A) as described (52). The CD4+Foxp3+ Treg cell subset composed 2.4 ± 0.7% of splenic Thy1.2+ T cells (2.4 ± 0.8 × 106 cells) in 12-wk-old WT NZB/W mice. Treg cell frequencies increased to 8.5 ± 1.7% (17.0 ± 1.9 × 106 cells) in WT NZB/W mice that developed ANA and proteinuria at 28 wk old. Although spleen Treg cell frequencies were comparable between WT and CD19−/− NZB/W mice at 12 wk old (2.1 ± 0.8%; 1.8 ± 0.8 × 106 cells in CD19−/− NZB/W mice), there was not a significant increase in the Treg subset in CD19−/− mice at 28 wk old (2.8 ± 0.9%;
nocytes from 12- and 28-wk-old WT and CD19−/− CD4+Foxp3+ Treg cells in CD19−/− WT and CD19−/− Treg cell numbers and IL-10 production by splenic T cells was significantly higher than in age-matched CD19−/− NZB/W mice (5.0 ± 1.1 × 10^{6} cells versus 1.9 ± 0.3 × 10^{6} cells; p < 0.05; 6.1 ± 0.12% versus 2.3 ± 0.2% of Th1,2 T cells, p < 0.05; Fig. 6C). Therefore, B10 cells or other CD19+CD5+ regulatory B cells are likely to play a critical role in Treg cell expansion in NZB/W mice.

Discussion

Nephritis and death were accelerated in CD19−/− NZB/W mice relative to WT NZB/W mice (Fig. 2), despite B cell hyporesponsiveness and their immunodeficient phenotype (Fig. 3) of CD19−/− (20, 21). These unexpected findings were due to the virtual absence of B10 cells in CD19−/− NZB/W mice (Fig. 4) as described previously for C57BL/6 CD19−/− mice (34, 51). This was confirmed by the adoptive transfer of splenic CD19+CD5+ B cells from WT NZB/W mice into CD19−/− NZB/W mice, which significantly prolonged their survival and demonstrated an important protective role for regulatory B10 cells in this systemic autoimmune disease. Consistent with these observations, B cell depletion by CD20 mAb treatment eliminated 99% of B10 cells and accelerated disease development in young NZB/W mice as demonstrated in the companion paper to these studies (54). These studies demonstrate protective roles for B cells in lupus pathogenesis.

CD19 expression had both protective and disease promoting roles in lupus pathogenesis in NZB/W mice. CD19 deficiency significantly delayed the generation of ANA, especially anti-dsDNA Abs, in this lupus-prone mouse strain (Fig. 1). However, the manifestation of nephritis was paradoxically accelerated by the loss of CD19, although the difference was modest (Fig. 2). This result paralleled enhanced mortality in CD19−/− NZB/W mice. This discrepancy mirrors the findings of Shi et al. (55) in transgenic mice that overexpress CD19 and express the Sle1 lupus susceptibility locus. In this case, CD19 overexpression augmented humoral
autoimmunity, but did not accelerate mortality or clinical evidence of renal dysfunction. Consistent with this finding, B cells from these CD19-transgenic mice are hyper-responsive to transmembrane signals, but have significantly increased B10 cell numbers (21, 34, 51). Therefore, CD19 expression positively correlates with autoantibody production, but is likely to have opposing roles during autoimmune disease by regulating B10 cell development. That severe glomerulonephritis can occur in the absence of ANA, including anti-DNA Abs, and that autoreactive B cells can exert pathogenic effects independent of Ab secretion has also been demonstrated in other lupus-prone mouse strains (56–58). Thus, the severe renal disease observed in CD19−/− NZB/W mice is likely to result from B cell functions other than autoantibody secretion. These studies demonstrate that this B cell function is attributable in part to the suppressive role of B10 cells that normally negatively regulate disease progression.

IL-10 is a pleiotropic cytokine with both immunosuppressive and immunostimulatory properties (53, 59). The role of IL-10 in lupus pathogenesis is complex, including the effects of high serum IL-10 levels in human SLE and lupus-prone mouse strains (60–64). For example, serum IL-10 levels positively correlate with SLE disease activity scores and anti-dsDNA autoantibody titers, but negatively correlate with C3 and C4 levels and lymphocyte counts (60, 65, 66). Patients with SLE also have significantly more IL-10-secreting mononuclear cells in their peripheral blood than do normal controls, and disease severity correlates with increased numbers of circulating IL-10–secreting mononuclear cells (62). Furthermore, IL-10 production by B cells is higher for patients with SLE than in normal controls, and Ig production by SLE B cells is largely dependent on IL-10 (61). Therefore, IL-10 can be pathogenic for lupus acceleration, but may also be produced to reduce already existing autoimmunity. Various treatments targeting IL-10 against SLE have also shown contradictory results. For example, IL-10 deficiency significantly enhances disease severity in MRL/lpr mice with increases in IFN-γ and IgG2a anti-dsDNA autoantibody production, which are suppressed by recombinant IL-10 treatment (67). In the current study, CD19 deficiency led to lower serum IL-10 levels in NZB/W mice throughout the disease course (Fig. 4D). In contrast, continuous anti–IL-10 mAb administration significantly delays disease development in NZB/W mice, which is attributed to increased TNF-α production (68). These contradictory findings are most likely explained by the fact that multiple cell types are capable of producing IL-10, including B cells. Thereby, the positive and negative regulatory roles of IL-10 are likely to differ depending on the cell source of IL-10, as well as the timing of its production, duration, and levels of IL-10 expression. Thus, B10 cell IL-10 production is but one component of a complex regulatory network that balances protective and pathogenic immune responses.

In addition to B10 cells and Ig secretion, B cells regulate immune responses through multiple mechanisms that have been described recently (69). B cells contribute to Ag-presentation, cytokine production, the regulation of lymphoid organogenesis, effector T cell differentiation, and dendritic cell function. It is also noteworthy that B cells have other critical roles in lupus, presumably through their interaction with T cells. For example, B cell deficiency in MRL/lpr mice results in the complete absence of inflammatory T cell renal infiltration (70). B cell amination in MRL/lpr mice using CD79a–/− reduces the relative abundance of CD4 memory T cells and also reduces T cell infiltration into the kidneys (71). In contrast, MRL/lpr mice engineered to have B cells expressing surface-bound but not secretory Ig develop nephritis, which is characterized by renal T cell infiltration (56). Thus, B cells play pathogenic roles via cytokine secretion or Ag presentation (72). Because lupus develops under the complex regulation of different B cell subsets and their functions, the selective targeting of B cell subsets might lead to promising therapies for this and other autoimmune disorders.

Although the adoptive transfer of CD1d+/CD5+ B cells into CD19−/− NZB/W mice significantly improved survival, this treatment did not cure the underlying disease (Fig. 5). Because CD19-positive transferred cells were detected in the spleens of CD19−/− NZB/W mice 2 wk after injection, but not in 5 wk (data not shown), this may be partly explained by the eventual rejection of CD19-expressing WT B10 cells in CD19-deficient mice. However, this most likely reflects the complex etiology of the lupus-like diseases, and the involvement of multiple hematopoietic lineages in disease initiation and regulation. As an example, splenic T cell IL-10 mRNA levels were significantly reduced during the late stages of disease in CD19−/− NZB/W mice (Fig. 6B). The spleen CD4+Foxp3+ Treg cell subset was also significantly reduced in CD19−/− NZB/W mice, while Treg cells expanded during disease progression in WT NZB/W mice (Fig. 6A). Consistent with this finding, the adoptive transfer of CD1d+/CD5+ B cells from WT NZB/W mice significantly increased Treg cell numbers in CD19−/− NZB/W mice (Fig. 6C). These results indicate that CD19 expression by B cells or the presence or absence of B10 cells also has a significant influence on Treg cell development and/or activation in NZB/W mice that remains to be explored. Thus, effective treatments or a cure for lupus-like disease is likely to require the modulation of not only B cell and B10 cell functions, but also T cell and Treg cell functions that significantly modulate disease.

Disclosures
T.F.T. is a paid consultant for MedImmune, Inc. and is a consultant and shareholder for Angelica Therapeutics, Inc.

References

