This information is current as of April 14, 2017.

Inflammatory Cytokine-Induced Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 in Mesenchymal Stem Cells Are Critical for Immunosuppression

Guangwen Ren, Xin Zhao, Liying Zhang, Jimin Zhang, Andrew L'Huillier, Weifang Ling, Arthur I. Roberts, Ånh D. Le, Songtao Shi, Changshun Shao and Yufang Shi

J Immunol 2010; 184:2321-2328; Prepublished online 3 February 2010; doi: 10.4049/jimmunol.0902023

http://www.jimmunol.org/content/184/5/2321

References

This article cites 51 articles, 21 of which you can access for free at: http://www.jimmunol.org/content/184/5/2321.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Inflammatory Cytokine-Induced Intercellular Adhesion Molecule-1 and Vascular Cell Adhesion Molecule-1 in Mesenchymal Stem Cells Are Critical for Immunosuppression

Guangwen Ren,* Xin Zhao,* Liying Zhang,* Jimin Zhang,* Andrew L’Huillier,* Weifang Ling,* Arthur I. Roberts,* Anh D. Le,† Songtao Shi,‡ Changshun Shao,‡ and Yufang Shi*∥

Cell–cell adhesion mediated by ICAM-1 and VCAM-1 is critical for T cell activation and leukocyte recruitment to the inflammation site and, therefore, plays an important role in evoking effective immune responses. However, we found that ICAM-1 and VCAM-1 were critical for mesenchymal stem cell (MSC)-mediated immunosuppression. When MSCs were cocultured with T cells in the presence of T cell Ag receptor activation, they significantly upregulated the adhesive capability of T cells due to the increased expression of ICAM-1 and VCAM-1. By comparing the immunosuppressive effect of MSCs toward various subtypes of T cells and the expression of these adhesion molecules, we found that the greater expression of ICAM-1 and VCAM-1 by MSCs, the greater the immunosuppressive capacity that they exhibited. Furthermore, ICAM-1 and VCAM-1 were found to be inducible by the concomitant presence of IFN-γ and inflammatory cytokines (TNF-α or IL-1). Finally, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo when the adhesion molecules were genetically deleted or functionally blocked, which corroborated the importance of cell–cell contact in immunosuppression by MSCs. Taken together, these findings reveal a novel function of adhesion molecules in immunoregulation by MSCs and provide new insights for the clinical studies of antiadhesion therapies in various immune disorders. The Journal of Immunology, 2010, 184: 2321–2328.

Mesenchymal stem cells (MSCs), a subset of non-hematopoietic stem cells residing in the bone marrow, can support the growth and differentiation of hematopoietic stem cells and possibly repopulate stem cells in other tissues (1). In recent years, MSCs have attracted significant attention from basic and clinical investigators for their usefulness in the treatment of immune disorders, such as graft-versus-host disease (GVHD) and autoimmune diseases (2). MSCs were reported to alter the function of T cells, B cells, dendritic cells, and NK cells (3–6). Moreover, MSCs exhibit potent immunosuppressive activity. Although IL-10, TGF-β, IDO, and PGE₂ were reported to be responsible for the immunosuppressive activity (7–10), in mouse models, we recently demonstrated that the production of NO by MSCs, in response to IFN-γ and one of several other proinflammatory cytokines, is required for the immunosuppressive effect (11), which is consistent with another recent report (12). Our findings helped to explain why MSC-mediated suppression is nonspecific and why there have been conflicting reports regarding whether cell–cell interactions or soluble factors are required (3, 13, 14). Because NO has a short half-life and, therefore, a limited range of diffusion, it only has temporary and local action; a high concentration of NO in the vicinity of the producer cells is required for its function (15–17). Therefore, MSCs need to be in close proximity to their target cells to achieve their immunosuppressive effect.

Our recent studies revealed that upon stimulation by inflammatory cytokines, MSCs produce large amounts of chemokines, which attract lymphocytes (11). Thus, it is conceivable that the newly lodged lymphocytes may be held in place by adhesion molecules so that the effects of NO can be attained. Two adhesion molecules in particular, ICAM-1 and VCAM-1, are considered to be costimulatory in immune responses, and the blockade of these molecules leads to immune tolerance in some cardiac allografts and allergic disease models (18–20). In this article, we show that ICAM-1 and VCAM-1 are required for lymphocyte–MSC adhesion and, thus, play an important role in MSC-mediated immunosuppression. We observed that ICAM-1 and VCAM-1 in MSCs were upregulated by inflammatory cytokines, and such upregulation rendered MSCs more adhesive to T cells. Moreover, when the function of the adhesion molecules was inhibited by blocking Abs or gene knockout, MSC-mediated immunosuppression was significantly reversed in vitro and in vivo. Therefore, this article...
uncovers a novel role of adhesion molecules in mediating immunosuppression.

Materials and Methods

Mice

C57BL/6 mice were purchased from the National Cancer Institute (Fredrick, MD). IFNγ−/− mice (Ifng1−/−), GFP-transgenic mice (Tg (ACTB-EGFP)OsbiD), and ICAM-1−/− mice (Icam1−/−) were from Dr. Debra L. Laskin’s laboratory at Rutgers University. Mice were maintained in the Robert Wood Johnson Medical School Vivarium. Animals were matched for age and gender in each experiment. All experiments were approved by the Institutional Animal Care and Use Committee.

Mesenchymal stem cells

MSCs were generated from bone marrow of tibia and femur of 6–10-wk-old mice. Cells were cultured in α-MEM supplemented with 10% FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin (all from Invitrogen, Carlsbad, CA). Nonadherent cells were removed after 24 h, and adherent cells were maintained with medium replenishment every 3 d. They were passed between passages 5 and 20. MSCs were examined for cell surface markers as CD29+CD44+Sca-1+CD45−/low (11, 21). The “stemness” of MSCs was determined by their capability to differentiate into adipocytes, chondrocytes, and osteoblasts (11, 21).

T cell blasts

CD3+ pan-T cells, CD4+, and CD8+ T cells were purified from splenocytes of C57BL/6 mice by negative selection with pan-T cell, CD4+ T cell, and CD8+ T cell isolation kits (Miltenyi Biotec, Auburn, CA). These cells were activated with plastic-bound anti-CD3 and soluble anti-CD28 for 48 h, with the addition of IL-2 (200 U/ml). For Th1 cell differentiation, IL-12 (10 ng/ml) and anti–IL-4 (10 μg/ml) were added to the CD4+ T cell cultures; for Th2 cell differentiation, IL-4 (5 ng/ml), anti–IFN-γ (10 μg/ml), and anti–IL-12 (10 μg/ml) were added to the CD4+ T cell cultures; and for Th17 cell differentiation, TGF-β (5 ng/ml), IL-6 (20 ng/ml), IL-1β (20 ng/ml), anti–IFN-γ (10 μg/ml), and anti–IL-4 (10 μg/ml) were added to the CD4+ T cell cultures. After the primary activation for 48 h, the cells were cultured with IL-2 (200 U/ml) alone for an additional 48 h to form T cell blasts of the respective T cell population. All T cell cultures were maintained in RPMI 1640 medium supplemented with 10% heat-inactivated FBS, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 50 μM β-2-ME (complete medium).

Reagents

Recombinant mouse IFN-γ, TNF-α, and IL-1α and mAbs against mouse TNF-α, IL-1α, ICAM-1, and VCAM-1 were from eBioscience (La Jolla, CA). Anti–IFN-γ was manufactured by Harlan (Indianapolis, IN). CD45-microbead kits (Miltenyi Biotec) were used for MSC separation from splenocytes.

T cell culture supernatants

Activated splenocyte supernatant (supernatant from cultures of anti-CD3-activated splenocytes [SupCD3-act]) was harvested from 48-h cultures of splenocytes (2 × 10⁶/ml) activated by plastic-bound anti-CD3. For other T cell supernatants (from plastic-bound anti-CD3–reactivated pan-T cell blasts [Suppam-1]; from plastic-bound anti-CD3–reactivated CD4+ T cell blasts [Suppam-2]; from plastic-bound anti-CD3–reactivated CD8+ T cell blasts [Suppcm-3]; from plastic-bound anti-CD3–reactivated Th1 cell blasts [SuppTH1]; from plastic-bound anti-CD3–reactivated Th2 cell blasts [SuppTH2]; and from plastic-bound anti-CD3–reactivated Th17 cell blasts [SuppTH17]), the specific T cell blasts (1 × 10⁶ cells/ml) were reactivated with plastic-bound anti-CD3 for 24 h, and culture supernatants were collected. All supernatants were passed through a filter with 0.1-μm pores and frozen until use. The proper differentiation of the cells was verified by the characteristic cytokine production (IFN-γ for Th1, IL-4 for Th2, and IL-17 for Th17) (data not shown).

Flow cytometric analysis

For surface molecule staining, cells were stained with fluorescence-conjugated Abs for 30 min on ice, washed twice with staining buffer (2% FBS in PBS), and analyzed on a FACScan flow cytometer (BD Biosciences, San Jose, CA) using CellQuest software. To determine cell cycle distribution, cells were harvested and washed once with PBS and resuspended in DNA staining buffer consisting of 50 μg/ml propidium iodide, 0.25% saponin, and 50 μg/ml RNase A (Roche Diagnostic Systems, Somerville, NJ). After 30 min of incubation at room temperature, the cells were analyzed by flow cytometry.

Detection of NO

NO was measured using a modified Griess reagent (Sigma-Aldrich, St. Louis, MO). In this method, all NO3 is converted into NO2 by nitrate reductase, and the total amount of NO3 is detected as a colored azo dye product of the Griess reaction.

Proliferation assay

Cells were cultured in 100 μl medium in 96-well plates. To assay de novo cell proliferation, 0.5 μCi [3H]thymidine deoxyribose ([3H]TdR; GE Biosciences, Piscataway, NJ) was added to each well 8 h before termination of the cultures by freezing. Plates were thawed, harvested, and incorporated [3H]TdR was counted using a Wallac Microbeta scintillation counter (PerkinElmer, Wellesley, MA).

Real-time PCR

Real-time PCR was performed as described previously (22). Briefly, the first-strand cDNA synthesis was performed using a Sensiscript RT Kit with random hexamer primers (Qagen, Valencia, CA). The levels of mRNA of genes of interest were measured by real-time PCR (MX-4000; Stratagene, La Jolla, CA) using SYBR Green Master Mix (Applied Biosystems, Foster City, CA). The total amount of mRNA was normalized to endogenous β-actin mRNA. Primer sequences were mouse ICAM-1: forward, 5′-CAATTCTTTATGCAGGCACAG-3′, reverse, 5′-AGCTGGAATCTCGACAAGTCCG-3′; mouse ICAM-2: forward, 5′-ACCGTCCATTTCTTCTCCG-3′, reverse, 5′-TGCTACGGCTCATACTTCA-3′; mouse VCAM-1: forward, 5′-TGAACAAAGAAGGACACGT-3′, reverse, 5′-GATTATCCATACGACG-3′; mouse PECAM-1: forward, 5′-CAAAACAGAAACGCTGGAGAT-3′, reverse, 5′-GACCTATATGGTATCTCCGC-3′; mouse E-Selectin: forward, 5′-GACGAGTTTCTCACCACACG-3′, reverse, 5′-GGCTCAGCCATTG-3′; mouse N-Cadherin: forward, 5′-TAGACAGGAGGCTCTACCACG-3′, reverse, 5′-CCAGAATTTAAGGCTTCAT-3′; mouse P-Cadherin: forward, 5′-TTGTCGCACTATACGCGCAA-3′, reverse, 5′-GCCGGCATTAGTGGCACT-3′; mouse ICAM-1: forward, 5′-TCAACGATCTGCTAACGT-3′, reverse, 5′-AACGCATGATGCTACGC-3′; mouse VCAM-1: forward, 5′-CCCGCTATAGTACCCGCA-3′, reverse, 5′-GCCGGCATTAGTGGCACT-3′; mouse P-Selectin: forward, 5′-CTACCTCCTGAAGACGTAT-3′, reverse, 5′-TGGGACAGCAAGGAGCT-3′; mouse ICAM-1: forward, 5′-TGGGACAGCAAGGAGCT-3′, reverse, 5′-CCCAGCTAATCCCTGCATCA-3′; and mouse P-Selectin: forward, 5′-CTACCTCCTGAAGACGTAT-3′, reverse, 5′-TGGGACAGCAAGGAGCT-3′.

MSC adhesion assay

Briefly, MSCs (5 × 10⁵ cells/well) were plated in 24-well plates in 250 μl complete medium. Eighteen hours after the addition of 250 μl SupCD3-act 1 × 10⁶ CD4+ T cell blasts (in 250 μl complete medium) from GFP-transgenic mice (female, 8-wk-old) were cocultured with MSCs for 2 h. The plates were then rotated at 300 rpm for 5 min. After washing with PBS two or three times to remove the nonattached T cells, all of the cells were trypsinized, and the T cells were scored under a fluorescence microscope. The T cells were identified by their fluorescence and cell size. Anti–ICAM-1 or anti–VCAM-1 Abs were added (20 μg/ml) in some treatments.

Delayed-type hypersensitivity response

C57BL/6 mice (6–8-wk-old, female) were immunized by tail base injection of OVA (10 μg in 50 μl saline) emulsified with 50 μl complete Freund’s adjuvant. Delayed-type hypersensitivity (DTH) was tested after 5 d by challenging with 200 μg aggregated OVA in 30 μl saline injected into the right footpad. The left footpad was injected with 50 μl saline as a negative control. After 24 h, Ag-induced footpad thickness increment was measured using a caliper and calculated as (Rimmunized − Rnonimmunized) − (Rimmunized − Rnonimmunized), where R and L are thickness of left and right footpads.

Statistical analysis

Statistical significance was assessed by the unpaired two-tailed Student t test.

Results

Activated, but not naive, splenocytes adhere to MSCs

We previously reported that NO secreted by mouse MSCs directly mediates suppression of T cell responses (11). NO, an important bioactive gaseous molecule, was shown to suppress T cell...
proliferation and other immune cell functions at high concentrations. However, its short half-life and limited diffusion constrain its effectiveness to very near its source (15–17). Thus, for effective immunosuppression by NO-secreting MSCs, the T cells must be retained in close proximity.

MSCs stimulated by inflammatory cytokines produce high levels of chemokines, which, in turn, promote T cell chemotaxis (11). Therefore, we hypothesized that once T cells have made contact with MSCs, a mechanism of cell–cell interaction must exist to retain them in proximity, thus exposing these immune cells to high concentrations of locally active NO. Indeed, we found that effective MSC-mediated inhibition of anti-CD3–activated T cell proliferation correlated with T cell adhesion to MSCs (Fig. 1A). However, as the control, without the anti-CD3 activation, there was basically no adhesion observed for the naive splenocytes (Fig. 1A). The splenocytes adhered to the MSCs were mostly dead, possibly acted on by the high concentration of NO (data not shown). Therefore, surface receptors are likely to mediate adhesion between MSCs and lymphocytes.

MSCs upregulate ICAM-1 and VCAM-1 after coculture with activated splenocytes

Cell adhesion molecules are critical for leukocyte trafficking and are involved in many pathological processes. In the immune system, the major adhesion molecules include the Ig family (ICAM-1 and -2, VCAM-1, and PECAM-1), cadherins (E-cadherin, P-cadherin, and N-cadherin), and selectins (E-selectin, L-selectin, and P-selectin) (18, 23). We next determined which molecules were involved in the increased adhesion of splenocytes to MSCs. After purification by CD45-microbeads, we analyzed the adhesion molecule expression in MSCs with and without coculture with splenocytes in the presence of T cell Ag receptor activation (by anti-CD3). As shown in Fig. 1B, two Ig family molecules (ICAM-1 and VCAM-1) were strikingly induced at mRNA levels after coculture, whereas the other Ig family adhesion molecules, cadherins, and selectins did not show significant changes. As expected, we also detected the high expression of ICAM-1 and VCAM-1 by flow cytometry (Fig. 1C). Furthermore, the ICAM-1 and VCAM-1 expression in MSCs that had been exposed to naive splenocytes was unchanged compared with control MSCs (data not shown), indicating that only activated splenocytes were capable of upregulating the expression of ICAM-1 and VCAM-1.

ICAM-1 and VCAM-1 are induced by activated T cell culture supernatants

ICAM-1 and VCAM-1 were normally expressed on the surface of APCs, mediating target cell binding by interaction with their respective receptors on leukocytes, lymphocyte function-associated Ag-1 and very late Ag-4. MSCs were treated with SupCD3-act to determine whether secreted products of activated splenocytes or cell–cell contact between splenocytes and MSCs is required for the upregulation of adhesion molecule expression. We found that ICAM-1 and VCAM-1 were similarly upregulated in MSCs stimulated by SupCD3-act (Fig. 1C), implicating secreted product(s) of activated T cells in the process. Moreover, the greater the expression of ICAM-1 and VCAM-1 by MSCs, the stronger immunosuppression they exhibited. When we treated MSCs with supernatants from different subtypes of T cells, ICAM-1 and VCAM-1 were highly induced by Suppan-T, SupCD8, and SupTh1.
Interestingly, MSCs treated with Suppan-T, SupCD8, and SupTh1 also had a more pronounced immunosuppressive effect toward their respective T cell blasts (Fig. 2B). This was in contrast to SupCD4, SupTh2, and SupTh17, which only induced a low level of the adhesion molecules in MSCs and achieved weaker immunosuppression (Fig. 2).

Increased adhesion between MSCs and T cells is dependent on ICAM-1 and VCAM-1

To quantitatively assess the adhesive ability of MSCs activated by the products of activated T cells, as well as the roles of ICAM-1 and VCAM-1, we treated MSCs with SupCD3-act for 18 h and then added the T cell blasts for an additional 2 h to test the T cell adhesion. As shown in our previous study, after stimulation with the T cell activation products, MSCs produced a large amount of T cell-specific chemokines, which attracted the T cells to the proximity of MSCs, where high concentrations of NO, in turn, suppressed the proliferation of T cells (11). In the present adhesion assay, we determined the attachment of T cells to the MSCs after their migration. Clearly, without T cell activation, very few cells adhered to the MSCs. The number of attached T cells was strikingly increased after MSCs were stimulated by SupCD3-act (Fig. 3).

To explore the role of ICAM-1 and VCAM-1 in T cell adhesion to MSCs, we tested the effect of blocking Abs against ICAM-1 and VCAM-1. Anti–ICAM-1 and anti–VCAM-1 reduced the number of adhesive T cells significantly (p < 0.001 and p < 0.01, respectively; Fig. 3), indicating a crucial role for these two molecules in increasing the adhesive capability of MSCs after stimulation by activated T cell products.

IFN-γ is required for the induction of ICAM-1 and VCAM-1

To identify which of the factors secreted by activated T cells is responsible for the enhanced expression of ICAM-1 and VCAM-1, we treated MSCs with SupCD3-act for 18 h and then added the T cell blasts for an additional period of time sufficient to test the T cell adhesion. As shown in our previous study, after stimulation with the T cell activation products, MSCs produced a large amount of T cell-specific chemokines, which attracted the T cells to the proximity of MSCs, where high concentrations of NO, in turn, suppressed the proliferation of T cells (11). In the present adhesion assay, we determined the attachment of T cells to the MSCs after their migration. Clearly, without T cell activation, very few cells adhered to the MSCs. The number of attached T cells was strikingly increased after MSCs were stimulated by SupCD3-act (Fig. 3).

To further confirm the role of IFN-γ in this process, we derived MSCs from IFN-γR1−/− mice and compared the expression of ICAM-1 and VCAM-1 in these MSCs to that in wild-type (WT) MSCs. As expected, only a minimum induction of ICAM-1 and VCAM-1 was detected in MSCs that lacked IFN-γ signaling (Fig. 4B). Additionally, when two other inflammatory cytokines (TNF-α and IL-1) were blocked, the induction of ICAM-1 and VCAM-1 was not affected (Fig. 4A). These two adhesion molecules were similarly induced in MSCs prepared from TNFαR1−/− mice and WT MSCs (Fig. 4B). These results indicated that IFN-γ, but not other inflammatory cytokines, is essential for the induction of ICAM-1 and VCAM-1.
IFN-γ acts synergistically with TNF-α or IL-1 to induce high expression of ICAM-1 and VCAM-1

Considering the central role of IFN-γ in the induction of ICAM-1 and VCAM-1, we further assessed the effect of IFN-γ directly by adding rIFN-γ in place of SupCD3-act. However, the expression levels of ICAM-1 and VCAM-1 were only slightly elevated by the addition of IFN-γ (Fig. 5). The addition of TNF-α or IL-1α had a similar effect.

The expression levels of ICAM-1 and VCAM-1 were greatly increased only when IFN-γ was added concomitantly with TNF-α or IL-1 (Fig. 5). Therefore, induction of ICAM-1 and VCAM-1 expression in MSCs requires a concerted action of IFN-γ and TNF-α or IL-1. These results parallel our previous findings that these cytokine combinations also induce MSC secretion of the chemokines and NO that are required in MSC-mediated immunosuppression (11).

Adhesion molecules are important in immunosuppression by MSCs in vitro and in vivo

ICAM-1 and VCAM-1 are commonly regarded as markers of MSCs (24). Furthermore, these adhesion molecules were reported to be important for the homing of MSCs in tissue repair (24, 25). It is reasonable to speculate that cell–cell adhesion was required for immunosuppression by MSCs. Indeed, immunosuppression by mouse MSCs also requires the concerted action of NO and T cell-specific chemokines. Chemokines attract T cells into proximity with MSCs, where T cell responsiveness is suppressed by a high concentration of NO (11). As shown in Fig. 6A, the suppression of splenocyte proliferation by MSCs depends on cell–cell contact.

The expression of ICAM-1 and VCAM-1 in combination with TNF-α or IL-1 induced the high expression of ICAM-1 and VCAM-1 in MSCs. MSCs were supplemented with recombinant cytokines (20 ng/ml each) for 24 h. The expression of ICAM-1 and VCAM-1 was analyzed by flow cytometry. Data shown are representative of five independent experiments.
Considering that NO only has a limited range of action, ICAM-1 and VCAM-1 are likely involved in the inhibition of T cell proliferation by MSCs.

First, we used blocking Abs against ICAM-1 and VCAM-1 to directly test whether ICAM-1– and VCAM-1–mediated lymphocyte adhesion plays a role in MSC-mediated immunosuppression. In cocultures of SupCD3-activated MSCs and T cell blasts, the production of NO by MSCs was unaffected by blockade of ICAM-1 and VCAM-1 (Fig. 6B), suggesting that anti–ICAM-1 and anti–VCAM-1 do not interfere with NO production. In contrast, the blocking Abs significantly reversed the suppression of T cell proliferation in MSC + T cell blasts cocultures when added singly or together (Fig. 6C).

Second, we derived ICAM-1–deficient MSCs from ICAM-1−/− mice. When we compared the ICAM-1–deficient MSCs with their WT controls, we found that ICAM-1–deficient MSCs had a reduced immunosuppressive effect in vitro and in vivo. In vitro, although ICAM-1–deficient MSCs did not show significant reduction in NO production, as reflected by nitrate in the cell culture supernatant after coculture with splenocytes in the presence of anti-CD3 (data not shown), the immunosuppression by ICAM-1–deficient MSCs significantly decreased (Fig. 7A). In vivo, we tested the immunosuppressive effect using DTH. OVA alone or OVA with MSCs from WT or ICAM-1−/− mice were injected into the OVA-immunized mice, and the resultant DTH response was measured by footpad thickness increment. We found that administration of ICAM-1–deficient MSCs did not result in a significantly suppressive effect on DTH response (p = 0.15), whereas the WT MSCs effectively reduced the inflammation (p < 0.01) (Fig. 7B). Therefore, cell adhesion mediated by ICAM-1 and VCAM-1 is a critical step in MSC-mediated immunosuppression. Adhesion molecules may have important roles in the balance between immune activation and immunosuppression.

Discussion

The adhesion molecules play crucial roles in the specific and effective immune response to foreign pathogens. In an immune response, the adhesion molecule-mediated interaction of lymphocytes and APCs with endothelium modulates the efficiency and specificity of the cell trafficking into secondary lymphoid organs and peripheral tissue. After reaching the endothelium, the adhesion molecules promote the cell movement, achieving a stable Ag-specific interaction between T lymphocytes and APCs, which is critical for initiating a T cell-activation event (26, 27). Therefore, adhesion molecules are always regarded as a family of immune-promoting molecules. However, in the current study, we found that adhesion molecules were important in MSC-mediated immunosuppression. In an MSC and T cell coculture system, T cells, when activated through the T cell Ag receptor, secrete several inflammatory cytokines, including IFN-γ, TNF-α, and IL-1. The combination of IFN-γ with TNF-α or IL-1 can strikingly upregulate the expression of two Ig family adhesion molecules: ICAM-1 and VCAM-1. Through the adhesion assay, we confirmed that these two molecules were responsible for the increased adhesion between MSCs and T cells. Importantly, blocking of the function of adhesion molecules significantly reversed the immunosuppressive effect of MSCs in vitro and in vivo. These findings lend further support to the notion that cell proximity is pivotal for NO to inhibit T cell proliferation and other immune responses in the mouse system. More recently, our findings indicated a species variation in the mechanisms of MSC-mediated immunosuppression; although NO served as the effector molecule for mouse MSCs, human MSCs used IDO to suppress the immune response (28). Interestingly, in the human MSC system, we also found that cell–cell contact was important for immunosuppression, indicating that adhesion molecules might also play a role in the human MSC-mediated immunosuppressive effect.

ICAM-1 and VCAM-1, as well as their respective receptors lymphocyte function-associated Ag-1 and very late Ag-4, are considered to be critically involved in various inflammatory pathological diseases, such as experimental allergic encephalomyelitis, rheumatoid arthritis, and GVHD; blocking of the ligands or receptors proved to have some beneficial effects in controlling these diseases in animal models (29–34). However, there are numerous conflicting reports about antiadhesion therapies. For example, in ICAM-1–knockout mice, leukocyte infiltration did not differ from that in WT animals, and no improvement in the GVHD symptoms was found in ICAM-1–deficient mice (35). In another study, the disease phenotype was even more severe in the ICAM-1–specific mAb-treated mice with experimental allergic encephalomyelitis, and they exhibited more prominent ataxia compared with the PBS-treated controls (36). In addition, VCAM-1 blockade starting at the onset of clinical features of collagen-induced arthritis did not prevent disease progression (37). Therefore, although the adhesion molecules are important in the interaction of lymphocytes–APCs and lymphocytes–endothelium, as well as immune cell infiltration, their exact function in immune diseases seems to be more complicated.

![FIGURE 7](http://www.jimmunol.org/)

ICAM-1–deficient MSCs had a significantly reduced immunosuppressive effect in vitro and in vivo. A. MSCs from ICAM-1–deficient or WT mice were cocultured with fresh splenocytes at different ratios with the addition of soluble anti-CD3 (1 μg/ml) in 96-well plates. Cell proliferation was assayed after 48 h. Values are means ± SD of five replicate wells from a representative of three experiments. *p < 0.05; **p < 0.01; ***p < 0.001. B. C57BL/6 mice were immunized with OVA in complete Freund’s adjuvant by tail base injection. Mice were challenged in the footpad with 200 μg aggregated OVA administered with or without WT or ICAM-1–deficient MSCs (2.5 × 10⁶ cells) on day 7. Footpad thickness increment was determined after 24 h as a measure of DTH. Data shown are means ± SD of a representative of three experiments. *p < 0.05; **p < 0.01; ***p < 0.001.
The authors have no financial conflicts of interest.

Disclosures

The authors have no financial conflicts of interest.

