8-Methoxypsoralen Plus Ultraviolet A Therapy Acts via Inhibition of the IL-23/Th17 Axis and Induction of FoXP3+
Regulatory T Cells Involving CTLA4 Signaling in a Psoriasis-Like Skin Disorder

Tej Pratap Singh, Michael P. Schöen, Katrin Wallbrecht, Kai Michaelis, Beate Rinner, Gerlinde Mayer, Ulrike Schmidbauer, Heimo Strohmaier, Xiao-Jing Wang and Peter Wolf

J Immunol 2010; 184:7257-7267; Prepublished online 19 May 2010;
doi: 10.4049/jimmunol.0903719
http://www.jimmunol.org/content/184/12/7257

Supplementary Material

http://www.jimmunol.org/content/suppl/2010/05/19/jimmunol.0903719.DC1

Why The *JI*?

- **Rapid Reviews! 30 days*** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article *cites 55 articles*, 14 of which you can access for free at:
http://www.jimmunol.org/content/184/12/7257.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
8-Methoxypsoralen Plus Ultraviolet A Therapy Acts via Inhibition of the IL-23/Th17 Axis and Induction of Foxp3+ Regulatory T Cells Involving CTLA4 Signaling in a Psoriasis-Like Skin Disorder

Tej Pratap Singh,* Michael P. Schön,*‡ Katrin Wallbrecht,‡ Kai Michaelis,‡ Beate Rinner,§ Gerlinde Mayer,* Ulrike Schmidbauer,* Heimo Strohmaier,§ Xiao-Jing Wang,*‡§# and Peter Wolf*‡

To elucidate the molecular action of 8-methoxypsoralen plus UVA (PUVA), a standard dermatological therapy, we used K5.hTGF-β1 transgenic mice exhibiting a skin phenotype and cytokine abnormalities with strong similarities to human psoriasis. We observed that impaired function of CD4+CD25+ regulatory T cells (Tregs) and increased cytokine levels of the IL-23/Th17 pathway were responsible for the psoriatic phenotype in this mouse model. Treatment of K5.hTGF-β1 transgenic mice with PUVA suppressed the IL-23/Th17 pathway, Th1 milieu, as well as transcription factors STAT3 and orphan nuclear receptor RORyt. PUVA induced the Th2 pathway and IL-10–producing CD4+CD25+Foxp3+ Tregs with disease-suppressive activity that was abolished by anti-CTLA4 mAb treatment. These findings were paralleled by macroscopic and microscopic clearance of the diseased murine skin. Anti–IL-17 mAb treatment also diminished the psoriatic phenotype of the mice. This indicated that both induced Tregs involving CTLA4 signaling and inhibition of the IL-23/Th17 axis are central for the therapeutic action of PUVA. The Journal of Immunology, 2010, 184: 7257–7267.

Despite the introduction of new therapeutic strategies such as TNF-α inhibiting biologics (1, 2) or anti–IL-12/23 Ab (3) treatment, 8-methoxy psoralen plus UV A (PUVA) photochemotherapy and other forms of phototherapies have kept their prominent places in the dermatological treatment armamentarium of psoriasis and many other skin diseases (4). However, the mechanisms by which PUVA leads to clearance of skin lesions are still not well understood. For many years, the interest in the molecular effects of PUVA has mainly focused on the binding of psoralen to DNA, in which pyrimidine bases are the main targets for a photochemical reaction (5). Thus, similar to DNA-alkylating agents, PUVA was thought to be effective mainly by a direct antiproliferative effect on skin cells through apoptosis (e.g., induced by p53 and Fas ligand interaction [6]). However, similar to UV radiation (7), PUVA has also been known for a long time to have profound immunosuppressive properties, potentially initiated through cytokine release after both DNA and/or cell membrane alterations (8). For instance, Vallat et al. (9) have shown that PUVA can exert distinct suppressive effects on infiltrating immune cells in psoriatic skin, with virtually total elimination of IL-2Rα+ T cells in some patients. In comparison with the immunosuppressive agent cyclosporine (another treatment option for psoriasis), PUVA has been found to have more complete reversal of pathological epidermal and lymphocytic activation, changes proposed to be the cellular basis of the sustained remission of psoriatic disease after PUVA treatment.

To elucidate the therapeutic and immunologic mechanisms of PUVA, we used K5.hTGF-β1 transgenic mice (10), which develop scaly erythema and inflammatory skin lesions, similar to the appearance of psoriasis in human patients. K5.hTGF-β1 overexpression leads to multiple molecular changes and cytokine abnormalities that typically occur in human Th1-type inflammatory skin disorders such as psoriasis (11). The skin lesions in K5.hTGF-β1 transgenic mice are characterized by epidermal hyperproliferation, massive infiltration of neutrophils, CD4+ lymphocytes, and macrophages to the epidermis and superficial dermis, subcorneal microabscesses, basement membrane degradation, and increased angiogenesis. K5.hTGF-β1 transgenic mice exhibit a more severe psoriasis-like phenotype than other transgenic models, in which individual growth factors or cytokines are targeted in the skin (12), rendering this model very attractive to study antipsoriatic therapies. Indeed, therapeutic approaches effective for human psoriasis, such as TNF-α antagonist etanercept or peroxisome proliferator-activated receptor γ agonist rosiglitazone, have been shown to be effective in alleviating the skin symptoms of K5.hTGF-β1 transgenic mice (13).
The IL-23/Th17 axis has been linked to autoimmune conditions such as psoriasis (14) and exerts many proinflammatory effects in a wide variety of cells, including keratinocytes, macrophages, and endothelial cells. Downstream effects of IL-17 include production of IL-1, IL-6, IL-8, TNF-α, G-CSF, and GM-CSF, as well as anti-microbial peptides (15). However, TGF-β is critical for generation of CD4+CD25+Foxp3+-induced regulatory T cells (iTregs) and controls Th17 immunity in the presence of IL-6 (16–18). Phenotypically Tregs express IL-2Rα (CD25), cell survival factor glucocorticoid-induced tumor necrosis factor receptor, and the T cell activation marker CTLA4, which is crucial for the maintenance and/or suppressive function of these cells (19). We therefore investigated whether PUVA treatment of K5.hTGF-β1 transgenic mice clears psoriasis-like phenotype, and if so, the underlying mechanisms engage inhibition of the inflammatory IL-23/Th17 axis and iTregs involving CTLA4 signaling.

Materials and Methods

Animals

K5.hTGF-β1 transgenic mice expressing wild-type (latent) TGF-β1 were generated as described previously (10). Mice were backcrossed to the Hsd:ICR(CD-1R) background. All animals were maintained with alternating 12-h light-and-dark cycles and controlled temperature and humidity in facilities approved by the Austrian government. Food and water were provided ad libitum. All animal procedures were approved by the Austrian government, Federal Ministry for Science and Research, through protocol numbers BMBWK-66.010/0034-BrGT/2006 and 66.010/79-C/GT/2007. Mice were 12–16 wk old at the start of the experiment and were aged and sex-matched within each experiment.

PUVA treatment

The backs of the mice were shaved 1 d before PUVA treatment with an electric clipper. The remaining hair was then removed by the application of a commercial depilation cream for 3–5 min (Depilant sensitive) and subsequent cleaning with water. Groups of mice were painted on their backs with 200 μl 8-methoxypsoralen (8-MOP) (Sigma-Aldrich, St. Louis, MO) in ethanol (at a concentration of 0.1 mg/ml) or vehicle (95% ethanol) or were left untreated. The mice were then kept for 15 min in individual compartments of standard cages to allow penetration of 8-MOP. UV A irradiation was performed using a Waldmann UV236A irradiation system carrying two fluorescent PL 36W/09-PUV A light tubes (emission range, 315–400 nm; peak, 365 nm; Waldmann Medizintechnik, Villingen-Schwenningen, Germany) at a mean irradiance of 8.55 mW/cm2 at a distance of 15 cm from the dorsal skin of the mouse to the glass of the irradiation system positioned upside down on the top of the cage. Irradiance was monitored by a Waldmann PUVA photometer, calibrated for the irradiation system. During UV A irradiation, the mice were housed individually per cage. To determine the minimal phototoxicity of PUVA treatment, we performed kinetic and dose-response studies in K5.hTGF-β1 transgenic mice and wild-type (WT) controls as previously described and used in other strains of mice (8). The studies revealed that maximum skin swelling was present in the mice 48 h after single PUVA exposures, and the minimal phototoxic dose (MPD) was 0.5 J/cm2 for the dorsal skin of WT mice and 1.0 J/cm2 for the diseased dorsal skin of the K5.hTGF-β1 transgenic mice. For repeated treatment of the mice, PUVA was given on a subphototoxic level at a dose of 0.25 J/cm2 (mean exposure time, 29 s) or a near-phototoxic level of 0.50 J/cm2 (mean exposure time, 59 s) UV A twice a week (Monday and Thursday or Tuesday and Friday) for 4 d.

Ab injection

Anti-mouse IL-17 rat mAb (10 mg/kg) (clone 50104; R&D Systems, Minneapolis, MN) was used for in vivo i.p. injection of groups of mice to neutralize IL-17 bioactivity. To study the functional significance of Tregs, mice were injected i.p. immediately after PUVA exposure (0.25 J/cm2) with 60 μg monoclonal anti-CTLA4 rat mAb (clone 9A3; R&D Systems). As control, an isotype-matched Ab (rat IgG Ab; R&D Systems) was given. All Abs were injected twice a week over the 4-wk treatment period.

Skin disease severity score

A specific mouse psoriasis skin severity score composed of a rating from 0 to 3 for the symptoms of erythema, infiltration, and scaling based on the macromosaic appearance of the skin was used to monitor the skin status of individual mice. Mice were evaluated in a blinded fashion once a week. Each of the symptoms was scored separately as 0 (not present), 1 (mild), 2 (moderate), or 3 (severe). The scores were summed up, taking into consideration the area involved, resulting in a maximal score of 9. In addition, skin thickness was measured by assessing the double skin-fold thickness (DSFT) of dorsal skin of the mice with a spring-loaded engineer’s micrometer (Mitutoyo, Japan) before and after the treatment each week with PUVA, UVA, or ethanol or Ab injection during the 4-wk treatment regimen. Skin thickness was determined for individual mice by subtracting the DSFT before treatment from that after treatment at the different time points.

Tissue collection

Mice were sacrificed 48 h after the final treatment, and samples of dorsal skin, ear, spleen, lymph nodes, and blood were collected. Approximately 1 cm2 of central dorsal skin per mouse was excised, fixed immediately in 4% buffered formaldehyde, processed routinely, and sectioned on 4 μm for H&E staining. In addition, tissue was submerged in RNAlater solution (Applied Biosystems, Foster City, CA) and stored at −70°C for later mRNA analysis.

Histologic examination

Epidermal hyperplasia was assessed by counting epidermal cell layers and measuring the thickness of the epidermis from the basal cell column to the calneum with the calibrated eyepiece micrometer of a microscope. Epidermal cell layers were counted at 10–15 randomly selected consecutive microscopic fields (at final magnification, ×200). For quantification of epidermal thickness, 10 randomly selected measurements per H&E-stained cross-section of dorsal or ear skin from each mouse were performed. Semiquantitative scoring of the inflammatory infiltrate in the upper or lower dermis was performed as follows: 0, within normal limits; 1, mild; 2, moderate; and 3, severe at 10–15 randomly selected areas per section (at final magnification, ×100). All measurements were performed in a blinded manner. Results were first averaged per mouse and then averaged per treatment group for statistical analysis. Images were acquired with using a DP71 digital camera (Olympus, Melville, NY) attached to an Olympus BX51 microscope.

Immunohistochemistry and immunofluorescence

Stainings were performed on paraffin-embedded sections of mouse dorsal skin with monoclonal human TGF-β1 (clone 1D11; R&D Systems) (1/50), monoclonal anti-mouse Foxp3 (clone 2A11G9; Abcam, Cambridge, U.K.) (1/100), monoclonal rat anti-mouse IL-10 (clone NyrM-l0; Abcam) (1/50), polyclonal rabbit anti-mouse STAT3 (Abcam) (1/50), or polyclonal rabbit anti-mouse IL-23p19 (Abcam) (1/500) Ab. Briefly, primary Ab was applied after pretreatment of the sections with EDTA at pH 8 (for anti–IL-10, anti–TGF-β, and anti–IL-23p19 staining) or citric acid pH 6 (for anti–Foxp3 staining). Dako Multilink System (biotinylated polyclonal swine anti-goat, mouse, rabbit Iggs, code E 0453) at a concentration of 1/50 and Dako REAL Detection System, Peroxidase/AEC, Rabbit/ Mouse (code K5003) (DakoCytomation, Carpinteria, CA) were used for Ab detection (for anti–TGF-β, anti–IL-23p19, and anti–Foxp3 staining), according to the manufacturer’s instructions. For immunofluorescent IL-10 and STAT3 staining, rabbit anti-rat IgG FITC (clone MAR-4; Abcam) (1/100) and goat anti-rabbit IgG FITC (Abcam) (1/100), respectively, were used as secondary Ab. Coverslips were mounted onto the slides using Vectashield mounting medium with DAPI (Vector Laboratories, Burlingame, CA). Images were acquired with using a DP71 digital camera (Olympus) attached to an Olympus BX51 microscope.

Bead immunoassay

Mouse Cytokine Chemokine Luminesa bead immunoassay kit, LINCOplex, 22 Plex from Millipore (Bedford, MA) was used to measure the levels of cytokines and chemokines in serum samples. The concentrations of the following soluble mediators were measured: G-CSF, GM-CSF, IL-1α, IL-1β, IL-4, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17, IFN inducible protein-10 (IP-10), keratinocyte-derived chemokine (KC), MCP-1, RANTES, TNF-α, IFN-γ, IL-2, IL-5, IL-7, IL-15, and MIP-1α. Each sample was measured in duplicate according to the manufacturer’s specifications. Standard curves for each analyte were generated by using the reference analyte concentration supplied by the manufacturer. The measurement was performed using the Bio-Plex system in combination with Bio-Plex Manager software, version 4.1, using five-parametric curve fitting (Bio-Rad, Hercules, CA).

ELISA

IL-23 levels in serum were measured by mouse IL-23 (p19/p40) ELISA kit (eBioscience, San Diego, CA); IL-10 levels in serum and culture supernatant were measured by mouse IL-10 ELISA kit set (BD OptEIA; BD
Biosciences, San Jose, CA), according to the manufacturer’s instructions. A TGF-β1-specific ELISA kit (eBioscience) was used to quantify levels of human and mouse TGF-β1. Serum samples were acidified with 1 N HCl and neutralized with 1 N NaOH to assay for the amount of total (i.e., the sum of latent and active) TGF-β1 protein and analyzed according to the manufacturer’s instructions.

RNA isolation and quantitative RT-PCR

RNA was isolated from 20 mg mouse dorsal skin biopsies using Qiagen fibrous mini kit (Qiagen, Valencia, CA). RNA was reversely transcribed using a First-Strand cDNA Synthesis kit (Roche, Basel, Switzerland), and quantitative RT-PCR for cytokine transcripts and transcription factors were performed using pretested primers to IL-17A, IL-17F, IL-12p35, IL-12p40, IL-23p19, IL-4, IFN-γ, RORγt, STAT3, keratin 5, keratin 14, filaggrin, and loricrin (Super Array Biosciences, Frederick, MD). The reactions were run on an Applied Biosystems 7900HT system by using RT² SYBR Green/ROX qPCR Master Mix (Super Array Biosciences). The ΔΔCt method was used to normalize transcript to GAPDH and to calculate fold change compared with WT control.

Cell preparation and isolation

Single-cell suspension of spleen and lymph node were prepared by using Cell Dissociation Sieve (Sigma-Aldrich), followed by RBC lysis buffer (eBioscience) for spleen. Single-cell suspensions were prepared by mechanical disruption in RPMI 1640 medium (Sigma-Aldrich) supplemented with 10% (v/v) FCS, penicillin (100 IU/ml), streptomycin (100 μg/ml), and t-glutamate (2 μm; all from PAA Laboratories, Pasching, Austria). Prepared cells were used either for intracellular staining or for Treg isolation by a mouse Treg isolation kit (Miltenyi Biotec, Bergisch Gladbach, Germany) with autoMACS, according to the manufacturer’s instructions.

Abs, intracellular staining, and FACS analysis

The following Abs used for FACS were from eBioscience: Alexa Fluor-conjugated anti–IL-17A (clone eBio17B7), PE-conjugated anti–IL-17F (clone eBio18F10), PE-conjugated anti–IFN-γ (clone XMG1.2), FITC-conjugated anti-CD4 (clone RM4-5), PE-conjugated anti-CD25 (clone PC 61.5), PE-conjugated anti–L-selectin (CD62L) (clone MEL-14), allophycocyanin-conjugated anti-MHC class II (MHC-II) (clone MS/114.15.2), PE-conjugated anti-CCR7 (clone 4B12), and allophycocyanin-conjugated anti-Foxp3 (clone, FJK-16s). PE-conjugated anti–IL-10 Ab (clone JES5-16E3) was from BD Pharmingen (San Diego, CA).

Intracellular cytokine staining was performed on a spleen single-cell suspension. Cells (1 × 10⁶) were stimulated first with plate-bound 5 μg/ml anti-CD3ε (clone 145-2C11) and 2.5 μg/ml soluble anti-CD28 (clone 96-15.2), both from BD Pharmingen in RPMI 1640 medium supplemented with 10% FCS (v/v), penicillin (100 IU/ml), streptomycin (100 μg/ml), and t-glutamate (2 μm) in triplicates for 4 d, then leukocyte-activating mixture (BD Pharmingen) was added for 5 h in a round-bottom 96-well plate (Nunc, Roskilde, Denmark). Cells were first stained for CD4 surface Ag and then treated with Fix/Per buffer (eBioscience).

FIGURE 1. PUVA treatment clears psoriatic skin lesions in K5.hTGF-β1 transgenic mice. K5.hTGF-β1 or WT mice were topically treated on their shaved back skin twice a week for 4 wk with either 8-MOP 15 min before exposure to a sub- or near-phototoxic dose of UVA (0.25 or 0.50 J/cm² PUVA), mimicking a clinical PUVA regimen. UVA (0.50 J/cm²) radiation alone, or vehicle (ethanol) alone. A, DSFT was measured before the first treatment and 48 h after the second treatment of every week. B, A specific score (composed of a rating from 0 to 3 for erythema, infiltration, and scaling) was used to monitor macroscopic disease severity in the mice. ***, #, n.s, 3 wk or 4 wk versus 0 wk. C, Presentation of a representative PUVA (0.25 J/cm²) or vehicle-treated K5.hTGF-β1 transgenic mouse before and after 4 wk of treatment (original magnification ×100). D, Representative images of H&E-stained sections from dorsal skin of a mouse of the different treatment groups (scale bar, 100 μm; original magnification ×100). E, Evaluation of histological features, including inflammatory infiltrate (0, none; 1, mild; 2, moderate; and 3, severe) in the upper or lower dermis, epidermal thickness, and number of epidermal layers. F, PUVA prolongs survival of the K5.hTGF-β1 mice (p < 0.05 comparing 0.50 J/cm² PUVA, treated versus vehicle-treated transgenic mice). Data shown are from one representative experiment, with n = 5 per treatment group (A, B, F) or pooled from two experiments, with n = 4–9 mice per treatment group (E). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. n.s, not significant.
according to the manufacturer’s instructions. Intracellular cytokine staining was performed using Abs to IFN-γ, IL-17A, and IL-17E. Lymph node or spleen cells were stained for Treg phenotype (CD4+CD25+Foxp3+) by using mouse Treg staining kit (eBioscience) according to the manufacturer’s instructions. For IL-10 and Foxp3 staining, isolated CD4+CD25+ T cells (1×10⁶) were cultured in triplicates, as described above. Cells were first stained for CD4 surface Ag and then fixed in eBioscience Fix/Per buffer after the in vitro stimulation. This was followed by permeabilization and staining for IL-10. Finally, the cells were again permeabilized in eBioscience permeabilization buffer and stained for Foxp3 according to the manufacturer’s instructions. FACS data were acquired on a FACS Calibur flow cytometer, and data were analyzed with CellQuest Pro software (BD Biosciences). All plots were gated on CD4+ or CD4+CD25+.

Treg suppression assay

The purity of isolated Tregs was checked before every proliferation assay. It was found to be in all cases >95%, as determined by FACS. To analyze proliferation and suppressive capacity of CD4+CD25+ Tregs in response to polyclonal activation, CD4+CD25+ or CD4+CD25- T cells (1×10⁵) were cultured in RPMI 1640 medium supplemented, as described above, either alone or together at 1:1 ratio in a round-bottom 96-well plate at a final volume of 200 μl. Cells were stimulated with plate-bound 5 μg/ml anti-CD3ε and 2.5 μg/ml soluble CD28, with 1 μCi per [3H]thymidine (Amersham Biosciences, Piscataway, NJ) per well added for the final 16 h of the 72-h incubation.

Statistical analysis

All macroscopic readings and scorings of microscopic slides were conducted in a blinded fashion. Each experiment was repeated at least once with similar results. Data presented are expressed as means ± SEM. Statistical differences among experimental groups were determined by use of ANOVA or paired or unpaired two-tailed t test after testing for normality, whatever appropriate. Survival analysis was performed using log-rank test. Statistical significance was set at a level of p < 0.05.

Results

PUVA clears psoriasis-like skin lesions in K5.hTGF-β1 transgenic mice

PUVA is used for the treatment of skin diseases such as psoriasis at sub- or near-erythematogenic doses. For instance, the original European PUVA study protocol recommends the MPD as the starting dose for PUVA treatment (20). The MPD is determined prior to beginning the therapeutic treatment using a test, in which the skin of patients is exposed to a test ladder of increasing UVA doses after topical or oral psoralen administration. The MPD is defined as the smallest UVA dose required to produce a clearly demarcated and perceptible erythema, as determined 48–72 h after

FIGURE 2. PUVA treatment downregulates transcription factors and cytokine profile of the IL-23/Th17 pathway. K5.hTGF-β1 transgenic or WT mice were treated, as described in Fig. 1. At the end of the 4-wk treatment regimen, tissue or serum samples were collected and analyzed. A. Quantitative RTPCR was performed with RNA isolated from individual mouse dorsal skin for transcription factors RORγt and STAT3 and transcript encoding cytokines IL-17A, IL-17F, IL-12p35, IL-12p40, and IL-23p19. B. IL-6, IL-1a, and IL-1b serum levels were determined either by ELISA or bead immunoassay. C. Photographs of immunohistochemical staining for IL-23p19 in dorsal skin from mice of the different treatment groups (scale bar, 100 μm; original magnification ×100). D. Quantitative analysis of IL-23p19 staining. IL-23p19-positive cells were microscopically counted in 10–15 consecutive visual fields in the upper or lower dermis (final magnification, ×200). E. Intracellular cytokine staining for IL-17A and IL-17F was performed on pooled cultured spleen single-cell suspension collected from K5.hTGF-β1 mice treated with vehicle or PUVA. Cells were stimulated and analyzed, as described in Materials and Methods. Results shown are gated on the CD4+ population. Data shown are from two pooled experiments, with a total of n = 4–9 (A, B, D) or n = 6 mice per treatment group (E). *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. n.s, not significant.
psoralen administration. To apply a clinically relevant treatment dose, we have determined the MPD in K5.hTGF-β1 transgenic mice with a protocol similar to that used in humans and have then administered for the treatment of the mice a subphototoxic dose of 0.25 J/cm² or a near-phototoxic dose of 0.50 J/cm² twice per week for 4 wk. These doses are in the range of MPD values used for starting PUVA therapy in patients. Fig. 1A shows that both PUVA doses initially caused skin swelling in the transgenic mice in a dose-dependent manner, similar to WT mice (Supplemental Fig. 1B–D). However, during the 4-wk treatment regimen, this swelling was resolved, and PUVA then prevented a further increase of the thickened skin (Supplemental Fig. 1A) that occurred in transgenic mice compared with WT mice. Likewise, both PUVA doses significantly improved the severity of skin disease in the mice (Fig. 1B). The macroscopic improvement of the skin status (Fig. 1C) of the mice was paralleled by a decrease of histological alterations (Fig. 1D, E, Supplemental Fig. 4). Whereas the skin of vehicle-treated K5.hTGF-β1 transgenic mice exhibited a hyperplastic epidermis (i.e., acanthosis) with hyperkeratosis and/or parakeratosis, a superficial mixed inflammatory infiltrate consisting of mononuclear cells and scattered neutrophils, and increased blood vessels in the dermis, such alterations were nearly absent in the skin of PUVA-treated transgenic mice. UV A given alone had no effect on the presence of psoriasis-like skin alterations (Fig. 1A, 1B, 1D, 1E). Notably, PUVA treatment significantly prolonged the survival of mice (Fig. 1F), a result that is consistent with observations in humans, in whom PUVA can be life saving for severe cases of erythrodermic or pustular psoriasis.

Effect of PUVA on the IL-23/Th17 pathway and Th1 and Th2 cytokines, chemokines, and growth factors

We were able to identify an effect of PUVA on the IL-23/Th17 axis that was disturbed in the K5.hTGF-β1 transgenic mice compared with WT mice. At the mRNA level, PUVA depressed the abnormally elevated mRNA levels of IL-17A, IL-17F, IL-12p35, IL-12p40, and IL-23p19 and orphan nuclear receptor RORγt and STAT3 transcription factors in the skin of transgenic mice (Fig. 2A). These results were paralleled by the depression of serum protein levels of IL-17, IL-12p70 (i.e., the bioactive heterodimer composed of the p40 and p35 IL-12 subunits), IL-23, IL-6, IL-1a, and IL-1b (Fig. 2B). UVA given alone had no significant effect on these factors. Immunohistochemical staining with anti–IL-23p19 Ab revealed that the keratinocytes of the lower layers of the epidermis as well as certain infiltrating cells of the dermis stained positive in the vehicle-treated transgenic mice. PUVA depressed this IL-23 positivity (Fig. 2C, 2D) as well as STAT3 in the dorsal skin (Supplemental Fig. 6). To determine the influence of PUVA
treatment on the CD4⁺IL-17⁺ T cell population, we performed intracellular cytokine staining on pooled splenocytes obtained at the end of the 4-wk PUVA treatment regimen. PUVA decreased IL-17A- and IL-17F-producing CD4⁺ T cells in transgenic mice in a dose-dependent fashion by up to ∼2- and 6-fold, respectively (Fig. 2E). We also found that PUVA downregulated abnormally elevated serum levels of G-CSF, GM-CSF, MCP-1, RANTES, KC, IP-10, MIP-1α, IL-9, TNF-α, and IFN-γ (Fig. 3A). In contrast, PUVA increased protein levels of IL-4, IL-10, and IL-13 in the serum. IL-2, IL-5, IL-7, and IL-15 levels were below the detection limit in all samples analyzed by bead immunoassay. Both PUVA doses upregulated IL-4 and IL-10 but downregulated IFN-γ protein in the dermis. The effect of PUVA on IFN-γ content of CD4⁺ T cells in splenocytes in a dose-dependent fashion by up to >10-fold in transgenic mice (Supplemental Fig. 2).

An important question was whether PUVA affected TGF-β1 because it is the crucial driving factor in this disease model. Indeed, ELISA revealed that PUVA reduced total TGF-β1 (i.e., active and latent, human and mice) serum levels (Fig. 3A), but the levels after PUVA exposure were still significantly higher in transgenic mice compared with WT mice (∼6-fold at the PUVA dose of 0.25 J/cm² and 3-fold at the PUVA dose of 0.50 J/cm²). Immunohistochemical staining of the skin revealed that there was no marked difference in the intensity of TGF-β staining between PUVA-treated and nontreated transgenic mice in the epidermis (Supplemental Fig. 3), indicating that PUVA did not per se inhibit transgenic keratinocyte production of hTGF-β1. However, PUVA decreased TGF-β protein in the dermis. The effect of PUVA on TGF-β expression in the skin appeared to be specific because other genes such as keratin 5, keratin 14, filaggrin, and loricrin were not significantly affected by the treatment (Supplemental Fig. 5). Collectively, these results indicated that PUVA treatment downregulates the IL-23/Th17 pathway and Th1 cytokines but upregulates Th2 cytokines in the K5.hTGF-β1 mouse model, at least partially independent of a direct effect on hTGF-β1 itself.

To study the functional relevance of the IL-23/Th17 pathway (Fig. 4), K5.hTGF-β1 transgenic mice were injected twice weekly over a 4-wk period with an anti–IL-17 mAb. The anti–IL-17 treatment stopped the disease progression in the K5.hTGF-β1 mice, compared with injection with an isotype control Ab (Fig. 4A–C). However, anti–IL-17 Ab injection did not affect IL-10 and Foxp3 mRNA expression in the dorsal skin of the mice (Fig. 4D).

PUVA-induced IL-10–producing Foxp3⁺ Tregs and IL-10 production

CD4⁺CD25⁺Foxp3⁺ Tregs, which have been shown to play a central role in autoimmunity, can be induced by TGF-β under certain circumstances (i.e., in the absence of IL-6) (21–23). To study the role of Tregs in the K5.hTGF-β1 mouse, we first compared CD4⁺CD25⁺Foxp3⁺ Treg populations from lymph node cells or splenocytes between WT and K5.hTGF-β1 transgenic mice and did not find any significant differences (Fig. 5A). However, PUVA did increase the percentage of CD4⁺CD25⁺ Foxp3⁺ Tregs by a similar rate at both PUVA doses in the spleens, whereas in the lymph nodes, the effect of PUVA appeared to be greater for the dose of 0.50 J/cm² compared with 0.25 J/cm² (Fig. 5A), most likely without biologic significance because there was no difference in the function of Tregs isolated from spleen between the two doses (Fig. 5C). Tregs induced by UV radiation have been shown to express the lymph node homing receptor CD62L but, like other T cells, not E- and P-selectin (24). Moreover, their homing is also controlled by expression of CCR7 and MHC-II on their surface. In this context, we found a higher expression of CD62L, MHC-II, and CCR7 on the CD4⁺

FIGURE 4. Blockade of IL-17 stops progression of psoriatic skin disease. K5.hTGF-β1 transgenic mice were injected i.p. twice a week with anti–IL-17 mAb or an isotype control Ab. A, Disease severity in the mice. n.s, 4 wk versus 0 wk. B, Representative images of H&E-stained sections of ears from the mice (scale bar, 100 μm; original magnification ×100). C, Epidermal thickness and epidermal cell layers, as measured in the H&E-stained sections of ears or dorsal skin. D, IL-10 and Foxp3 mRNA expression in the dorsal skin of the mice. Data shown are from one representative experiment, with n = 5 mice per treatment group. *p ≤ 0.05; **p ≤ 0.01. n.s, not significant.
The T cell population of lymph nodes from PUV A-treated mice, with up to a 4-fold increased expression of CD62L in the case of mice treated with 0.50 J/cm² PUV A compared with vehicle-treated K5.hTGF-β1 transgenic mice. Each cell subset was cultured either in duplicate alone (1 × 10⁵) or with an equal number (1:1) of CD4⁺CD25⁺ and CD4⁺CD25⁻ cells. Cells were stimulated and analyzed, as described in Materials and Methods. CD4⁺CD25⁺ proliferation considered as 100%. Data shown are from two pooled experiments, with n = 6 total mice (A, B) or n = 4–9 per treatment group (D), or one representative experiment, with n = 3 mice (C, E) per treatment group. *p ≤ 0.05.

CTLA4 signaling is crucial for PUV A-induced Treg function
CTLA4 is an important molecule that is expressed on the surface of activated T cells and essential for the regulatory function of
CD4+ T cells or total lymphocytes. Numbers in quadrants indicate percent cells. Data shown are from one representative experiment, with n = 3 pooled mice per treatment group.

FIGURE 6. PUVA increases homing of CD4+ T cells. K5.hTGF-β1 transgenic mice were treated, as described in Fig. 1. At the end of the 4-wk treatment regimen, lymph nodes samples were collected. FACS of pooled lymph nodes of K5.hTGF-β1 mice were stained for CD4 and cell surface marker CD62L, MHC-II (A), and CCR7 (B). Plots are either gated on CD4+ T cells or total lymphocytes. Numbers in quadrants indicate percent cells. Data shown are from one representative experiment, with n = 3 pooled mice per treatment group.

Tregs. Like CD28, CTLA4 binds to B7-1 and B7-2 but at rates reported to be 500- to 2500-fold higher than those of CD28, thus giving CTLA4 a competitive advantage over CD28 (28, 29). Data from earlier studies indicated that treatment of mice with CTLA4Ig, a soluble form of CTLA4 that effectively blocks CD80/CD86 engagement with CD28, suppressed antitumor immunity, transplant rejection, and autoimmune responses (30). Moreover, blocking CTLA4 signaling has been shown to inhibit the suppressive function of UV-induced CD4+CD25+ T cells (31). We therefore used anti-CTLA4 mAb treatment to test the functional relevance of PUVA-induced Tregs. K5.hTGF-β1 transgenic mice were treated with PUVA (twice a week for 4 wk; 0.25 J/cm²) (Fig. 7A). When the mice were injected with anti-CTLA4 mAb, PUVA lost its disease-suppressive activity, whereas injection with an isotype control Ab did not affect the beneficial effect of PUVA. This effect was confirmed by analysis of cell culture supernatant of the cultured splenocytes upon TCR stimulation (Fig. 7F). Anti-CTLA4 (but not isotype control) Ab injection of the mice abrogated the PUVA-induced increase of IL-10 in the supernatant.

Discussion

This study addresses the molecular mechanisms of the therapeutic action of PUVA in K5.hTGF-β1 transgenic mice (Fig. 1), a highly ranked murine model with a skin disease of psoriasis-like character (10, 12, 13, 32). Besides many abnormalities that also occur in human psoriasis patients, such as preponderance of the IL-23/Th17 axis (14) (Fig. 2) and a Th1 milieu including abnormally elevated cytokines such as IFN-γ and TNF-α (Fig. 3) (likewise to certain other psoriasis mouse models) (33), we detected normal levels of natural Tregs (Fig. 5) but a dysfunctional activity of those cells in K5.hTGF-β1 transgenic mice at maximal disease manifestation. PUVA had a reciprocal effect by inhibiting the IL-23/Th17 axis and the Th1 milieu (e.g., by downregulating IFN-γ expression 10-fold) (Figs. 2, 3) and by simultaneously inducing an IL-10–producing CD4+CD25+Foxp3+ Treg population with disease-suppressive activity (Fig. 5B), which was abrogated by targeting Treg function with anti-CTLA4 (19, 31) mAb treatment (Fig. 7), providing the proof that PUVA-induced Tregs were indeed primarily responsible for the clearance of the psoriatic skin lesions in the K5.hTGF-β1 mice. This is intriguing because the role of the immune system in the formation of the psoriatic phenotype in K5.hTGF-β1 mice has been controversial. Han et al. (13) found that depletion of T cells by crossing K5.hTGFβ1mice with Rag1−/− mice delayed skin inflammation and associated epidermal hyperplasia. In contrast, T cells had a limited role in the formation of psoriasisform skin lesions in K5.hTGF-β1 mice (M.P. Schönh and K. Michaelis, unpublished data). They found that eradication of T lymphocytes with CD4-depleting Abs did not alleviate the psoriatic skin phenotype. However, the results of our study unambiguously indicate that the induction of a specific immune response (i.e., iTregs) likely responsible for the clearance of the psoriatic skin lesions in the K5. hTGF-β1 mice. This is intriguing because the role of the immune system in the formation of the psoriatic phenotype in K5. hTGF-β1 mice, although the immune system may in the beginning not necessarily cause this phenotype.

That the findings on Tregs and the influence of PUVA in the model can be translated to human’s level appears likely because of many pathomechanistic similarities between K5.hTGF-β1 mice and human psoriasis patients. Similar to the mouse model, 1) CD25high Tregs make up similar proportions of CD4+ cells in psoriatic and normal blood, 2) psoriatic CD4+CD25high Tregs cells are impaired in their inhibitory functions, fail to suppress T responder proliferation, and are anergic to polyclonal CD3/CD28 TCR stimulation in psoriasis patients, and 3) CD4+CD25high Tregs from normal and untreated psoriatic patients express or produce similar amounts of IL-10 (27). Another interesting aspect of the K5.hTGF-β1 mouse model concerns the homing of CD4+ T cells, highlighted by the increased expression of CD62L, MHC-II, and CCR7 from lymph nodes of PUVA-exposed animals (Fig. 6). This finding suggests migration of CD4+ T cells from skin to peripheral lymph node and/or vice versa. In addition, PUVA exposure was linked to an upregulation of the transcription factor Foxp3 expression in the skin (Fig. 5D) and its level in cells from spleens or lymph nodes (Fig. 5A). Foxp3 programs the development and function of CD4+CD25high Treg in controlling autoimmunity. Its expression is a key feature of natural Treg cells (34), which arise during thymic development through high-affinity recognition of self-Ags (35). In contrast, iTregs or so-called adaptive Tregs are Foxp3+ cells that develop extrathympically and share many phenotypic and functional characteristics of natural Tregs but exert their regulatory activity mainly by IL-10 and TGF-β secretion (23). TGF-β is critical for the
CD4, CD25, and Foxp3. Plots are either gated on CD4 + or CD4+CD25+ T cells. Numbers in quadrants indicate percent cells.

ROR and immunocytes required for development of psoriasis in another transcription factor that is thought to link activated keratinocytes (37), in which epidermal RANKL induced modification is a strong inducer of vitamin D3, and vitamin D3 derivatives are local and systemic immune suppression. Notably, RANKL expression is known for orchestrating the differentiation of induced Foxp3+ T cells (22, 36) whereas the presence of IL-6 inhibits the conversion of T cells into Foxp3+ Tregs and favors Th17 immunity (16, 18). In this context, it needs to be noted that PUVA downregulated IL-6 expression in the skin of transgenic mice, an activity that may have culminated in the downregulation of IL-17 and induction of adaptive Tregs with antipsoriatic activity.

The therapeutic significance of PUVA-induced Tregs goes well in line with a recent study (37), in which epidermal RANKL induced upon UV exposure was shown to control Treg numbers coupled to local and systemic immune suppression. Notably, RANKL expression is a strong inducer of vitamin D3, and vitamin D3 derivatives are successfully used to treat psoriasis (38). Moreover, PUVA phototherapy may augment the functional activity of Tregs in polymorphic light eruption in preseasonal photohardening. This activity is possibly associated with normalization of sun sensitivity in this presumably autoimmune-mediated condition (39). It is also worth mentioning that the infusion of expanded Tregs (e.g., by photopheresis) (25) has been suggested as a therapeutic concept to control an autoimmune-mediated condition (39). It is also worth mentioning that the infusion of expanded Tregs (e.g., by photopheresis) (25) has been suggested as a therapeutic concept to control an autoimmune-mediated condition (39). It is also worth mentioning that the infusion of expanded Tregs (e.g., by photopheresis) (25) has been suggested as a therapeutic concept to control an autoimmune-mediated condition (39).

We also observed in the skin of K.5hTGF-β1 transgenic mice an increased level of STAT3 (Fig. 2A, Supplemental Fig. 6), a transcription factor that is thought to link activated keratinocytes and immunocytes required for development of psoriasis in another transgenic mouse model (40), as well as orphan nuclear receptor RORγt, which is known for orchestrating the differentiation program of proinflammatory IL-17+ Th cells (41). Both transcription factor levels decreased upon PUVA exposure what was accompanied by a downregulation of the IL-17 pathway, as evident by lowered levels of IL-17A and IL-17F transcripts in the skin and IL-17 protein in the serum (Fig. 2A, 2B). The importance of the IL-17 pathway in the K.5.hTGF-β1 model is supported by the observation that blocking by anti–IL-17 mAb injection stopped the progression of the skin disease but did not clear existing lesions in the skin of the transgenic mice (Fig. 4). However, the anti–IL-17 Ab treatment did not affect Foxp3 levels and IL-10 mRNA levels in the skin (Fig. 4D). Importantly, TGF-β in the context of an inflammatory cytokine milieu has been shown to support de novo differentiation of IL-17-producing T cells (42). IL-17 itself has many proinflammatory effects, including downstream production of IL-1, IL-6, IL-8, TNF-α, G-CSF, and GM-CSF as well as antimicrobial peptides (43). The significance of the IL-17 pathway in human psoriasis patients has been recognized recently (44). For instance, psoriasis lesions in human patients contain discrete populations of Th1 and Th17 cells (15), which are activated on increased production of IL-17A, IL-17F, and IL-22 mRNA (15, 44). Anti–IL-17-Ab treatment is in the clinical test phase for its antipsoriatic activity.

IL-23, a regulatory key cytokine in the differentiation and survival of Th17 cells (18), has been found upregulated in psoriatic skin lesions (45), consistent with our observations in the K5. hTGF-β1 mouse model (Fig. 2C, 2D). Both mRNA and
imunohistochemical analysis showed that IL-23p19 and IL-12p40 subunits (the latter shared by IL-12 and IL-23) were increased in human psoriatic plaques compared with noninvolved skin; however, no difference was observed in human subjects for the IL-12p35 subunit (45), suggesting that IL-23 is playing a more dominant role than IL-12 in psoriasis. This is absolutely in line with the results presented in this paper, showing that IL-12p40 and IL-23p19 expression and/or protein was increased (and responded to PUVA) (Fig. 2A–D) but IL-12p35 expression was not increased in the diseased skin of the transgenic mice (Fig. 2A). At first glance, these results seem to be contradictory to the recent study by Fitch et al. (46), reporting that the inflammatory skin disease in their Ks.tGFP-β1 mice did not depend on the IL-23/Th17 pathway. However, they admitted major limitations to their study because of potential changes in transgene expression after years of breeding. Indeed, the animals they used exhibited eosinophilic skin infiltration and highly elevated elevated IL-4 and high-serum IgE levels, contrasting to the characteristics of the Ks.tGFP-β1 mice originally described by Li et al. (10) and confirmed in our study. The effect of PUVA on IL-23 levels in the skin is consistent with that of other antipsoriatic treatments such as UVB 311-nm therapy (47), cyclosporin A, and biological agents modulating this cytokine (14). Th22 cells represent another distinct human T cell subset uniquely able to regulate epidermal responses in inflammatory skin disease (48, 49); however, the effect of antipsoriatic treatments such as PUVA on this subset remains to be studied.

IL-10 is an immunoregulatory cytokine that mediates both UV- and PUVA-induced immune suppression (8). Indeed, one of its main biological functions seems to be the limitation and termination of inflammatory responses. Remarkably, a relative deficiency in IL-10 biologic functions seems to be the limitation and termination of biological activities seems to be the limitation and termination of the therapeutic effects of PUVA, which may involve multiple mechanisms including suppression of Th1 and Th17 and stimulation of Th2 and Treg activities. The fact that IL-10 and Foxp3 was unchanged in anti-IL-17 Ab-treated mice indicates that those pathways may be parallel and independent from each other in the pathogenesis of Ks.tGFP-β1 mouse model. The observation that anti–IL-17 Ab treatment prevented disease progression whereas PUVA improved the skin status of the transgenic mice, an effect that was abrogated by anti-CTLA4 mAb treatment, suggested that the primary therapeu
tic effect of PUVA is mediated via IL-10–producing Tregs. It remains to be determined how the PUVA-induced regulation of the disturbance of the IL-17/23 axis and the iTregs relate to car
cinogenesis upon long-term treatment (54, 55). Interestingly, upon chronic UV exposure, Tregs were found to be involved in skin cancer formation in mice (31) and are targeted in human cancer immunotherapy (28). In contrast, IL-23 and IL-17 are increased in human tumors and have been implicated in causing cancer (56).

Acknowledgments

We thank S. Klaschka and A. Novak for FACS assistance, A. Roscher for cell culture assistance, M. Absenger for support in establishing cell proliferation assays, K. Bürger for help in doing bead immunassay, and B. Reineri-Gutmann for providing expertise and support in carrying out animal experiments. We also thank H.N. Ananthaswamy and S.E. Ullrich (University of Texas M.D. Anderson Cancer Center, Houston, TX), as well as A. Heinemann and H. Schaida (Medical University of Graz), for critical reading of the manuscript.

Disclosures

The authors have no financial conflict of interest.

References

tol. 17: 703–712.

