Cutting Edge: Mechanical Forces Acting on T Cells Immobilized via the TCR Complex Can Trigger TCR Signaling

Ya-Chen Li, Bing-Mae Chen, Pei-Chun Wu, Tian-Lu Cheng, Lung-Sen Kao, Mi-Hua Tao, Andre Lieber and Steve R. Roffler

J Immunol 2010; 184:5959-5963; Prepublished online 30 April 2010; doi: 10.4049/jimmunol.0900775

http://www.jimmunol.org/content/184/11/5959
Cutting Edge: Mechanical Forces Acting on T Cells Immobilized via the TCR Complex Can Trigger TCR Signaling

Ya-Chen Li,*† Bing-Mae Chen,† Pei-Chun Wu,‡ Tian-Lu Cheng,§ Lung-Sen Kao,¶ Mi-Hua Tao, † Andre Lieber,‖ and Steve R. Roffler†*

Engagement of the TCR by antigenic peptides presented by the MHC activates specific T cells to control infections. Recent theoretical considerations have suggested that mechanical forces acting on the TCR may be important for receptor triggering. In this study, we directly tested the hypothesis that physical forces acting on the TCR can initiate signaling in T cells by micromanipulation of individual T cells bound to artificial APCs expressing engineered TCR ligands. We find that mechanical forces acting on T cells bound to APCs via the TCR complex but not other surface receptors can initiate signaling in T cells in an Src kinase-dependent fashion. Our data indicate that T cells are mechanically sensitive when coupled to APCs by the TCR and indicates that the TCR may act as a mechanosensor. Our data provide new insight into TCR function. The Journal of Immunology, 2010, 184: 5959–5963.

The classical TCR is a heterodimer composed of α- and β-chains that are noncovalently associated on the plasma membrane of T cells with CD3, a complex composed of CD3εδ heterodimers, CD3γε heterodimers, and CD3ζζ disulfide-linked homodimers. The TCR-αβ-chains do not contain signaling domains. Rather, engagement of peptides presented by the MHC (pMHC) by specific TCRs triggers the phosphorylation of tyrosine residues present in the ITAMs of the associated CD3 molecules, which then serve as docking sites for signaling molecules. These proximal events ultimately lead to activation of transcription factors (NF-κB, NFAT, and AP-1) that result in T cell proliferation, differentiation, and cytokine secretion.

Extracellular mechanical forces can facilitate activation of surface receptors and regulate tyrosine phosphatase and kinase signaling (1). An important role for mechanical forces in TCR signaling has also been suggested. For example, actin-driven motility of T cells and shear forces were proposed to promote movement of TCRs into kinase-rich lipid rafts to facilitate TCR signaling (2). Forces that push or twist the TCR/CD3 complex upon ligand engagement have been conceptualized (3, 4). More recently, lateral and vertical forces acting on microclusters of TCR/pMHC complexes on lamellipodium have been suggested to be important for signal transduction (5), and a recent study provides evidence that the TCR can act as an anisotropic force sensor (6). Cytoskeletal forces induced during T cell detachment from APCs have been proposed to initiate TCR signaling (7). Mechanical forces have been suggested to expose CD3ε and CD3ζ cytoplasmic domains for phosphorylation by Lck (8, 9). An important role for force-mediated changes in the TCR has also been proposed based on the structure and interactions of the TCR-αβ-chains and CD3 subunits (10).

Although the idea that mechanical forces can trigger TCRs is an attractive hypothesis, there is a lack of experimental data testing if the TCR is sensitive to mechanical forces. In the current study, a series of artificial APCs expressing defined TCR ligands was employed to directly test if physical forces acting on the TCR could induce T cell signaling.

Materials and Methods

Cells and mice

3T3 murine fibroblasts and Jurkat human T cells were from the American Type Culture Collection (Manassas, VA). Anti-CD28 cells are 3T3 fibroblasts that stably express a membrane-tethered anti-CD28 single-chain Ab (11). Human virus-transformed human fibroblasts (GM00637, Coriell Cell Repositories, Camden, NJ) were generously provided by Dr. T. C. Lee (Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan). Splenies were isolated from BALB/c mice maintained under specific-pathogen free conditions in accordance with Institutional Animal Care and Use Committee guidelines.

rDNA

The construction of p2C11-γ1-B7 (CD3L-2d), p2C11-CD44-B7 (CD3L-CD44), and pLNX-phOx-γ1-B7 (phtOx-2d) has been described (12, 13). A DNA fragment coding the ectodomain of CD43 was amplified by RT-PCR of RNA isolated from Jurkat T cells and inserted into the unique SalI site in p2C11-B7 to generate p2C11-CD43-B7 (CD3L-CD43). A his tag was appended to the 3’ end of CD3L-CD43 by PCR to generate soluble CD3L-CD43-his. All transgenes were cloned into pLN2C2 or pLH2X retroviral vectors (BD Biosciences, San Jose, CA).

Address correspondence and reprint requests to Dr. Steve Roffler, Room N232, Institute of Biomedical Sciences, Academia Sinica, Academia Road, Section 2, No. 128, Taipei 11529, Taiwan. E-mail address: stofb@ibms.sinica.edu.tw

The online version of this article contains supplemental material.

Abbreviations used in this paper: AM, acetoxymethyl ester; pMHC, peptide presented by the MHC.

Copyright © 2010 by The American Association of Immunologists, Inc. 0022-1767/10S16.00
Cell transfection

Transient expression of ligands on 3T3 cells employed lipofectamine or calcium phosphate transfection, whereas permanent cells were generated by retroviral infection. After selection in antibiotic-containing culture medium, stable transfectants were sorted on a flow cytometer for similar surface expression of CD3Ls.

T cell binding

T cells prepared from splenocytes as described (14) were labeled 30 min at 37°C with 5 μM calcin-acetoxymethyl ester (AM) (Sigma-Aldrich, St. Louis, MO). A total of 5 × 10⁴ T cells was briefly centrifuged onto CD3L APCs and allowed to bind for 30 min at 37°C. After washing, bound cells were photographed under visible and fluorescence illumination.

Flow cytometry

Purified T cells, 3T3 APCs, and fibroblasts were stained with commercial Abs at the recommended dilutions. The immunofluorescence of 10,000 viable cells was determined on a flow cytometer (PerkinElmer, Waltham, MA).

T cell activation

Defined numbers of mitomycin C-treated CD3L APCs were mixed in triplicate with purified T cells in the presence of 30 ng/ml PMA for 48 h. IL-2 concentrations were measured by ELISA (BD OptEIA kit, BD Biosciences). T cell proliferation was measured by adding 1 μCi [³H]thymidine per well for 16 h before radioactivity was measured in a Topcount scintillation counter.

Calcium mobilization

Calcium mobilization in populations of T cells was measured by mixing 4 × 10⁴ prewarmed APCs and 10⁵ T cells prelabeled with 2 μg/ml fluo-4-AM and 5 μg/ml fura-Red-AM in PBS containing 0.9 mM CaCl₂, 0.5 mM MgCl₂, 0.01% Pluronic F-127, 10 μM probenecid, and 1% serum, centrifuging for 40 s at 1400 rpm and then measuring fluorescence on a flow cytometer for 4.5 min at 37°C.

To measure calcium mobilization in individual T cells under shear conditions, T cells were loaded with 1.8 μM fura-4-AM for 1 h at 37°C. Labeled T cells were allowed to attach for 30 min at 37°C to live CD3L-CD43, CD3L-CD44, or anti-CD28 cells or to glass coverslips coated with rat anti-CD102 (Biologend, San Diego, CA) or rat anti-CD62L (Serotec, Kidlington, U.K.) Abs. A stream of HBSS was applied to single T cells for 120 s through an ejection micropipette (tip diameter 5 μm) positioned ~10 μm away using a micromanipulation system (Picospipetter, General Valve, Mahwah, NJ) Abs. A stream of HBSS was applied to single T cells for 120 s through an ejection micropipette (tip diameter 5 μm) positioned ~10 μm away using a micromanipulation system (Picospipetter, General Valve, Mahwah, NJ). T cells were illuminated at 488 nm for fluo-4-AM or at 340 nm and 380 nm for fura-4-AM. Fluorescence emission was captured by time-lapse photography (every second) and analyzed with MetaMorph (Molecular Devices) and Volocity (PerkinElmer) software. Mean values were calculated and 5 s to pull the T cell toward the pipette and away from the APC surface.

Calcium responses in individual T cells were measured under a polychromatic xenon lamp light source (Polychrome II, TILL Photonics, Gröblingen, Germany) coupled to an inverted microscope (IX70, Olympus, Melville, NY). Imaging was performed using a 40× oil immersion objective (Olympus) and a CCD camera controlled by MetaFluor (Molecular Devices, Sunnyvale, CA). T cells were illuminated at 488 nm for fluo-4-AM or at 340 nm and 380 nm for fura-2-AM. Fluorescence emission was captured by time-lapse photography (every second) and analyzed with MetaMorph (Molecular Devices) and Volocity (PerkinElmer) software. Mean values were calculated from three to four independent experiments performed over several months.

Fibronectin immunofluorescence staining

Human and mouse fibroblasts were incubated with rabbit anti-mouse fibronectin polyclonal Ab (AB2033, Millipore, Bedford, MA) and then incubated with FITC-conjugated goat anti-rabbit Ab (ICN Pharmaceuticals, Costa Mesa, CA) before being fixed with 2% paraformaldehyde and stained with 1 μg/ml DAPI in PBS. The coverslips were mounted in 50% glycerol in PBS containing 0.1% antifading reagent and observed under a confocal microscope.

VLA-4 and VLA-5 blocking assay

Mean fluorescence ratios (340/380 nm) of fura 2-AM–labeled T cells bound to CD3L-CD43 APCs in the presence of 20 μg/ml CS-1 peptide (EILDVPST) plus 20 μg/ml GRGDS peptide (Bachem, Torrance, CA) or 10 μg/ml anti-VLA-4 plus 10 μg/ml anti-VLA-5 blocking Abs (Biologend) with or without micropipette-induced tension on the T cells was measured as described above.

T cell activation of immobilized CD3L-CD43 protein

Soluble CD3L-CD43-his protein (100 μg/ml), purified from stable 3T3 producer cells on Ni Sepharose 6 fast flow (GE Healthcare, Piscataway, NJ), was bound to Ni-nitrotriaticetic acid derivatized glass coverslips. The fluorescence ratio (340/380 nm) of fura 2-AM–labeled BSZ T cells bound to CD3L-CD43 protein with or without micropipette-induced tension on the cells was measured as described above.

Statistical analysis

Significance of differences between mean values was determined by the unpaired t test with Welch’s correction (Prism, GraphPad, San Diego, CA).

![Image](http://www.jimmunol.org/figs/5960/Fig1.jpg)

FIGURE 1. Elongated TCR ligands activate T cells poorly. A. Illustration of short (CD3L-2d) and elongated (CD3L-CD43 and CD3L-CD44) TCR ligands. B. [³H]Thymidine incorporation in 2 × 10⁶ T cells incubated with 2 × 10⁵ CD3L APCs for 48 h (n = 4). Bars indicate SEM. phOx-2d is a control non-binding membrane-anchored scFv similar in structure to CD3L-2d. Significant differences between CD3L-2d APCs and other APCs are indicated. C. IL-2 concentrations in culture medium 48 h after 2 × 10⁵ T cells were incubated with graded numbers of CD3L APCs (n = 3). Bars indicate SEM. D. T cell activation of immobilized CD3L-CD43 protein as measured by the ratio of FL1/FL3 fluorescence. E. Monolayers of 3T3 APCs expressing control phOx-2d or the indicated membrane-anchored scFvs. Significant differences between CD3L-2d APCs and other APCs are indicated.
Results and Discussion
We created artificial APCs by tethering a single-chain Ab (scFv) against CD3 (CD3 ligand, CD3L) on the surface of 3T3 fibroblasts, which have a low background of adhesion and costimulatory molecules (Supplemental Fig. 1). CD3L tethered to 3T3 APCs (Fig. 1A) via a spacer encompassing two Ig domains linked as preformed dimers via an Ig hinge region (CD3L-2d) induced robust T cell proliferation (Fig. 1B), IL-2 secretion (Fig. 1C), and intracellular calcium mobilization (Fig. 1D). By contrast, elongation of the tether to position CD3L further from the surface of 3T3 APCs by insertion of the extracellular domains of the human CD44 or CD43 molecules (CD3L-CD44 and CD3L-CD43) resulted in poor activation of T cells (Fig. 1B–D), consistent with previous reports (14, 15). 3T3 APCs that expressed a negative-control membrane-tethered scFv (phOx-2d) with specificity against a chemical hapten (4-ethoxymethylene-2-phenyl-2-oxazoline-5-one) did not activate T cells, demonstrating the specificity of CD3Ls for T cell activation. Both short (CD3L-2d) and elongated (CD3L-CD43 and CD3L-CD44) ligands effectively bound T cells (Fig. 1E), demonstrating that lack of activation by elongated ligands was not due to defects in TCR binding. All of the TCR ligands were also able to form mature immune synapses between APCs and T cells (data not shown). APCs expressing elongated CD3Ls offer an excellent model system to test if physical forces acting on the TCR complex can trigger signaling in T cells because they bind to the TCR complex but do not induce signaling.

To test the hypothesis that TCRs can be triggered by mechanical forces, fluo-4-AM–labeled T cells were first allowed to bind to APCs expressing an elongated CD3L (CD3L-CD43), which does not activate bound T cells under static conditions. A mild perpendicular shear stress was then placed on individual T cells to generate mechanical forces on engaged TCRs, and calcium response, an early hallmark of T cell activation, was monitored (Fig. 2A). As expected, fluo-4-AM–labeled T cells bound to CD3L-CD43 APCs under static conditions exhibited only background levels of intracellular fluorescence (Fig. 2B, top row). By contrast, fluorescence intensity, representing intracellular calcium mobilization, greatly increased in T cells bound to CD3L-CD43 APCs after a mild shear force was placed on the T cells (Fig. 2B, rows 2–4). As a control, we expressed a membrane-tethered single-chain Ab against CD28 on 3T3 cells (anti-CD28 cells). These cells can bind to CD28 on the surface of T cells. Although T cells bound to anti-CD28 cells, placing the T cells under an equivalent shear force did not induce calcium mobilization in the T cells (Fig. 2B, row 5), substantiating the requirement for mechanical force to act through the TCR complex. Likewise, T cells prebound to immobilized anti–ICAM-2 or anti-CD62L Abs on glass slides did not exhibit strong fluorescence signals under an identical shear force (Fig. 2B, rows 6 and 7). Background increases in the fluorescence of negative control cells are likely due to spontaneous dye emission. The mean fluorescence of multiple individual T cells bound to CD3L-CD43 APCs under shear was significantly elevated as compared with bound but static T cells or T cells bound to non-TCR ligands under shear force conditions (Fig. 2C). Furthermore, inhibition of Src kinase activity significantly

![Figure 2](http://www.jimmunol.org/)
attenuated calcium mobilization in T cells bound to CD3L-CD43 APCs under shear force conditions (Fig. 2D).

We further investigated a role for mechanical force in TCR activation by employing a micropipette to physically pull fura-2 AM–loaded T cells away from APCs (Fig. 3A). T cells bound to APCs expressing the elongated TCR ligands CD3L-CD44 or CD3L-CD43 displayed clear calcium responses after the T cells were pulled away from the APCs (Fig. 3B). By contrast, tensile forces acting through CD28 or CD62L on the T cells did not increase intracellular calcium levels (Fig. 3B). Mean fluorescence values from multiple individual T cells significantly increased when mechanical forces were placed on T cells bound via the TCR complex but not bound to non-TCR receptors (i.e., CD28 and CD62L) (Fig. 3C). We ruled out a role for calcium signaling via VLA-4 or VLA-5 interactions with fibronectin deposited on the surface of the APCs (Supplemental Fig. 2). Furthermore, B3Z T cells bound to CD3L-CD43 protein immobilized on glass slides also produced calcium responses to mechanical pulling forces (Supplemental Fig. 3). Taken together, our data demonstrate that physical forces acting on T cells immobilized via the TCR complex, but not the control T cell surface receptors, can initiate signaling in T cells.

Although we provided external mechanical force, there are several possible physiological sources of mechanical force that may be important for triggering TCR signaling. The TCR and pMHC possess relatively small extracellular domains that project ~7.5 nm from the cell surface, implying that the T cell and APC membranes must approach each other to within ~15 nm at sites of TCR-pMHC engagement (16). The presence of larger molecules near engaged TCRs may act as molecular springs to provide tensile forces on engaged TCRs. Oscillatory movement of the cytoskeleton, forces induced during T cell detachment and migration, or lateral and vertical forces acting on microclusters of TCR-pMHC complexes could also generate forces on the TCR (7, 17). Thermally induced fluctuations in membrane shape that allow comparably short TCRs to sample pMHC in the presence of large ICAM-1 and LFA-1 molecules (18) or changes in the relative angle between the TCR and CD3 subunits might also generate and transmit forces across the cell membrane (19).

Our study provides direct experimental evidence that the TCR can respond to mechanical forces, offering new insight into TCR function. Combination of biophysical, molecular, and biological studies should help define the relative contributions of various sources of mechanical force and the physiological role of physical force in TCR signaling.

Acknowledgments

We thank John Kung, Konan Peck, Ru-Chi Shieh, and Danny Wang for critical discussions and Qingzong Tseng and Wei-Chen Lu for providing technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References

