




FIGURE 7. Bim/Bid knockout mice have delayed liver damage after EBOV infection. A, Decreased TUNEL staining is seen in Bim/Bid knockout mice

relative to wild-type mice on day 7 postinfection. Counterstain is H&E. Original magnification 3 200. B, H&E staining shows apoptotic hepatocytes in

wild-type mice (arrowheads), with decreased apoptotic hepatocytes in Bim/Bid knockout mice. Original magnification 3 200. C, Decreased ALT and AST

levels are present in Bim/Bid knockout mice on day 5 of infection, suggesting preservation of liver function in these mice. n 5 6–7 for wild-type, n 5 7–8

for Bim/Bid. pp , 0.01. D, Bim/Bid knockout mice do not show increased survival after EBOV infection (n 5 10).
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survival (39), they are not functional in EBOV infection. However,
we found significant EBOV-specific IFN-g responses in CD8+

T cells from day 7 vav-bcl–2 mice, albeit reduced compared with
wild-type mice (Supplemental Fig. 4B). In addition, bcl-2–over-
expressingmice are resistant to septic peritonitis-inducedmortality,
suggesting that the transgene does not render mice incapable of
mounting an immune response [(40), data not shown]. Furthermore,
vav-bcl–2 and Bim/Bid mice have been shown to produce high
levels of specific Ab after vaccination (41), and FADD-DNmice are
resistant to septic shock-induced death, suggesting that the immune
response in these mice is not impaired (34). The vav-bcl–2 findings
may be supported by alternative explanations. Bcl-2 overexpression
may enhance the survival of regulatory T cells (42) that could have
an adverse effect on the immune response to EBOV, or vav-bcl–2
overexpression may prevent macrophage and dendritic cell apo-
ptosis which provides more target cells for EBOV replication. In
addition, lymphocyte apoptosis may be beneficial to the generation
of an immune response, as has been hypothesized in LCMV in-
fection (29).
We have also demonstrated that apoptosis is likely to be re-

sponsible for at least a portion of the hepatocyte death that is
commonly seen in EBOV infection (Fig. 6). Because the liver is
a target organ for EBOV and the related Marburg virus, it is sur-
prising that no published studies have focused on treatments to
augment liver function in filovirus infection. We report in this
study that Bim/Bid knockout mice have decreased hepatocyte
apoptosis after EBOV infection compared with wild-type mice
(Fig. 7, Supplementary Fig. 5). We also observed delayed liver
dysfunction in Bim/Bid mice compared with wild-type mice
as assessed by measurement of circulating AST and ALT levels
(Fig. 7C). As therapeutics are pursued for filovirus infections,
these findings suggest that including a treatment designed to sta-
bilize liver function would be a rational adjunctive treatment for
filoviral infection.
Though oft-maligned (43), the mouse model of EBOV infection

has demonstrated mechanistic aspects of EBOV-mediated patho-

genesis that would be intractable in primatemodels or observational
clinical studies. In this study, we have taken advantage of a spec-
trum of transgenic and knockout mice to probe the mechanisms of
cell death that occur in both hepatocytes and lymphocytes during
EBOV infection and our results have strong correlates with em-
pirical studies in humans and nonhuman primates. Although the
mouse model for EBOV infection does not completely recapitulate
the hemorrhagic clinical presentation in humans and nonhuman
primates, particularly in a lack of fibrin deposition (7, 14), it has
served a valuable role in testing vaccines and therapeutics, as well
as providing a controlled in vivo environment for basic research
regarding the pathogenesis of EBOV infection (4, 8, 44–52).
Overall, these data show that lymphocyte apoptosis in EBOV

infection in vivo proceeds through both the intrinsic and extrinsic
pathways. Simply blocking lymphocyte apoptosis does not protect
mice from EBOV; however, combination therapies targeting
multiple aspects of EBOV disease may be helpful in combating
filovirus infection.
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Supplemental Figure 1.  Lymphocyte apoptosis in thymi and lymph nodes of EBOV-

infected mice. Wild-type mice were infected with EBOV and analyzed for lymphocyte 

apoptosis in thymi (A) and lymph node (B) via H&E or TUNEL staining.  Scale bar is 100 

microns. 

Supplemental Figure 2.  TRAIL and Fas signaling are not required for EBOV-induced 

lymphocyte apoptosis. Wild-type, Fas KO, TRAIL KO, or TRAIL/FasL KO mice were 

infected with EBOV.  On day 7, spleens were harvested and stained with TUNEL.  A.  No 

apparent difference was noted in the levels of apoptosis in the different groups.  B.  Quantitation 

of TUNEL staining was performed using Nikon software.  There was no difference in TUNEL 

staining in the knockouts compared to wild-type.  n=8 for WT, n=3 for TRAIL, n=4 for Fas and 

TRAIL/FasL.  C.  Spleens from a separate experiment were analyzed for apoptosis by flow 

cytometry after TUNEL staining.  Shown is the percentage of cells in the lymphocyte gate that 

were TUNEL positive.  n=3 for WT, n=9 for TRAIL, and n=6 for TRAIL/FasL.  No inhibition of 

lymphocyte apoptosis was shown in the knockout mice.   

Supplemental Figure 3.  Bim/Bid knockout mice have reduced lymphocyte apoptosis after 

EBOV infection. Wild-type or Bim/Bid knockout mice were infected with EBOV, and H&E 

sections were analyzed for lymphocyte apoptosis.  Note the “moth-eaten” appearance of wild-

type spleens at low-magnification (A) and pyknotic nuclei at high-magnification (B) compared to 

Bim/Bid spleens.  In wild-type splenic section in (A), there is also loss of a defined sharp white 

pulp to red pulp border consistent with extensive depletion of lymphocytes in the white pulp.  



The splenic section of the wild type mouse in (B) shows massive apoptosis with many cells 

demonstrating pyknosis and karyorrhexis.    

Supplemental Figure 4.  Viral replication and CD8+ T cell activation in vav-bcl-2 mice. A.  

Viremia was determined in EBOV-infected wild-type and vav-bcl-2 mice.  There was increased 

viremia in vav-bcl-2 mice.  n=11-12.  *p�0.05.  B. Splenocytes from day 7 wild-type or vav-bcl-

2 mice were incubated with two EBOV peptides known to be CD8+ T cell epitopes, or with a 

Marburg peptide as a control.  IFN-gamma production in CD3+ CD8+ T cells was determined 

using flow cytometry.  n=7-8.  *p�0.05 relative to Marburg control.  **p�0.05 comparing wild-

type and vav-bcl-2 responses to EBOV peptides.     

 
Supplemental Figure 5.  TUNEL staining in livers from infected bim/bid knockout mice.

Bim/bid knockout mice and wild-type mice were infected with EBOV.  On day 7, livers were 

processed and TUNEL-stained.  Decreased apoptosis is seen in bim/bid livers.  Scale bar is 100 

microns. 












