Comment on "Critical Roles of NK and CD8+ T Cells in Central Nervous System Listeriosis"

Martina Deckert and Dirk Schlüter

J Immunol 2009; 183:5437; doi: 10.4049/jimmunol.0990085

http://www.jimmunol.org/content/183/9/5437.1

Why *The JI*?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article cites 10 articles, 5 of which you can access for free at:

http://www.jimmunol.org/content/183/9/5437.1.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts

The *Journal of Immunology* is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Comment on “Critical Roles of NK and CD8+ T Cells in Central Nervous System Listeriosis”

With interest we noticed the article by Hayashi et al. in the May 15, 2009 issue of *The Journal of Immunology* (1). The authors reported the injection of *Listeria* into the ventricular system resulting in lethal “ventriculitis,” whereas injection into the brain parenchyma induced nonlethal meningoencephalitis. However, histopathology shows that Hayashi et al. induced brain abscess instead of meningoencephalitis by intraparenchymal injection (Fig. 2A of Ref. 1) and ventriculitis plus periventricular encephalitis by ventricular infection (Fig. 2F of Ref. 1), respectively.

The authors stress that their “encephalitis” model serves as a model for human cerebral listeriosis superior to the “ventriculitis” model claimed to be used by us. However, we (2–4) and others (5–7), whose pioneering work, unfortunately, escaped citation by Hayashi et al. (1), studied the course of disease upon injection of bacteria into the forebrain but not into the ventricular system. Under these conditions, ventriculitis starts in the fourth ventricle, which is far distant from the injection site (2). Thus, panels C–E in Fig. 1 of Ref. 1, which appear to be intended to explain our model of cerebral listeriosis but surprisingly are not explained in *Materials and Methods and Results* (1), are incorrect.

Hayashi et al. also show that infection with 3 × 10^3 *Listeria* induces lethal cerebral listeriosis after injection into the brain parenchyma (Fig. 4A of Ref. 1), further refuting their conclusion that the anatomic site of infection is the major factor determining the course of cerebral listeriosis.

Hayashi et al. (1) question the use of recombinant and attenuated *Listeria* in experimental listeriosis. However, genetically manipulated *Listeria* are extremely helpful in analyzing the immunology and pathogenesis of systemic and cerebral listeriosis (8–10).

Martina Deckert* and Dirk Schlüter†

*Department of Neuropathology
University Hospital of Cologne
Cologne, Germany
†Institute of Medical Microbiology
University of Magdeburg
Magdeburg, Germany

References

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0990085

Response to Comment on “Critical Roles of NK and CD8+ T Cells in Central Nervous System Listeriosis”

We appreciate the comments by Drs. Deckert and Schlüter on our paper entitled “Critical roles of NK and CD8+ T cells in central nervous system listeriosis” (1). Although they emphasize the difference between meningoencephalitis and brain abscess, brain abscess is one of specific states of meningoencephalitis that develops within the brain parenchyma (2). Ventriculitis is usually accompanied by periventricular encephalitis, which was also observed in our model of ventriculitis. We accept the criticism that our encephalitis model by intraparenchymal injection may not be an ideal model for human encephalitis induced by natural infection of *Listeria*. Because we appreciate the work by Drs. Deckert and Schlüter, we cited six of their reports in our paper. We understand that they injected bacteria into the right caudate nucleus as they described in their paper (3, 4), it is quite difficult to limit the bacterial suspension within the parenchyma (2). The focus of our question is exactly this point. How can bacteria migrate such distance? When 30 μl of bacterial suspension is injected into the right caudate nucleus as they described in their paper (3, 4), it is quite difficult to limit the bacterial suspension within the parenchyma. Fig. 1E of our article (1) clearly illustrates that the injected bacterial suspension would likely overflow the parenchyma and leak into the ventricular system. Because the exact injection point was not described in their article except that the bacteria were injected into the right caudate nucleus (3, 4), the injection point in Fig. 1E of Ref. 1 may not be the same as their injection point. Nevertheless, we reduced the volume of bacterial suspension to avoid such leakage. Their second point is in regard to the lethal dose of bacteria.
A lethal dose of bacteria varies depending on mouse strains and bacterial culture conditions. As shown in our paper, wild-type BALB/c mice were able to survive upon intraparenchymal infection of 3×10^2 CFU of *Listeria*, which was below the lethal dose of *Listeria* culture that we prepared. Our results showing that infection of 3×10^2 CFU of *Listeria* induces nonlethal CNS listeriosis and that 3×10^3 *Listeria* results in a lethal outcome do not refute the conclusion that the anatomic site of infection is the major factor determining the course of cerebral listeriosis. Their third point concerned the use of recombinant and attenuated *Listeria* in experimental listeriosis. We do not question the use of recombinant and attenuated *Listeria*. We understand that such strains are useful to examine the mechanisms of bacterial pathogenicity and virulence (5). Attenuated strains usually lack some of virulence factors that enable bacteria to escape host immune response. To examine the function of immune system, it was ideal to use wild-type bacteria. Indeed, we did not need to use attenuated bacteria.

References

