Suppression of Ongoing T Cell-Mediated Autoimmunity by Peptide-MHC Class II Dimer Vaccination

Li Li, Zuoan Yi, Bo Wang and Roland Tisch

J Immunol 2009; 183:4809-4816; Prepublished online 14 September 2009;
doi: 10.4049/jimmunol.0901616
http://www.jimmunol.org/content/183/7/4809

Supplementary Material
http://www.jimmunol.org/content/suppl/2009/09/14/jimmunol.0901616.DC1

References
This article cites 49 articles, 28 of which you can access for free at:
http://www.jimmunol.org/content/183/7/4809.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Suppression of Ongoing T Cell-Mediated Autoimmunity by Peptide-MHC Class II Dimer Vaccination

Li Li, Zuoan Yi, Bo Wang, and Roland Tisch

Tissue-specific autoimmune diseases such as type 1 diabetes (T1D) are characterized by T cell-driven pathology. Administration of autoantigenic peptides provides a strategy to selectively target the pathogenic T cell response. Indeed, treatment with β cell peptides effectively prevents T1D in NOD mice. However, the efficacy of peptide immunotherapy generally wanes as β cell autoimmunity progresses and islet inflammation increases. With the goal of enhancing the efficacy of peptide immunotherapy, soluble (s)IAβ7-Ig dimers covalently linked to β cell autoantigen-derived peptides were tested for the capacity to suppress late preclinical T1D. NOD female mice with established β cell autoimmunity were vaccinated i.v. with a short course of sIAβ7-Ig dimers tethered to peptides derived from glutamic acid decarboxylase (GAD)65 (sIAβ7-pGAD65). Treatment with sIAβ7-pGAD65 dimers and the equivalent of only ~7 μg of native peptide effectively blocked the progression of insulitis and the development of diabetes. Furthermore, suppression of T1D was dependent on β cell-specific IL-10-secreting CD4+ T cells, although the frequency of GAD65-specific Foxp3-expressing CD4+ T cells was also increased in sIAβ7-pGAD65 dimer vaccinated NOD mice. These results demonstrate that MHC class II-Ig dimer vaccination is a robust approach to suppress ongoing T cell-mediated autoimmunity, and may provide a superior strategy of adjuvant-free peptide-based immunotherapy to induce immunoregulatory T cells. The Journal of Immunology, 2009, 183: 4809–4816.

Various tissue-specific autoimmune diseases such as type 1 diabetes (T1D) are mediated by pathogenic T cells (1–3). Considerable effort has been devoted to developing therapeutic approaches to target autoreactive T cells, and prevent or suppress tissue-specific autoimmunity. Strategies based on administration of immunosuppressant drugs, and Abs specific for T cells have been successfully used in experimental models, and in some instances the clinic (4–7). However, these approaches fail to discriminate between T cells specific for self- and foreign Ags, and compromise the normal function of the immune system to varying degrees. Peptide-based immunotherapies offer an approach to selectively target autoreactive T cells, leaving the remainder of the immune system intact (8). Approaches of peptide immunotherapy that induce IL-4- or IL-10-secreting adaptive immunoregulatory CD4+ T cells (aTreg) have proven to be effective for autoimmune diseases in which multiple autoantigens are targeted by T cells (9–11). Once established aTreg cells traffic to the relevant tissues and suppress, via cytokine secretion, the differentiation or function of pathogenic T effector cells in an Ag-independent manner (12).

Studies in the NOD mouse, a spontaneous model of T1D, demonstrate that administration of β cell peptides induces aTreg cells, and suppresses differentiation of type 1 T effector cells that mediate destruction of the insulin-producing β cells (9, 10, 13). Peptide immunotherapy is effective at early stages of disease progression but efficacy is generally limited at late preclinical stages of T1D when the frequency of pathogenic type 1 T effectors is high, and the proinflammatory milieu is well established in the β cell containing islets (14, 15). In addition to the stage of disease progression at which treatment is initiated, other factors influence the efficacy of peptide immunotherapy including dose and route of administration, the use of adjuvant, the binding affinity of peptides to MHC molecules, and in vivo peptide stability. For instance, peptides are rapidly cleared from the circulation and inefficiently presented by APC in vivo, which limits therapeutic efficacy (16–18).

One approach to overcome these limitations has been the engineering of peptide-soluble MHC class II-Ig (peptide-sMHCII-Ig) fusion proteins (19–23). These recombinants consist of the extracellular domains of the MHCII α- and β-chains supported by an Ig scaffold. A peptide is tethered to the sMHCII β-chain ensuring that each bivalent fusion molecule presents a peptide, which binds T cells directly independent of APC. Studies by Casares et al. (24) using a monoclonal TCR transgenic model targeting the neo-β cell autoantigen hemagglutinin (HA), provided initial evidence that peptide-sMHCII-Ig vaccination can be effective in treating autoimmunity. Administration of sIE4-Ig dimers linked to a HA peptide was found to delete HA-specific T effectors and reverse diabetes in treated mice expressing HA in β cells. sIE4-Ig dimer vaccination also induced HA-specific aTreg cells (24). Nevertheless, whether peptide-sMHCII-Ig vaccination can block autoimmunity mediated by pathogenic effector T cells with multiple specificities has yet to be established. Accordingly, we tested whether administration of sIAβ7-Ig dimers covalently linked to β cell-derived peptides could suppress a late preclinical stage of T1D in NOD mice.
Materials and Methods

Mice

NOD/LtJ, NOD.IL-10^{−/−}, and NOD.CB17.Pkd^{−/−}/J (NOD.scid) mice were maintained and bred under specific-pathogen free conditions. Mice were diagnosed as diabetic with blood glucose measurements >250 mg/dl on three successive days as determined by an Autokit Glucose assay (WAKO). In our colony NOD female mice 12 wk of age typically exhibit elevated blood glucose levels (e.g., ~180–200 mg/dl). All procedures were reviewed and approved by the University of North Carolina Institutional Care and Use Committee.

sIA⁷-Ig dimer expression, purification, and vaccination

sIA⁷-Ig dimers were engineered as previously described (25, 26). Briefly, IA⁷-^α and -^β-chain extracellular domains were attached to fusi and jun leucine zippers, respectively. The IA⁷-^α-chain was further modified with a murine IgG2a Fc domain to establish a divalent structure. Leucine residues at positions 234 in the IA⁷-^β-chain were mutated with alanines to prevent binding to Fc-RII and Fc-RII and activation of APC (27, 28). Epitope peptides were covalently linked to the N terminus of the IA⁷-^β-chain by a flexible thrombin-GGGGS linker. cDNAs encoding the sIA⁷-Ig chains were subcloned into the pMT-Bip vector (Invitrogen) and transgene expression driven by a metallothionein-inducible promoter. Expression vectors were cotransfected into Drosophila S2 cells with pEG202, and transfectants selected in hygromycin-containing Schneider’s medium. sIA⁷-Ig dimer protein expression was induced by 500 μM CuSO₄ for 7–10 days and purified by affinity chromatography on a protein A column (GE Bioscience).

Twelve-wk-old NOD female mice were i.v. immunized with 50 μg of sIA⁷-Ig dimers prepared in 200 μl of PBS on three consecutive days. Three weeks later, a second course of three injections of sIA⁷-Ig dimer was administered. Islet engraftment experiments were performed in 12-wk-old NOD female mice receiving three i.p. injections of 200 μg of peptide emulsified in 0.1 ml of IFA over a 3-wk period. Mixtures of peptides were also prepared in 0.1 ml of IFA.

FACS analysis

sIA⁷-Ig dimers were multimerized using Alexa Fluor 647-coupled protein A (Molecular Probes and Invitrogen) for FACS. Cells were incubated with sIA⁷-Ig multimers at room temperature for 1 h, followed by anti-CD3 (FITC), and CD4 (PacBlue) Abs (eBioscience) staining on ice for 30 min. Cells were then fixed, permeabilized, and intracellularly stained with anti-TCF-17 (PeCy7), anti-CD4 (PacBlue), and anti-TGF-β (PerCp) Abs on ice for 30 min.

In some experiments single cell suspensions were cultured with plate-bound anti-CD3 (2 μg/ml) and soluble anti-CD28 (2 μg/ml) Abs in the presence of recombinant murine IL-2 (10 ng/ml) for 2 days, and then stimulated with FMA (5 ng/ml) and ionomycin (500 ng/ml) in the presence of brefeldin A (10 μg/ml) for 5 h. Cells were stained with sIA⁷-Ig multimers at room temperature for 1 h, followed by anti-CD3 (PeCy7), anti-CD4 (PacBlue), and anti-TGF-β (PerCp) Abs on ice for 30 min, and then fixed, permeabilized, and intracellularly stained with anti-IL-10 (FITC) and anti-FOXP3 (PE) (eBioscience). Data were acquired on a Cyan flow cytometer (DakoCytomation) and analyzed using Summit software (DakoCytomation).

Islet isolation

Pancreas samples were perfused with 0.2 mg/ml Liberase (Roche) and digested for 30 min at 37°C. Islets were purified via ficoll gradient, hand-picked, and counted. For FACS analyses of islet infiltrating T cells, isolated islets were dissociated into a single cell suspension using enzyme-free cell dissociation solution (Sigma-Aldrich). Lymphocytes infiltrating the islets were collected and cellular debris removed by 70-μm nylon filters.

ELISPOT and ELISA

ELISPOT was conducted as described (29). Briefly, splenocytes (5 × 10⁶ well) or cells from the pancreatic lymph nodes (PLN; 2 × 10⁶/well) were resuspended in medium (BioWhittaker M199) and cultured in ELISPOT plates (Millipore) coated with anti-IFN-γ, anti-IL-4, or anti-IL-10 Abs (BD Pharmingen) for 48 h at 37°C. Peptides were added at a final concentration of 20 μg/ml. Plates were washed, incubated with the appropriate biotinylated anti-mouse cytokine Abs and streptavidin-HRP (BD Pharmingen), and spot forming units developed with 100 mM sodium acetate buffer containing 0.3 mg/ml 3-amino-9-ethylcarbazole (Sigma-Aldrich) and 0.015% hydrogen peroxide. An ImmunoSpot plate reader (Cellular Technology) was used to count spot forming unit per well. For ELISA, cells were cultured in 96-well microtiter plates, stimulated with peptide as described, and culture supernatant was harvested after 48 h. TGF-β was measured via ELISA per the manufacturer’s instructions (R&D Systems).

T cell adoptive transfers and histopathology

Splenocytes prepared from diabetic NOD donors (5 × 10⁶) were injected i.p. into 5- to 8-wk-old NOD.scid mice either: 1) alone, 2) with splenocytes (5 × 10⁶), or 3) CD4⁺ T cells (5 × 10⁶) purified by negative selection from sIA⁷-Ig dimer treated NOD female mice. In some experiments NOD.scid recipients were injected twice weekly with 300 μg of anti-TGF-β Ab (ID11.16.8) over a period of 4 wk. In our hands this protocol effectively neutralizes TGF-β in vivo. Splenocytes (5 × 10⁶) from diabetes-free sIA⁷-Ig dimer treated NOD female mice were also injected into NOD.scid mice. Pancreases were harvested, and fixed with 10% formalin. Serial cross-sections separated by 150 μm were cut and stained with H&E.

Statistical analyses

Statistical analyses were performed using GraphPad Prism software. Incidence of diabetes was compared by Kaplan-Meier log-rank test. One-way ANOVA test, χ-square test, and Student’s t test were used. Findings were considered significant with values for p ≤ 0.05.

Results

sIA⁷-GADp217 or sIA⁷-GADp290 dimers suppress ongoing β cell autoimmunity and prevent diabetes in NOD female mice

Previous work by our group (9) and a more recent analysis (Fig. 1A) demonstrated that coadministration of glutamic acid decarboxylase (GAD)65-specific peptides spanning amino acid residues 217 to 236 (GADp217) and residues 290 to 309 (GADp290) prepared in IFA suppressed β cell autoimmunity in NOD female mice at a late preclinical stage of T1D and prevented diabetes. Lack of diabetes in vaccinated NOD mice correlated with an increased frequency of GADp217- and GADp290-specific T cells secreting IL-4 but not IL-10 (Fig. 1B). Nevertheless, protection was induced only after multiple injections with high doses (e.g., 200 μg each injection) of the respective peptides in IFA. Furthermore, administration of either GADp217 or GADp290 alone failed to prevent diabetes (Fig. 1B) (9). With this in mind, we investigated whether sIA⁷-Ig dimer vaccination is a more efficient strategy of peptide-based immunotherapy.

sIA⁷-Ig dimers were tested which contained covalently linked GADp217 and GAD290, and the non-self hen egg lysozyme (HEL) epitope 12–26. T cell binding and stimulation by the respective sIA⁷-Ig dimers were verified (data not shown). Twelve-wk-old NOD female mice, representing a late preclinical stage of T1D, received three i.v. injections of 50 μg of sIA⁷-Ig in PBS over 3 days, followed by another three injections 3 wk later, and diabetes monitored up to 35 wk of age. Each 50-μg injection of sIA⁷-Ig was equivalent to 1.1 μg of native peptide. No significant difference in the time of onset or frequency of diabetes was detected in NOD mice left untreated or receiving sIA⁷-HEL (Fig. 2A). In contrast, the majority of NOD mice treated with sIA⁷-HEL, GADp217 (8/10; p = 0.0017 vs untreated mice χ-square) or sIA⁷-HEL, GADp290 (9/10; p = 0.0003 vs untreated mice χ-square) dimers remained diabetes-free (Fig. 2A). These results demonstrate that administration of sIA⁷-GADp217 or sIA⁷-GADp290, but not sIA⁷-HEL, efficiently prevents diabetes at a late preclinical stage of T1D.

Nondiabetic 35-wk-old NOD female mice treated with sIA⁷-GADp217 or sIA⁷-GADp290 were examined for islet infiltration. Histological analysis of pancreas samples showed a significantly reduced frequency and severity of insulinitis in nondiabetic 35-wk-old NOD female mice treated with sIA⁷-GADp217 or sIA⁷-GADp290 compared with a group of untreated, 35-wk-old NOD female mice (Fig. 2B). Interestingly, the frequency and severity of insulinitis in the 35-wk-old sIA⁷-GAD65-treated NOD mice was analogous to that of untreated 12-wk-old NOD female mice.
Therefore sIA^7^-Ig dimer treatment prevents diabetes by suppressing the progression of islet infiltration in a β cell peptide-specific manner.

sIA^7^-GADp217 and sIA^7^-GADp290 vaccination blocks T1D progression by αTreg cell induction

Treatment with self-peptide can mediate T cell tolerance by clonal anergy or deletion. Alternatively, self-peptide-specific αTreg cells can be induced that traffic to the site of inflammation, and suppress the differentiation or activity of pathogenic T effectors. To determine whether active immunoregulation was established by sIA^7^-Ig dimer treatment, adoptive transfer experiments were conducted. Twelve-week-old NOD female mice were treated with sIA^7^-GADp217 as described, and splenocytes harvested 3 wk after the last injection. Splenocytes from sIA^7^-GADp217 treated and diabetic animals (p ≤ 0.002) (Fig. 3). Notably, transfer of splenocytes prepared from sIA^7^-GADp217 treated mice alone failed to induce diabetes in NOD.scid recipients (0/6), indicating a lack of pathogenic T effectors (Fig. 3). The lack of diabeticogenic activity and
the suppressive effect of splenocytes suggested that the protection induced by sIA\(^{\text{GADp217}}\) vaccination was mediated by active immunoregulation.

Next, the nature of the T cell response induced by the sIA\(^{\text{GADp217}}\) dimer was studied. NOD female mice 12 wk of age were treated as above, and 3 wk after the last injection the frequency of IL-4-, IL-10-, and IFN-\(\gamma\)-secreting T cells in response to a panel of \(\beta\) cell peptides was measured via ELISPOT in the PLN and spleen. Cultures established from the sIA\(^{\text{GADp217}}\) and sIA\(^{\text{GADp290}}\) peptides was measured via ELISPOT in the PLN and spleen. Cultures established from the sIA\(^{\text{GADp217}}\) and sIA\(^{\text{GADp290}}\) treated mice exhibited a significant increase in the frequency of p217- and p290-specific IL-10- but not IL-4-secreting T cells, respectively, compared with sIA\(^{\text{HEL}}\)-injected animals (Fig. 4A). In addition, IL-10-secreting T cells specific for proinsulin (B24-C36) and insulin B chain (p9-23) were increased in the PLN of sIA\(^{\text{GADp217}}\) and sIA\(^{\text{GADp290}}\) treated groups vs sIA\(^{\text{HEL}}\)-treated mice (Fig. 4A), indicating epitope spread among IL-10-secreting aTreg cells. TGF-\(\beta\) 1 was not detected in supernatants of peptide-pulsed cultures established from the spleen and PLN of any of the treatment and control groups as measured by ELISA (data not shown).

In addition, a significant increase in the frequency of CD4\(^+\) T cells that bind sIA\(^{\text{GADp217}}\) multimere and expressed intracellular IL-10 was detected in the spleen, PLN, and islets of sIA\(^{\text{GADp217}}\) treated but not sIA\(^{\text{HEL}}\)-treated mice (Fig. 4, B and C). These results demonstrate that protection mediated by sIA\(^{\text{GADp217}}\) and sIA\(^{\text{GADp290}}\) treatment corresponds with induction of IL-10- but not IL-4- or TGF-\(\beta\)-secreting aTreg cells found in the spleen, PLN, and islets. sIA\(^{\text{GADp217}}\) vaccination increases the frequency of GADp217-specific FoxP3-expressing Treg cells

Because FoxP3-expressing Treg cells play a key role in regulating self-tolerance (30–32), whether sIA\(^{\text{GADp217}}\) dimer treatment increased FoxP3-expressing Treg cells was investigated. The frequency of “bulk” FoxP3-expressing CD4\(^+\)CD25\(^+\) T cells in the spleen, PLN, mesenteric lymph nodes (MLN) and islets and in vitro suppressor function of these Treg cells were similar in sIA\(^{\text{GADp217}}\) and sIA\(^{\text{HEL}}\) treated NOD mice (see supplemental Fig. 1).\(^4\) No sIA\(^{\text{GADp217}}\) multimer binding CD4\(^+\) T cells that expressed FoxP3 were detected in the spleen, PLN, MLN, and islets of sIA\(^{\text{GADp217}}\)-HEL treated NOD mice (Fig. 5). Conversely, an increased frequency of sIA\(^{\text{GADp217}}\) multimer-binding FoxP3-expressing CD4\(^+\) T cells was detected in the islets, and to a lesser extent the PLN and spleen but not the MLN of NOD mice treated with sIA\(^{\text{GADp217}}\) (Fig. 5). Furthermore, the majority (~90%) of these FoxP3-expressing CD4\(^+\) T cells expressed surface TGF-\(\beta\) (Fig. 5A), whereas none expressed intracellular IL-10 (data not shown). These results demonstrate that sIA\(^{\text{HEL}}\) dimer vaccination induces or expands FoxP3-expressing Treg cells in a peptide-specific manner.

IL-10 is necessary for protection induced by sIA\(^{\text{HEL}}\) dimer vaccination

Because sIA\(^{\text{GADp217}}\) treatment induced IL-10-expressing T cells, the relative contribution of these aTreg cells in mediating protection was examined. Twelve-week-old female NOD mice lacking IL-10 expression (NOD.IL-\(10^{-/-}\)) or wild-type NOD mice were vaccinated with sIA\(^{\text{GADp217}}\) as described. Three weeks after the last injection CD4\(^+\) T cells were purified via negative selection. CD4\(^+\) T cells were then mixed with splenocytes prepared from diabetic NOD donors, transferred into groups of NOD. scid recipients, and the onset of diabetes monitored. All of the NOD.scid mice receiving the diabetogenic splenocytes only developed diabetes (Fig. 6A). In marked contrast, CD4\(^+\) T cells from NOD mice treated with sIA\(^{\text{GADp217}}\) effectively blocked the transfer of diabetes; 5 of 6 NOD.scid recipients remained diabetic-free (Fig. 6A). In contrast, the mixture containing CD4\(^+\) T cells from sIA\(^{\text{GADp217}}\)-treated NOD.IL-10\(^{-/-}\) mice failed to prevent the transfer of diabetes (Fig. 6A). These results demonstrate that IL-10-secreting aTreg cells induced by sIA\(^{\text{HEL}}\) dimer vaccination play a key role in suppressing the function of established pathogenic T effectors.

Next, whether IL-10 was required for the induction or expansion of FoxP3-expressing Treg cells by sIA\(^{\text{HEL}}\) dimer vaccination was determined. Wild-type and NOD.IL-10\(^{-/-}\) female mice received sIA\(^{\text{GADp217}}\) injections as described, and 3 wk after the final injection, tissues were harvested and T cells stained with sIA\(^{\text{GADp217}}\) multimer ex vivo. As demonstrated in Fig. 6B, no significant difference in the frequency of sIA\(^{\text{GADp217}}\) binding CD4\(^+\) T cells expressing FoxP3 was detected in the spleen, PLN, MLN, and islets of NOD and NOD.IL-10\(^{-/-}\) female mice vaccinated with sIA\(^{\text{HEL}}\) and sIA\(^{\text{GADp217}}\). These results indicated that induction/expansion of peptide-specific FoxP3-expressing Treg cells was independent of endogenous IL-10, and that these immunoregulatory effectors play only a limited role in sIA\(^{\text{HEL}}\) and sIA\(^{\text{GADp217}}\)-induced protection. To confirm the latter, a coadaptive transfer experiment was conducted. CD4\(^+\) T cells were isolated from the PLN of NOD female mice treated at 12 wk of age with sIA\(^{\text{GADp217}}\) or sIA\(^{\text{HEL}}\) dimer, and then injected with diabetogenic splenocytes into NOD.scid recipients. One group of recipients was treated with a neutralizing anti-TGF-\(\beta\) Ab. As expected, CD4\(^+\) T cells from sIA\(^{\text{GADp217}}\)-treated NOD.IL-10\(^{-/-}\) female mice blocked the transfer of diabetes (Fig. 6C). Notably, administration of anti-TGF-\(\beta\) Ab had no effect on the protection mediated by Treg cells induced by sIA\(^{\text{HEL}}\) and sIA\(^{\text{GADp217}}\) dimer vaccination (Fig. 6C). Altogether these results demonstrate that protection induced by sMHCI-Ig dimer treatment is primarily mediated by IL-10-secreting aTreg cells, and that Treg cells expressing TGF-\(\beta\) and FoxP3 have only a limited role.

\(^4\) The online version of this article contains supplemental material.
Discussion

Administration of peptide-sMHCII recombinants has been shown to tolerate pathogenic T cells in mono-specific models of autoimmunity (24), including collagen induced arthritis (22), experimental autoimmune uveitis (33, 34), and experimental autoimmune encephalomyelitis (35). In these studies, prevention or suppression of induced autoimmunity has been associated with establishing hyporeactivity in the pathogenic peptide-specific T effector cells, or eliciting peptide-specific Treg cell reactivity. The current work provides evidence that sMHCII-Ig dimer vaccination effectively suppresses a diverse repertoire of established autoreactive T effector cells via induction of IL-10-secreting aTreg cells. The former is demonstrated by sIAg7-Ig dimer vaccination blocking cell autoimmunity at a late preclinical stage of T1D in NOD mice (Figs. 1 and 2). Based on dose and relative efficacy of a given peptide to mediate protection, sIAg7-Ig dimer treatment was found to be more potent than administering the corresponding native GAD65 peptides (Fig. 1A) (9). Coinjection of a total of 600 µg of each native GADp217 and GADp290 prepared in IFA prevented diabetes in 12-wk-old NOD female mice, and when injected individually neither peptide was protective (Fig. 1A) (9). Furthermore, coinjection of up to 600 µg of each soluble GADp217 and GADp290 (e.g., in the absence of adjuvant) also had no protective effect in 12-wk-old NOD female mice (R. Tisch, unpublished results).

The robust nature of sMHCII-Ig dimer vaccination is likely due to a variety of parameters. In vivo induction of aTreg cells is expected to be more efficient following treatment with sMHCII-Ig dimers relative to native peptide. For instance, a number of factors influence the efficacy of injected native peptide to stimulate aTreg cell induction/expansion including the binding affinity of the peptide for the MHCII molecule, the stability of the peptide-MHCII complex, and the type and number of APC presenting the peptide.
However, these factors are negated by the use of sMHC-II-Ig dimers because the peptide is covalently linked and the dimer complex directly binds T cells. Direct binding of sMHC-II-Ig complexes would also be expected to enhance clonal anergy/deletion of CD₄⁺ T cells at a sufficient dose (20, 22). Under the conditions used in this study, however, sIAg7-Ig-induced clonal anergy/deletion appears to have a minimal (if any) role in the tolergenic effect. For instance, significant expansion of GAD₆₅-specific CD₄⁺ T cells (5-fold) was detected in the islets of sIAg7-GADp₂₁⁷ treated NOD mice (Fig. 4B).

Another likely parameter contributing to the potency of sMHC-II-Ig dimer vaccination is the nature of Treg cells that are induced or expanded. For instance, protection induced in NOD mice by coinjection of native GAD₆₅ and GAD₉₅ in IFA correlated with an increased frequency of IL-4- but not IL-10-secreting CD₄⁺ T cells (Fig. 1B) (9), which in turn was reflected by the inability of the native GAD₆₅ peptides to prevent diabetes in NOD.IL-10null mice (9). In contrast, protection induced by sIAg7-GADp₂₁⁷ or sIAg7-GADp₂₉₀ vaccination was dependent on IL-10-secreting CD₄⁺ T cells. These results are consistent with findings made by Casares et al. (24) demonstrating that sIE₄-HA dimer vaccination elicits IL-10-secreting tTreg cells in vivo. IL-10-secreting effector cells are a particularly potent subset of tTreg cells by regulating the responses of naive and memory T cells, and suppressing Th1 cell-mediated pathologies through bystander suppression mediated by local release of IL-10 (36–38). IL-10 also inhibits the activation and function of APC such as dendritic cells (39–41). IL-10-treated dendritic cells gain a “tolergenic” phenotype and preferentially promote the development of tTreg cells (40–42). These direct

FIGURE 5. An increased frequency of GADp₂₁⁷-specific FoxP₃-expressing Treg cells is detected in sIAg₇-GADp₂₁⁷ vaccinated NOD mice. A, Representative FACS data of sIAg₇-GADp₂₁⁷ multimer-binding CD₄⁺ T cells ex vivo expressing FoxP₃ and surface TGF-β1 from the islets of sIAg₇-GADp₂₁⁷ and sIAg₇-HEL-treated (Tx) NOD female mice. B, Frequency ± SD of sIAg₇-GADp₂₁⁷ multimer-staining CD₄⁺ T cells ex vivo expressing FoxP₃ in the spleen, PLN, MLN, and islets of n = 5 individual NOD female mice treated with sIAg₇-GADp₂₁⁷ and sIAg₇-HEL. *, p ≤ 0.004 by Student’s t test, for sIAg₇-GADp₂₁⁷ vs sIAg₇-HEL dimer treated animals for a given tissue. p < 10⁻³ by one-way ANOVA test for sIAg₇-GADp₂₁⁷ vs sIAg₇-HEL treated NOD mice.

FIGURE 6. Protection mediated by sIAg₇-GADp₂₁⁷ treatment is IL-10-dependent. A, Groups of NOD.scid mice (n = 4) received diabetogenic splenocytes alone or a mixture of purified splenic CD₄⁺ T cells isolated from NOD (n = 6) or NOD.IL-10null (n = 5) female mice treated with sIAg₇-GADp₂₁⁷, and diabetes was monitored. *, p ≤ 0.001, by Kaplan-Meier log-rank test for CD₄⁺ T cells from sIAg₇-GADp₂₁⁷ treated (Tx) NOD vs NOD.IL-10null mice or diabetogenic splenocytes alone. B, Frequency ± SD of sIAg₇-GADp₂₁⁷ multimer-staining CD₄⁺ T cells ex vivo expressing FoxP₃ in the spleen, PLN, MLN, and islets of n = 5 individual NOD (IL-10⁺) or NOD.IL-10null (IL-10null) female mice treated with sIAg₇-GADp₂₁⁷ or sIAg₇-HEL. C, CD₄⁺ T cells (5 × 10⁶) isolated from the PLN of NOD female mice vaccinated at 12 wk of age with sIAg₇-GADp₂₁⁷ or sIAg₇-HEL were mixed with splenocytes from diabetic NOD donors (5 × 10⁶) and transferred into groups of n = 5 NOD.scid mice. One group of NOD.scid recipients of CD₄⁺ T cells isolated from sIAg₇-GADp₂₁⁷ vaccinated animals also received a TGF-β-neutralizing Ab. †, p = 0.0002, by Kaplan-Meier log-rank test, for recipients of CD₄⁺ T cells from sIAg₇-HEL vaccinated mice vs recipients of CD₄⁺ T cells from sIAg₇-GADp₂₁⁷ vaccinated mice with or without anti-TGF-β Ab.
and indirect effects of IL-10 would be expected to amplify the immunoregulatory response induced by sIAg7-Ig dimer vaccination and may explain the abrupt block in the progression of insulitis in protected NOD mice (Fig. 2B). Indeed, sIAg7-p217 and sIAg7-GADp290 treatment induced not only GAD65-specific IL-10-secreting aTreg cells, but also aTreg-specific for other β cell peptides (Fig. 4A). The relative potency of IL-10-secreting aTreg cells may also explain why sIAg7-p217 or sIAg7-GADp290 alone suppressed ongoing β cell autoimmunity (Fig. 2A), whereas coinjection of native GADp217 and GADp290 in IFA was needed to similarly prevent diabetes onset (Fig. 1A). Injection of both native GAD65-derived peptides in IFA likely is required to induce a sufficient frequency of IL-4-secreting CD4+ T cells, which is limiting with either peptide alone (Fig. 1B). Interestingly, an increase in GADp217-specific FoxP3- and TGF-β1-expressing Treg cells was also detected in the PLN and islets of sIAg7-GADp217 vaccinated NOD mice (Fig. 5). Although protection mediated by sIAg7-Ig dimer was dependent on induction of IL-10-secreting aTreg cells, β cell-specific FoxP3-expressing Treg cells would also be expected to contribute to immunoregulation within the PLN and islets. However, the increase in GADp217-specific FoxP3-expressing Treg cells (Fig. 6B) was insufficient to suppress diabetogenic T effector cells in the absence of IL-10-secreting aTreg cells (Fig. 6A), and neutralizing TGF-β had no effect on the regulatory function of CD4+ T cells from sIAg7-p217 vaccinated NOD mice (Fig. 6C).

Based on our findings and the findings of other studies (23, 24), properties intrinsic to sMHCII-Ig dimers favor differentiation of naive T precursors toward IL-10-secreting aTreg cells. sMHCII-Ig dimers may also preferentially expand established IL-10-expressing aTreg cells. For instance, Liu and colleagues (43) have detected GAD65-specific IL-10-expressing CD4+ T cells in the spleens of unmanipulated 8-wk-old NOD mice. However, the identity of the peptide bound by sMHCII-Ig dimer also appears to be a key factor determining the efficacy of a given recombinant. For instance, the Bluestone group (23) reported that vaccinating young NOD mice with a sIAg7-Ig dimer complexed with a mimetic peptide recognized by TCR transgenic BDC2.5 CD4+ T cells (sIAg7-p31) failed to induce aTreg cells that prevent diabetes in an adoptive transfer model. Similarly, we found that 12-wk-old NOD female mice injected with sIAg7-Ig dimer containing a different BDC2.5 mimetic peptide continued to develop diabetes (L. Li and R. Tisch, unpublished results). Nevertheless, preliminary findings demonstrate that vaccination with sIAg7-Ig dimers complexed with other β cell-derived autoantigens such as proinsulin, induce IL-10-secreting aTreg cells and block β cell autoimmunity in 12-wk-old NOD female mice (R. Tisch, unpublished results). Investigation of the biochemical and transcriptional signaling events transduced in CD4+ T cells will provide important insight into the events that regulate aTreg differentiation by sIAg7-Ig dimers. It is noteworthy that induction of aTreg cells is also achieved by administration of soluble peptide-linked single chain recombinants consisting of the α1 and β1 domains of MHCII (34, 35, 44). These recombinant TCR ligands directly bind to TCR independent of CD4, and have been found to also induce T cell hyporeactivity. Similar to our findings, a recent report showed that vaccination with recombinant TCR ligands linked to peptides derived from proteolipid protein reversed in mice experimental autoimmune encephalomyelitis induced by a whole spinal cord homogenate via induction of proteolipid protein-specific IL-10- and (IL-13-) secreting aTreg cells (44). This finding further argues that soluble peptide-MHCII vaccine may in general prove to be a highly effective approach of peptide immunotherapy to preferentially promote aTreg cell reactivity and suppress ongoing autoimmunity.

In summary, our findings indicate that peptide-sMHCII-Ig dimer treatment is a robust approach to suppress late preclinical β cell autoimmunity via induction of immunoregulatory T effector cells. This work also provides rationale for using sMHCII-Ig dimer vaccination as a mode of adjvant-free peptide immunotherapy in the clinic. For instance, HLA-DR4 or HLA-DQ8 recombinants covalently linked to known β cell-derived peptides restricted to the corresponding HLA molecules can be used to induce IL-10-secreting aTreg cells. The apparent intrinsic property of sMHCII-Ig dimers to induce IL-10-secreting aTreg cells is particularly relevant in view of work by Peakman and colleagues (45). This group demonstrated an increased frequency of HLA-DR4-restricted β cell peptide-specific CD4+ T cells secreting IL-10 in HLA-matched healthy control vs diabetic individuals. A role for IL-10-secreting Treg cells has also been implicated in other tissue specific autoimmune diseases such as multiple sclerosis (46). The relatively low dose of total native peptide required to induce protection also has important safety implications in view of murine and clinical studies reporting anaphylaxis following administration of high doses of soluble peptide (47–49). Currently, efforts are ongoing in the laboratory to assess the properties of such HLA-sMHCII-Ig dimers.

Disclosures

The authors have no financial conflict of interest.

References

3. Anderson, M. S., and J. A. Bluestone. 2003. More stringent immunoregulatory response induced by sIAg7-Ig dimer vaccination is a robust approach to suppress late preclinical β cell autoimmunity via induction of immunoregulatory T effector cells. This work also provides rationale for using sMHCII-Ig dimer vaccination as a mode of adjvant-free peptide immunotherapy in the clinic. For instance, HLA-DR4 or HLA-DQ8 recombinants covalently linked to known β cell-derived peptides restricted to the corresponding HLA molecules can be used to induce IL-10-secreting aTreg cells. The apparent intrinsic property of sMHCII-Ig dimers to induce IL-10-secreting aTreg cells is particularly relevant in view of work by Peakman and colleagues (45). This group demonstrated an increased frequency of HLA-DR4-restricted β cell peptide-specific CD4+ T cells secreting IL-10 in HLA-matched healthy control vs diabetic individuals. A role for IL-10-secreting Treg cells has also been implicated in other tissue specific autoimmune diseases such as multiple sclerosis (46). The relatively low dose of total native peptide required to induce protection also has important safety implications in view of murine and clinical studies reporting anaphylaxis following administration of high doses of soluble peptide (47–49). Currently, efforts are ongoing in the laboratory to assess the properties of such HLA-sMHCII-Ig dimers.

