Characterization of FIBCD1 as an Acetyl Group-Binding Receptor That Binds Chitin

Anders Schlosser, Theresa Thomsen, Jesper B. Moeller, Ole Nielsen, Ida Tornøe, Jan Mollenhauer, Søren K. Moestrup and Uffe Holmskov

J Immunol 2009; 183:3800-3809; Prepublished online 26 August 2009; doi: 10.4049/jimmunol.0901526

http://www.jimmunol.org/content/183/6/3800

<table>
<thead>
<tr>
<th>References</th>
<th>This article cites 40 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/183/6/3800.full#ref-list-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription</td>
<td>Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription</td>
</tr>
<tr>
<td>Permissions</td>
<td>Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html</td>
</tr>
<tr>
<td>Email Alerts</td>
<td>Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts</td>
</tr>
</tbody>
</table>
Characterization of FIBCD1 as an Acetyl Group-Binding Receptor That Binds Chitin

Anders Schlosser,1* Theresa Thomsen,* Jesper B. Moeller,* Ole Nielsen,‡ Ida Tornøe,* Jan Mollenhauer,* Søren K. Moestrup,‡ and Uffe Holmskov*†

Chitin is a highly acetylated compound and the second most abundant biopolymer in the world next to cellulose. Vertebrates are exposed to chitin both through food ingestion and when infected with parasites, and fungi and chitin modulate the immune response in different directions. We have identified a novel homotetrameric 55-kDa type II transmembrane protein encoded by the FIBCD1 gene and highly expressed in the gastrointestinal tract. The ectodomain of FIBCD1 is characterized by a coiled-coil region, a polycationic region and C-terminal fibrinogen-related domain that by disulfide linkage assembles the protein into tetramers. Functional analysis showed a high-affinity and calcium-dependent binding of acetylated components to the fibrinogen domain, and a function in endocytosis was demonstrated. Screening for ligands revealed that the FIBCD1 is a high-affinity receptor for chitin and chitin fragments. FIBCD1 may play an important role in controlling the exposure of intestine to chitin and chitin fragments, which is of great relevance for the immune defense against parasites and fungi and for immune response modulation. The Journal of Immunology, 2009, 183: 3800–3809.

Chitin is a linear homopolymer of β-1,4-linked N-acetyl-glucosamine, which next to cellulose is the most abundant known biopolymer (1). Chitin is an important structural component in the cell wall of most fungi (2), in the eggshell of parasitic nematodes (3), and in the exoskeleton of all types of arthropods, as well as in the cuticle of the epidermis and the trachea and the lining of the gut of many insects (4). Vertebrates are therefore exposed to chitins through ingested food or when infected with nematodes or fungi.

In plants, chitin and its fragments, chitin oligosaccharides or N-acetylglucosamine, are recognized as the typical fungal pathogen-associated molecular pattern (PAMP) that triggers various defense responses. These include cell surface chitin recognition receptors like CEBIP (5) and receptor-like kinases like CERK1 that elicit MARK activation, reactive oxygen species generation, and gene expression upon activation with chitin (6). Chitin has recently been identified as a PAMP that modulates the allergic response in mice (7). Chitin induces an immune response characterized by infiltration of cells that express IL-4 and IL-13 including Th2 cells, eosinophils and basophiles (7), a response that typically is seen associated with allergic and parasitic worm immune response. Vertebrates lack the ability to produce chitin, but despite this they do express highly conserved chitinases (8). The acidic mammalian chitinase (AMCase) is expressed mainly in the salivary glands and by the stomach (9), whereas the chitotriosidase is expressed by tissue macrophages. Both are endo-β-1,4-N-acetylglucosaminidases that are believed to be involved in food digestion and immunity (10). The human chitotriosidase was shown to have a fungistatic effect (11), and the AMCase has been linked to the pathophysiology of asthma (12). Soluble mammalian chitin-binding proteins are known. The C-type lectin ReglIIg (or HIP/PAP) secreted by Paneth cells is a common pattern recognition molecule for chitin and peptidoglycan that is induced by symbiotic bacteria (13). However, a classical chitin receptor has not yet been identified in vertebrates (14). Here we report the identification of a type II membrane protein expressed apically on enterocytes. The protein binds acetylated components including chitin and directs ligands for endocytosis. This receptor is encoded by the FIBCD1 gene and conserved in all the vertebrate species.

Materials and Methods

Buffers

TBS (140 mM NaCl, 10 mM Tris-HCl, 0.02% (w/v) NaN3, pH 7.4); TBS/Tw (TBS containing 0.05% (v/v) Tween 20 (polyoxyethylene sorbitan monolaurate; Merck-Schuchardt); PBS (137 mM NaCl, 3 mM KCl, 8 mM NaH2PO4, 1.5 mM KH2PO4, pH 7.4); coating buffer (60 mM Na2CO3, 35 mM NaHCO3, 0.02% (w/v) NaN3, pH 9.6); substrate buffer (100 mM Tris-HCl, 5 mM MgCl2, 100 mM NaCl, pH 9.5).

Cloning of full-length, ectodomain, and fibrinogen-related domain of FIBCD1

The various FIBCD1 constructs were generated by PCR using Phusion DNA polymerase (Finnzymes) and using as template IMAGE clone ID 4811679 (GenBank accession number BC032953; http://www.ncbi.nlm.nih.gov/GenBank/). Full-length FIBCD1 was generated with the primers: 5'-GTCCTGCGCCGAAGATGTT-3' and 5'-GTCTAGCCGTCTCCCGGACC-3'. The V5-His-tagged ectodomain of FIBCD1, encoding aa 44–461, was generated with the primers 5'-CTGAAACAGCAGCCAGCAGCCC-3' and 5'-CGGTTCCCTCCCGGACC-3'. The fibrinogen-related domain of FIBCD1 was generated with the primers 5'-CGCTGTACCGCCCACTCGGTCCCGG (site for BstI digest shown in bold) and 5'-CCCGAATTCTTAGGGTCCTCCCGGAC (site for EcoRI digest shown in bold). The

*Medical Biotechnology Center and ‡Department of Pathology, University of Southern Denmark, Odense, Denmark; and †Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark.

Received for publication May 14, 2009. Accepted for publication July 7, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

© 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.0901526

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0901526

*Medical Biotechnology Center and ‡Department of Pathology, University of Southern Denmark, Odense, Denmark; and †Department of Medical Biochemistry, University of Aarhus, Aarhus, Denmark.

Received for publication May 14, 2009. Accepted for publication July 7, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

*This work was supported by the Novo Nordic Foundation, Fonden til Lægevidenskabens Fremme, and the Lundbeck Foundation.

‡Address correspondence and reprint requests to Dr. Anders Schlosser, Medical Biotechnology Center, University of Southern Denmark, Odense, Denmark. E-mail address: aschlosser@health.sdu.dk

†Abbreviations used in this paper: PAMP, pathogen-associated molecular pattern; AMCase, acidic mammalian chitinase; CHO, Chinese hamster ovary; BS3, bis(sulfo)succinimidyl)suberate; GlcNAc, N-acetylglucosamine; LTA, lipoteichoic acid; TLSA, tachylectin 5A; WGA, wheat germ agglutinin.
PCR products were cloned into the expression vectors pSecTag/FRT/V5-His TOPO TA (FIBCD1 ectodomain), pcDNA/FRT/V5-His TOPO TA (FIBCD1 full-length), both vectors from Invitrogen), or into the pNT-Bac vector (the fibrinogen-related domain of FIBCD1), which was kindly donated by Nicole M. Thielens (Institut de Biologie Structurale J.-P. Ebel, Grenoble, France) using standard molecular biology techniques. The vectors were sequenced in their entirety.

Generation of HEK293 and Chinese hamster ovary (CHO) cells expressing recombinant forms of FIBCD1

To generate cells expressing recombinant forms of the FIBCD1, the FLP-In system (Invitrogen) was used as described (15) except that HEK293 cells were selected for stable integration of an FIBCD1-containing construct using 150 μg/ml hygromycin B (Invitrogen).

Expression of the fibrinogen-related domain of FIBCD1 in insect cells

The pNT-Bac vector containing the fibrinogen-related domain was expressed in using the baculovirus expression system in Sf9 cells essentially as described by Rossi et al. (16).

Purification of the V5-His-tagged FIBCD1 ectodomain

Purification was performed using a HitTrap Chelating HP (Amersham Pharmacia Biotech) column as described (15).

SDS-PAGE and Western blotting

Proteins were separated on 4–12% polyacrylamide gradient gels in a discontinuous buffer system and blotted onto polyvinylidene difluoride membrane (Immobilon P; Millipore). The membrane was incubated with 0.5 μg/ml monoclonal mouse anti-V5 Ab or 0.5 μg/ml HG-HYB-12-2 followed by alkaline phosphatase-coupled rabbit anti-mouse IgG (Sigma-Aldrich) diluted 1/2000 in TBS/Tw (50 mM NaCl, 10 mM Tris-HCl, 0.02% (w/v) Na2P, 0.05% (v/v, pH 7.4) Tween 20). The membrane was washed and developed as described (15). Western blotting was also performed using enhanced chemiluminescence (GE Healthcare) for development according to the manufacturer’s recommendations. Silver staining was performed essentially as described (17).

Chemical cross-linking of FIBCD1

The V5-His-tagged FIBCD1 ectodomain was cross-linked using bis(sulfosuccinimidyl)suberate (BS3; Pierce Biotechnology). Briefly, BS3 was added to the recombinant V5-His-tagged FIBCD1 ectodomain fractions in a 10- to 320-molar excess and incubated at room temperature for 30 min; then the reactions stopped by the addition of 0.1 M Tris-HCl buffer, pH 7.4. The cross-linked samples were reduced and analyzed by SDS-PAGE and Western blotting.

Deglycosylation of FIBCD1

The presence of N-linked saccharides on the V5-His FIBCD1 ectodomain that was expressed in HEK293 cells was demonstrated by enzymatic digestion as described (15).

FACS analysis

CHO cells expressing full-length FIBCD1 were incubated with 10 μg/ml anti-FIBCD1 (HG-HYB-12-1) Ab in FACS buffer (PBS, 1% BSA, and 0.01% azide) for 30 min at 4°C, washed twice in FACS buffer, incubated with FITC-conjugated F(ab)2 goat anti-mouse (DakoCytomation) for 30 min, and then washed three times with FACS buffer before analysis.

Confocal imaging

CHO FIBCD1/CHO cells were seeded at a density of 4 × 104 cells/well 48 h before experiment. For cell surface staining, cells were incubated with 20 μg/ml monoclonal mouse anti-FIBCD1 (HG-HYB-12-1) for 1.5 h at 4°C. After washing, the cells were incubated with Alexa Fluor 488 F(ab)2 goat anti-mouse IgG (Invitrogen) at 4°C. For internalization experiments, the cells were incubated with 20 μg/ml Alexa Fluor 488-labeled acetylated BSA at 37°C for 2 h. Finally, the cells were washed twice in PBS and fixed in 4% paraformaldehyde followed by staining with 4′,6′-diamidino-2-phenylindole nucleic acid stain (Invitrogen) and mounted using ProLong Gold antifade reagent (Invitrogen). The fluorescence was visualized with an Olympus FV1000 microscope.

Production of chicken anti-FIBCD1 Abs

The immunizations and the purification were done by David’s Biotechnology. Briefly, 1 hen (White Leghorn) was immunized three times with ~5 μg of recombinant FIBCD1 ectodomain with a 2-wk interval. The collection of the first eggs started 43 days after the first immunization. The purification of IgY polyclonal Abs was performed using a stepwise salting out method.

Production of anti-FIBCD1 mAbs

BALB/c mice were immunized for the production of mAbs against the FIBCD1 ectodomain. The mice were immunized five times with ~5 μg of recombinant FIBCD1 ectodomain with 2 wk between each immunization. The mice were boosted three times with 10 μg of FIBCD1 ectodomain protein diluted in 200 μl of PBS by injection into the dorsal tail vein. B cell hybridomas were produced by fusion between myeloma cells (American Type Culture Collection; CRL-2016; Sp2/mIg-6). Abs were puriﬁed using a protein G column on a fast protein liquid chromatography apparatus (Amersham Pharmacia Biotech). The Ab (HG HG-HYB-12-2) reacts with the FIBCD1 ectodomain but not with the FIBCD1-FRεD when analyzed by Western blotting. The epitope is therefore located between the TM region and the FRεD domain, excluding cross-reactivity with the ficolins.

Immunohistochemistry

Normal human tissues were obtained from the tissue bank at the Department of Pathology, Odense University Hospital (Odense, Denmark). The tissues were ﬁxed in 4% formalin in PBS for 24 h and then conventionally dehydrated and embedded in parafﬁn. A biotin-streptavidin technique was used on parafﬁn sections. Parafﬁn sections were pre-treated in TEG buffer (10 mmol/L Tris, 0.5 mmol/L EGTA, pH 9), in a microwave oven for three 5-min periods at 650 W. The sections were left in TEG buffer for 15 min, washed in PBS, preincubated with 2% (w/v) BSA in PBS for 10 min, and incubated for 30 min with the mouse anti-human FIBCD1 (HG-HYB-12-2, 0.5 mg/ml) in PBS containing 15% (w/v) BSA and otherwise processed as described by (18). The specificity of the immunostaining was veriﬁed by replacing the primary Ab with a nonspeciﬁc Ab. The local ethical committee in Odense approved the use of the tissue sections samples (ref. no. VF20050070).

Purification of the nontagged FIBCD1 ectodomain and FIBCD1 fibrinogen-related domain on an N-acetylated immobilized resin

Toyopearl AF-Amino-650M resin (Tosoh; 5 ml) was washed twice with distilled water and mixed with 4 ml of 0.2 M sodium acetate and 2 ml of acetic anhydride and then incubated on ice for 30 min. After incubation, 2 ml of acetic anhydride were added to the mixture, and the incubation was continued for a further 30 min as described (19). The resin was washed four times with distilled water and 1 M NaOH followed by washing with TBS (0.5 M NaCl and 5 mM CaCl2) before chromatography. Culture supernatant from HEK293 or insect cells was applied to the resin and washed extensively with TBS (0.5 M NaCl and 5 mM CaCl2). Bound proteins were eluted in TBS (250 mM sodium acetate).

Characterization of the ligand-binding properties of FIBCD1

An ELISA system was used to evaluate the ability of various acetylated and nonacetylated compounds to inhibit the binding between FIBCD1 ectodomain and acetylated BSA (Sigma-Aldrich). Microtiter plates (NUNC Maxisorp) were coated with acetylated BSA (Sigma-Aldrich) or BSA (Sigma-Aldrich) and blocked with TBS/Tw before being incubated with FIBCD1 ectodomain samples diluted in TBS/Tw (5 mM CaCl2). The binding between FIBCD1 and acetylated BSA was also tested in the presence of 10 mM EDTA, 5 mM MnCl2, or 5 mM MgCl2 instead of CaCl2. After incubation overnight at 4°C and washing, the wells were incubated for 2 h at room temperature with chicken anti-FIBCD1 Abs diluted 1/1000 in TBS/Tw (5 mM CaCl2). The plates were washed with TBS/Tw (5 mM CaCl2) and incubated for 1 h with alkaline phosphatase-labeled anti-chicken IgY (whole molecule; Sigma-Aldrich) diluted 1/1500 in TBS/Tw (5 mM CaCl2) followed by washing and developed with 1 mg/ml p-nitrophenylphosphate, disodium salt (Boehringer Mannheim) in substrate buffer. The specificity of the binding to acetylated BSA was assayed by inhibition with acetylated and nonacetylated compounds including glucose, N-acetylgalactosamine, N-acetylgalactosamine (GalNAc), α-mannose, α-methylmannosamine mannosamine, N-acetylmannosamine, galactose, galactosamine, N-acetylgalactosamine, acetylcholine, t-alanine, N-acetylamide, sodium acetate, sodium propionate, sodium butyrate, and N-acetylglyceric acid (sialic acid) were all from Sigma-Aldrich. Samples of recombinant FIBCD1 ectodomain (100 ng/ml) were mixed with inhibitors to give a final molar concentration of 50, 25, 12.5, 6.25, 3.13, 1.56, 0.78, and 0.39 mM in TBS/Tw (5 mM CaCl2). The mixtures were incubated overnight in the acetylated BSA-coated wells overnight at 4°C and processed as described above.
For the PAMPs-binding assay, microtiter plates were coated with LPS O55:B5 (Sigma-Aldrich), 1 μg/ml; LPS 0111:B4 (Sigma-Aldrich), 1 μg/ml; LPS O26:B6 (Sigma-Aldrich), 1 μg/ml; lipoteichoic acid (LTA; InvivoGen), 10 μg/ml; mannan (Sigma-Aldrich), 1 μg/ml; soluble peptidoglycan (InvivoGen), 10 μg/ml; and acetylated BSA (Sigma-Aldrich), 1 μg/ml, in coating buffer for 2 h at room temperature and otherwise performed as described previously except that the fibrinogen domain of FIBCD1 produced in insect cells was used. As a positive control, surfactant protein D (SP-D) was added to the plates in parallel with the FReD of FIBCD1. SP-D bound to LPS, LTA, mannan and soluble peptidoglycan but not to acetylated BSA (data not shown).

Pull-down assay

Chitin from crab shells, cellulose, zymosan A, and β-1,3-glucan (all from Sigma-Aldrich) was washed three times in TBS/Tw (5 mM CaCl₂) and pelleted. Twenty micrograms of the fibrinogen-related domain of FIBCD1 were added to 2 mg of each carbohydrate in a total volume of 500 μl of TBS/Tw (5 mM CaCl₂). For the inhibition experiment, pelleted chitin was incubated with 20 μg of FIBCD1 in TBS/Tw (10 mM EDTA) or TBS/Tw (250 mM sodium acetate). Twenty micrograms of wheat germ agglutinin (WGA) were added to 2 mg of chitin as a positive control. Twenty micrograms of BSA were added to chitin as a negative control. Twenty micrograms of FIBCD1 without chitin as a blank control. After overnight incubation at 4°C, the pelleted carbohydrates were washed three times in TBS/Tw (5 mM CaCl₂). Bound protein was eluted by boiling the pelleted carbohydrates in SDS-PAGE buffer and resolved by SDS-PAGE through 4–17% polyacrylamide gels followed by Coomassie staining.

Endocytosis of 125I-labeled acetylated BSA

Endocytosis experiments were performed with FIBCD1-expressing Flp-In CHO cells or nontransfected Flp-In CHO cells grown to confluence in 24-well plates essentially as described (20). In brief, acetylated BSA was labeled with 125I using the chloramine-T method, and triplicates of cells were incubated in Ham’s F-12 medium supplemented with 1% BSA containing 4000 cpm of 125I-labeled acetylated BSA for various time intervals at 37°C.

Alexa Fluor 488 labeling of acetylated BSA

Lyophilized powder of acetylated BSA was dissolved in PBS, pH 7.4, to a concentration of 10 mg/ml, and thiol for coupling were generated by reducing cystine disulfides with the reducing agent tris(2-carboxyethyl)phosphine (TCEP; Sigma-Aldrich) at a concentration of 10 mM. At a concentration of 2.5 mg/ml, acetylated BSA was incubated with Alexa Fluor 488 C5 maleimide (Invitrogen) in 1:10 molar ratio for 2 h at room temperature followed by extensive dialysis against PBS to remove free dye.

Sequence analysis

DNA sequence analysis, alignments, and amino acid sequence prediction were done with Lasergene software (DNASTar). Multiple sequence alignments were conducted using a ClustalW algorithm (http://www.ncbi.nlm.nih.gov//clustalw). Membrane topology and putative membrane-spanning domains were determined by Hidden Markov Model analysis software (http://www.cbs.dtu.dk/services/TMHMM/).

Results

Identification and predicted domain organization of a potential acetyl group-binding protein

We searched the National Center for Biotechnology Information Human Expressed Sequence Tag clone database using the L-ficolin cDNA sequence in a homology search for possible new acetyl group-binding molecules with membrane topology. This approach revealed a cDNA clone of 3190 bp (GenBank accession number BC032953; http://www.ncbi.nlm.nih.gov/GenBank/) that showed high homology to L-ficolin, M-ficolin, and the tachylectin 5 group. The BLAST search (the National Center for Biotechnology Information) revealed a cDNA clone of 3190 bp (GenBank accession number AF055211) for the human cell line HEK293 to obtain insight into the structural organization of the receptor. The purified protein migrates corresponding to a molecular mass of ~55 kDa in the reduced state and 250 kDa in the unreduced state on SDS-PAGE (Fig. 3A). This demonstrates that FIBCD1 is assembled as a disulfide-linked homopolymeric structure. One cysteine is located in the region of potential coiled coils and two cysteines are located at the boundaries, those being involved in the interchain disulfide bridge formation is yet unknown (Fig. 1). We then did chemical cross-linking at various concentrations of BS3 of FIBCD1 ectodomain. Four distinct bands were observed corresponding to monomeric, dimeric, trimeric, and tetrameric structures, when analyzed in the reduced state by SDS-PAGE (Fig. 3B). Treatment with N-glycanase reduced the molecular mass of the ectodomain of the receptor with 2–3 kDa (Fig. 3C). FIBCD1 is predicted to be a membrane protein with type II topology. FACS analysis (Fig. 3D) and immunofluorescence confocal microscopy analysis (Fig. 3E) of CHO cells transfected with the full-length FIBCD1 cDNA showed a cell surface localization. Taken together, we conclude that FIBCD1 is a glycoprotein that forms disulfide-linked homotetramers in the plasma membrane. A model of the FIBCD1 is shown in Fig. 3F.

Immunohistochemical localization of FIBCD1

Immunohistochemical analysis of human tissues showed high expression of FIBCD1 in small and large intestine epithelial cells with a highly polarized localization to the apical surface corresponding to the brush border (Fig. 4, A–E) and in the ducts of the salivary glands (Fig. 4F). Weak or no reactivity was observed in stomach epithelial cells, in respiratory cells, or in urogenital epithelial cells (not shown). As a positive control, strong immunoreactivity was found in HEK293 transfected with FIBCD1 cDNA, whereas no reaction was found in nontransfected HEK293 cells (Fig. 4, G and H). The specificity of the mAb used for immunohistochemical analysis was further analyzed using Triton X-100 lysates of HEK293 and HEK293 transfected with FIBCD1 cDNA for Western blotting (Fig. 5).

The relative levels of the FIBCD1 mRNA were determined in 22 different human tissues by real time PCR (data not show). The mRNA was measured in virtually all tissues analyzed. No correlation was found between the mRNA levels measured by RT-PCR and the immunohistochemistry.

FIBCD1 is a calcium-dependent acetyl group-binding molecule

The alignment of the human ficolins with TL5A and FIBCD1 reveals that some but not all of the residues of the TL5A and L- and
FIGURE 1. The chromosome localization, genomic organization of FIBCD1, and the mRNA transcripts and deduced amino acid sequence of FIBCD1. The initiation methionine is marked as \(^{110} \text{H}11001 \) 1.

Potential coiled-coil region

D L A D Q L P R L A R A S E L O T E C M G L R K H G L T G Q L S A

Fibrinogen domain

D H S E N N C A A F Y R G A W W Y R N H T H S L N L N Q Y L R G A H S Y

A D G V E W S S W G T W G Q Y S L K P V R E D R
M-ficolin comprising the acetyl group-binding site are conserved in the FIBCD1 (Fig. 6). Accordingly, we attempted to purify the ectodomain of FIBCD1 by affinity chromatography on acetylated Toyopearls (19). Fig. 7A shows a Western blot of the culture supernatant from HEK293 cells expressing FIBCD1 ectodomain. Fig. 7B shows the acetate elution profile from the acetylated Toyopearls, and a silver-stained SDS-PAGE of the purified FIBCD1 ectodomain is shown in Fig. 7C. This shows that FIBCD1, like TL5A, L-ficolin, and M-ficolin, can be affinity purified using an acetate-coupled matrix.

We next tested the ability of FIBCD1 to bind acetylated molecules by an ELISA-based approach. The purified FIBCD1 ectodomain-bound acetylated BSA-coated microtiter plates in the presence of calcium. The binding was saturable and abolished by chelating of divalent ions (Fig. 7D). The binding between FIBCD1 and acetylated BSA was tested in presence of increasing concentrations of CaCl$_2$ (Fig. 7E) and CaCl$_2$ was substituted by other divalent cations (Fig. 7F). These experiments show that optimal binding to acetylated BSA is achieved at a calcium concentration of 0.6 mM and that manganese could substitute for calcium whereas magnesium did not.

The ligand selectivity of FIBCD1 was investigated by inhibiting the binding of FIBCD1 to acetylated BSA-coated microtiter plates (Fig. 7G). The inhibition experiments demonstrated that N-acetylated carbohydrates or amino acids, but not their corresponding nonacetylated counterparts, could inhibit the binding. Furthermore, one of the simplest compounds containing the acetyl group, sodium acetate, strongly inhibited the binding even at millimolar levels, whereas sodium propionate and sodium butyrate did not inhibit at a concentration of 50 mM. Other acetylated compounds like acetylcholine could also inhibit the binding of FIBCD1 to acetylated BSA (Table I).

FIBCD1 binds to chitin but not to other tested PAMPs

Different PAMPs were considered to be potential ligands for the FIBCD1-encoded protein. LTA and β-1,3-glucan are known ligands for L-ficolin (22) and TL5A recognize the O-Ag of LPS (23). Peptidoglycan consists of repeating GlcNAc and MurNac residues cross-linked by short peptides, a structure that is very similar to the (GlcNAc)$_n$ structure of chitin. We saw no binding to LPS, LTA, mannan, or peptidoglycan (Fig. 8, A and B). However, FIBCD1 showed clear chitin binding activity in pull-down assays.

FIGURE 2. Alignment of the known FIBCD1 protein sequences using CRUSTAL V from the DNAStar package.

FIGURE 3. Structure of FIBCD1. A, SDS-PAGE and silver staining of purified V5-His-tagged FIBCD1 ectodomain in the reduced (lane 1) and unreduced state (lane 2). B, Western blotting of the V5-His-tagged FIBCD1 ectodomain after cross-linking with increasing concentration of the cross-linker BS3 in the reduced state. C, The V5-His-tagged FIBCD1 ectodomain with and without enzymatic digest of N-linked glycans. D and E, Type II membrane topology of FIBCD1 analyzed by FACS and confocal microscopy analysis of CHO-FIBCD1/CHO cells using monoclonal mouse anti-FIBCD1 (HG-HYB-12-1). F, A model of the FIBCD1.
where WGA was used as positive control (Fig. 8C). As for the binding to acetylated BSA, the binding was calcium dependent and could be inhibited by sodium acetate (Fig. 8D). Parallel pull-down experiments using equivalent masses of zymosan, cellulose (the nonacetylated counterpart to chitin), or \(/H9252 \)-1,3-glucan showed no binding. Together, these results imply that FIBCD1 has specific preference for chitin.

Uptake of \(^{125}\text{I}-\text{labeled acetylated BSA in FIBCD1-expressing CHO cells}

FIBCD1-mediated endocytosis of \(^{125}\text{I}-\text{labeled acetylated BSA was studied in CHO cells transfected with a FIBCD1 expression vector. Fig. 9 shows the time course of cell-associated radioactivity and TCA-soluble radioactivity (as a measurement of ligand degradation) in the medium (Fig. 9, A and B). The cell-associated radioactivity reached a plateau after 1 h of incubation, at about the same time as the TCA-soluble radioactivity increased significantly in the medium. The degradation was strongly inhibited by the weak base chloroquine and the proteinase inhibitor leupeptin (Fig. 9C), which both inhibit lysosomal proteolysis. The uptake was mediated by FIBCD1 in that no uptake was seen in nontransfected CHO cells (Fig. 9A). Furthermore, the uptake and degradation of \(^{125}\text{I}-\text{labeled acetylated BSA were inhibited by 10 mM GlcNAc, by unlabeled acetylated BSA, and by the mAb HG-HYB-12-1, which specifically inhibits the binding between acetylated BSA and FIBCD1 (Fig. 9D). Finally, we show that CHO cells expressing recombinant FIBCD1 mediate uptake of Alexa Fluor 488-labeled acetylated BSA (Fig. 9E), whereas no uptake was seen in nontransfected CHO cells (Fig. 9F).**

Discussion

Our in silico screen followed up by functional analysis identified the FIBCD1 as a receptor that binds acetylated structures including chitin. The fibrinogen domain was originally identified as independent folded globular domains in the C-terminal region of both the \(\beta \)- and \(\gamma \)-chain of fibrinogen. Domains homologous to the fibrinogen domain have since been identified and characterized in a growing number of nonfibrinogen proteins, where the domains are
referred to as fibrinogen-related domains or fibrinogen-like recognition domains (FReDs) (24). Proteins that include FReDs have been identified in a large number of distantly related species including vertebrates, echinoderms, mollusks, and insects. In vertebrates, fibrinogen is involved in platelet aggregation and fibrin clot formation. The blood coagulation pathways of invertebrates, when present, are not homologous to the fibrinogen-mediated coagulation pathway of vertebrates (25), and the FReDs must have evolved for other functions. Many of the FReDs identified in invertebrates show lectin activity (26), suggesting that the primordial FReDs function may have been innate immune recognition. Others, like scabrous identified in Drosophila melanogaster, interact with Notch and play a role in embryogenesis. It is therefore likely, that FReDs have evolved to take part in diverse functions including innate immunity, embryonic development, and coagulation (27–29).

Sequence comparison indicated a potential functional relationship of FIBCD1 to TL5A and to L- and M-ficolin. We found that FIBCD1 selectively and Ca$^{2+}$/H$^{+}$ dependent bind acetylated monosaccharide and other acetylated components but not their nonacetylated counterparts. This suggested that the primary ligand-binding site in FIBCD1 resides in the FReD and that

Table 1. I_{50} values of the binding between the chitin receptor and acetylated BSA

<table>
<thead>
<tr>
<th>Inhibitor</th>
<th>I_{50} (mM)</th>
<th>I_{50} Relative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sialic acid</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Glucose</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>Glucosamine</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>N-Acetylgalactosamine</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Mannose</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>Mannosamine</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>N-Acetylgalactosamine</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Galactose</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>Galactosamine</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>N-Acetylgalactosamine</td>
<td>5</td>
<td>0.4</td>
</tr>
<tr>
<td>Alanine</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>N-Acetylgalactosamine</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Acetylatedcholine</td>
<td>10</td>
<td>0.2</td>
</tr>
<tr>
<td>Acetate</td>
<td>3</td>
<td>0.7</td>
</tr>
<tr>
<td>Butyrate</td>
<td>NI</td>
<td></td>
</tr>
<tr>
<td>Propionate</td>
<td>NI</td>
<td></td>
</tr>
</tbody>
</table>

I_{50} calculated from inhibition curves as shown in Fig. 5G. The relative inhibitor potential was determined by dividing the I_{50} of the best inhibitor with the I_{50} of the desired compound. NI, not inhibitory (i.e., resulting in <50% inhibition at 50 mM).
Cys245, and in M-ficolin between Asp253 and Cys254 (22), and we speculate that the same can be the case for the homologous Asn413 and Cys414 residues in FIBCD1.

The hydrophobic funnel containing the sugar methyl group is essentially conserved in FIBCD1, the main difference being Tyr248 substituted with a tryptophan (Fig. 6). The homolog-binding site (designated S1 binding site) is also present in L- and M-ficolin. In M-ficolin, acetylated carbohydrates occupy the binding site, but although L-ficolin binds acetylated compounds with high affinity, no ligands were found in the hydrophobic funnel when analyzing site S3 and S4 (22, 33). These binding sites were not conserved in FIBCD1, and no binding was observed between these ligands and FIBCD1. Furthermore, we could not show any binding to LPS or to LTA which are known to be ligands for TL5A (34) and L-ficolin, respectively (35).

The structure of L-ficolin revealed three additional binding sites (S2–S4), and the acetylated ligands were found to bind to site S3 (22). The acetyl moiety of these ligands bound to the backbone nitrogen of L-ficolin Asp133, a residue not conserved in either TL5A or FIBCD1. Galactose bound to S2 and the first three of four glucose residues of P. aeruginosa LPS, while the first two of four glucose residues of E. coli LTA were not bound.

Pattern recognition receptors often enhance their selectivity for ligands by oligomerization. The disulphide-linked ectodomain of FIBCD1 were shown to form tetramers using cross-linking at different concentrations of BS3, indicating that FIBCD1 forms homotetramers in the plasma membrane. This arrangement of four FReD domains at a predetermined distance provides a platform for high-affinity recognition of ligands carrying appropriately spaced acetylated structures. The formation of tetramers contrasts with others multimeric FReD molecules like the ficolins that form trimers stabilized by extended collagen regions but it is in line with...
TL5A that forms tetramers in solution (19). We thus hypothesize that the receptor specifically binds chitin and directs acetylated components for degradation by sodium acetate, suggesting that the binding takes place via the FReD molecule in vertebrates and the first pattern recognition re-

26. Adema, C. M., L. A. Hertel, R. D. Miller, and E. S. Loker. 1997. A family of fibroglafen-related proteins that precipitates parasite-derived molecules is pro-

28. Adema, C. M., L. A. Hertel, R. D. Miller, and E. S. Loker. 1997. A family of fibroglafen-related proteins that precipitates parasite-derived molecules is pro-

30. Adema, C. M., L. A. Hertel, R. D. Miller, and E. S. Loker. 1997. A family of fibroglafen-related proteins that precipitates parasite-derived molecules is pro-

36. Deleted in proof.

