Inhibition of Thymic Adipogenesis by Caloric Restriction Is Coupled with Reduction in Age-Related Thymic Involution

Hyunwon Yang, Yun-Hee Youm and Vishwa Deep Dixit

J Immunol 2009; 183:3040-3052; Prepublished online 31 July 2009;
doi: 10.4049/jimmunol.0900562
http://www.jimmunol.org/content/183/5/3040

Why *The JI*?

- **Rapid Reviews! 30 days** from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References This article cites 67 articles, 23 of which you can access for free at:
http://www.jimmunol.org/content/183/5/3040.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Inhibition of Thymic Adipogenesis by Caloric Restriction Is Coupled with Reduction in Age-Related Thymic Involution

Hyunwon Yang, Yun-Hee Youm, and Vishwa Deep Dixit

Aging of thymus is characterized by reduction in naive T cell output together with progressive replacement of lymphostromal thymic zones with adipocytes. Determining how calorie restriction (CR), a longevity metabolic intervention, regulates thymic aging may allow identification of relevant mechanisms to prevent immunosenescence. Using a mouse model of chronic CR, we found that a reduction in age-related thymic adipogenic mechanism is coupled with maintenance of thymic function. The CR increased cellular density in the thymic cortex and medulla and preserved the epithelial signatures. Interestingly, CR prevented the age-related increase in epithelial-mesenchymal transition (EMT) regulators, FoxC2, and fibroblast-specific protein-1 (FSP-1), together with reduction in lipid-laden thymic fibroblasts. Additionally, CR specifically blocked the age-related elevation of thymic proadipogenic master regulator, peroxisome proliferator activated receptor γ (PPARγ), and its upstream activator xanthine-oxidoreductase (XOR). Furthermore, we found that specific inhibition of PPARγ in thymic stromal cells prevented their adipogenic transformation in an XOR-dependent mechanism. Activation of PPARγ-driven adipogenesis in OP9-DL1 stromal cells compromised their ability to support T cell development. Conversely, CR-induced reduction in EMT and thymic adipogenesis were coupled with elevated thymic output. Compared with 26-mo-old ad libitum fed mice, the T cells derived from age-matched CR animals displayed greater proliferation and higher IL-2 expression. Reduced ability to increase naive T cell production from the aged is critical to all aspects of immunity, including affecting the Ab production and cell-mediated immunity (11, 12). Interestingly, despite massive replacement of thymus with adipose tissue, the aging thymus still retains limited capacity for generating naive T cells (13, 14), suggesting that restoration of thymic function may be achievable.

The immune and metabolic systems are tightly coupled to each other via common receptor and ligand expression (15, 16, 17, 18). Signals emanating from the immune system affect the metabolic axis and, reciprocally, changes in the energy balance exert potent immunomodulatory actions (19). We have demonstrated that orexigenic peptide ghrelin, a sensor of negative energy balance, reduces inflammation (20) and enhances thymopoiesis during aging (21). The aged mice infused with ghrelin exhibited a reduction in lipid-expressing cells in the thymus, while ghrelin-deficient animals developed excess thymic adiposity (22). These studies provided initial evidence that deficient ghrelin-signaling induces expression of proadipogenic genes in thymus, providing further support to the hypothesis that the presence of intrathymic adipocytes is inversely linked with thymopoiesis (22). However, the mechanisms of ectopic adipocyte development in thymus remains poorly understood.

Induction of negative energy balance via caloric restriction remains one of most robust nongenetic means of extending

Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808

Received for publication February 23, 2009. Accepted for publication June 5, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported in part by the Coypu and Pennington Foundation grants to V.D.D. The present work utilized the facilities of the Genomics and Cell Biology and Bioimaging Core facilities supported by National Institutes of Health (NIH) Grant P20 RR-021945 and Cell Biology and Bioimaging Core Facility of the Pennington Biomedical Research Center’s Center of Biomedical Research Excellence and Clinical Nutrition Research Unit (NIH P30 DK072476).

2 Address correspondence and reprint requests to Dr. Vishwa Deep Dixit, Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808. E-mail address: Vishwa.Dixit@pbrc.edu

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0900562
health span across several species (23, 24). Several studies have shown that calorie restriction (CR)\(^3\) potentiates thymic function (25). However, the mechanism of CR’s prothymic effects remains to be elucidated. Based on our previous findings that the CR-induced hormone ghrelin (26) can regulate thymic adiposity (25), we hypothesized that CR specifically inhibits the proadipogenic transcriptional machinery in the aging thymus.

Given that thymic adiposity is a key feature of age-related thymic involution (27, 28), we examined whether the longevity metabolic intervention CR retards the mechanisms governing the generation of thymic adipocytes. Here, we provide novel evidence that CR specifically inhibits the age-related adipogenic program of thymic stroma and preserves thymopoiesis.

Materials and Methods

Mice and calorie restriction

Female CR (n = 24) mice and ad libitum (AL) fed (n = 24) 12- to 26-mo-old C57BL/6J mice were purchased from the National Institute on Aging aging rodent colony. The CR was initiated at 14 wk of age at 10% restriction, increased to 25% restriction at 15 wk, and to 40% restriction at 21 wk of age. The mice were weighed and maintained under specific pathogen-free conditions of Pennington Biomedical Research Center’s animal facility using protocols approved by the Institutional Animal Care and Use Committee.

Isolation of organs and cell suspension

After sacrifice, thymus and spleen were isolated, weighed, and fixed with 20% sucrose solution for cryosection or frozen for RNA extraction. The spleens and thymus were dispersed on nylon mesh for single-cell preparation. The dispersed cells were treated with ACK solution and prepared as single-cell suspensions for flow cytometry analysis. Some femurs were maintained on the CR diet during transit and sacrificed after 1 wk of restriction. We also utilized 3- to 4-mo-old female C57BL/6J mice as a control. The mice were maintained under specific pathogen-free conditions of Pennington Biomedical Research Center’s animal facility using protocols approved by the Institutional Animal Care and Use Committee.

Abs and immunoconjugates

For FACS analysis the following Abs (from eBioscience) were used: CD4-PerCP, CD8-allophycocyanin, CD44-PE, CD45R-PE, CD3-PE, CD8-PE, CD8-allophycocyanin, anti-CD11b-PE, Gr-1 PE, CD45R-PE, CD3-PE, CD8-PE, CD4-PE for 30 min on ice. To identify earliest thymocyte progenitors (ETPs), 5 × 10^5 thymocytes were labeled with PE-conjugated anti-CD11b, Gr-1, CD45R, CD3, CD8, NY-BCR, CD7, pan-NK, NK1.1, CD11c, CD19, Ter119, and CD127 Abs, but no CD4, followed by staining with CD25-allophycocyanin and c-KiIT-TCF. The PE-labeled lineage-negative cells lacking CD25, and expressing c-KiIT and CD44, were designated as ETPs as previously described (29, 30). All Abs were purchased from eBioscience. The neutral lipids in CD45-negative cells were stained using LipidTOX Green (Invitrogen). All FACS analyses was performed on a FACSCalibur (BD Biosciences) using up to four fluorescent channels, and all the FACS data were analyzed by postcollec tion compensation using Flowjo (Tree Star) software.

Immunohistochemistry

The thymus obtained from mice were flash frozen and cut into 5-μm-thick cryostat sections, followed by fixing with 4% buffered paraformaldehyde. Tissue sections were stained with various combinations of the following primary Abs to mouse Ags: unconjugated rat mAb to TROMA-1 (Developmental Studies Hybridoma Bank), biotin-conjugated mouse mAb to Ulex europaeus agglutinin 1 (UEA-1; Vector Laboratories), and unconjugated rat Ab to ERTR7 (HM1086; Cell Sciences). Sections were incubated with the specific Abs conjugated with: Alexa Fluor 488- or Alexa Fluor 594-conjugated polyclonal chicken anti-mouse IgG; Alexa Fluor 488- or Alexa Fluor 594-conjugated polyclonal donkey anti-rabbit IgG; or Alexa Fluor 488- or Alexa Fluor 594-conjugated polyclonal chicken anti-rabbit IgG (Invitrogen). Nuclei were visualized with DAPI (4’,6-diamidine-2-phenylindole dihydrochloride; Sigma-Aldrich). Negative controls as obtained by omitting the primary Ab or by using an unrelated IgG displayed no specific labeling. Fluorescence mounting solution (Vector Laboratories) was applied to slides and observed with a Zeiss Axioplan 2 microscope. Additionally, for the visualization of lipid droplet and adipocyte populations, frozen thymic sections and cultured cells were fixed with 4% buffered paraformaldehyde and then stained with Oil Red O and LipidTOX Green (Invitrogen) for 20 min. Mayer’s H&E staining was performed with LipidTOX Green (Invitrogen). All FACS analyses was performed on a FACSCalibur (BD Biosciences) using up to four fluorescent channels, and all the FACS data were analyzed by postcollection compensation using Flowjo (Tree Star) software.

Real-time RT-PCR

Total RNA was prepared with RNAzol (Isotex Diagnostics). The cDNA synthesis and real-time RT-PCR were performed as described previously (21, 22, 31). Real-time RT-PCR analyses were done in duplicate on the ABI Prism 7900 sequence detector TaqMan system with the SYBR Green PCR kit as instructed by the manufacturer (Applied Biosystems). The list of real-time PCR primers is shown in Table I.
The Western blot analysis was performed as described previously (31). Briefly, the thymic lobe was minced from small fragments and treated for 1 h at 37°C with an enzymatic mixture containing 1 mg/ml collagenase (Sigma-Aldrich), 0.2 mg/ml DNASE type I (Sigma-Aldrich), and 1 mg/ml trypsin EDTA (Invitrogen) in PBS as described previously (32). Cells were spun at 13,000 rpm with an enzymatic mixture containing 1 mg/ml collagenase (Sigma-Aldrich), and the medium was changed twice a week. On day 14, the cells were induced to differentiate by changing the medium to DMEM/F12 containing MDI (10% fetal bovine serum, 1% antibiotic/antimycotic mixture). Forty-eight hours after culture, cells were harvested for preparation of total RNA. The rest of the cells were used for RT-PCR assay to measure proliferation via mitochondrial dehydrogenase activity according to the manufacturer’s instructions (GCD1; Sigma-Aldrich).

Statistical analyses

The results are expressed as the mean ± SEM. The differences between means and the effects of treatments were determined by one-way ANOVA using Tukey’s test (SigmaStat), which protects the significance (p < 0.05) of all pair combinations.

Results

Age-related increase in intrathymic adipocyte development is blocked by CR

We utilized 2- to 12- and 18- to 22-month-old AL and CR fed C57B6L/J female mice to investigate the initiation of age-related adipogenic programming in the thymus. Compared with 2-month-old animals, the thymus of 12- to 16-month-old mice displayed an increase in large lipid vacuole-containing mature adipocytes along with smaller lipid-bearing cells in the medulla as well as cortex (Fig. 1A). Interestingly, the loss of adipocytes by CR was associated with markedly decreased cellularity in cortex as well as medulla (Fig. 1A). During aging, ectopic adipocytes also develop within the bone marrow. However, unlike thymus, CR did not block the adipocyte development in aging bone marrow, but instead caused a marked reduction in adipocyte size in femur (Fig. 1B).

Aging over the first year of life in mice was associated with an increase in the total body adiposity, while the 12- to 16-month-old CR mice had body weights similar to those of young mice (Fig. 1C). We observed that organ sizes (liver, spleen) in CR mice were reduced (data not shown) in proportion to their body size. Therefore, when corrected for body weight, the CR thymus had a higher somatic index (Fig. 1C). Also, the total thymic cellularity from CR mice was not significantly greater in 12- to 16-month-old AL mice (Fig. 1C); instead, the smaller thymic space was densely packed with thymocytes (Fig. 1A). Additionally, we did not observe any alterations in double-negative, single-positive, or double-positive frequencies (data not shown).

We next determined whether maintenance of thymic architecture by CR prevents the age-related reduction in naive T cells. Consistent with established findings (8, 9, 35), analysis of naive and effector/memory T cells in the spleen revealed a marked reduction in naive CD4 and CD8 cells and expansion of effector/memory population with age. Interestingly, similar to chronic CR in primates (36), CR in mice also led to a marked preservation of both CD4 and CD8 naive T cells and prevented the age-related expansion of effector/memory populations (Fig. 1D).

CR prevents the age-related alteration in the thymic stromal microenvironment

Age-related thymic involution is known to lead to loss of thymic epithelial cell (TECs) and increase in fibroblasts (37-40). Compared with young mice, in 12- to 16-month-old animals we found a reduction in cortical TECs as well as loss of organization of medullary TECs. CR prevented the age-related loss of cortical TEC and medullary cellularity (37, 38). During aging, ectopic adipocytes also develop within the bone marrow. However, unlike thymus, CR did not block the adipocyte development in aging bone marrow, but instead caused a marked reduction in adipocyte size in femur (Fig. 1B).

We next determined whether maintenance of thymic architecture by CR prevents the age-related reduction in naive T cells. Consistent with established findings (8, 9, 35), analysis of naive and effector/memory T cells in the spleen revealed a marked reduction in naive CD4 and CD8 cells and expansion of effector/memory population with age. Interestingly, similar to chronic CR in primates (36), CR in mice also led to a marked preservation of both CD4 and CD8 naive T cells and prevented the age-related expansion of effector/memory populations (Fig. 1D).

Proliferation and MTT assay

The splenic CD4+ cells from 26- to 30-month-old mice were isolated using T cell selection column (R&D Systems). The 2 x 10^6 cells/well were cultured in flat-bottom 96-well plates coated with anti-CD3 and anti-CD28 Abs (BD Pharmingen) in RPMI 1640 media supplemented with 10% FCS and 0.1% antibiotic/antimycotic mixture. Forty-eight hours after culture, cells were harvested for preparation of RNA. The rest of the cells were used for RT-PCR assay to measure proliferation via mitochondrial dehydrogenase activity according to the manufacturer’s instructions (GCD1; Sigma-Aldrich).

Statistical analyses

The results are expressed as the mean ± SEM. The differences between means and the effects of treatments were determined by one-way ANOVA using Tukey’s test (SigmaStat), which protects the significance (p < 0.05) of all pair combinations.
Thymopoiesis is dependent on homing of bone marrow-derived lymphoid progenitor cell populations (42) into thymus. The TEC-derived chemokines CXCL12 and CCL25 are critical for recruitment and homing of lymphoid progenitors in thymus (43–46). We observed that the aging thymus displayed a marked reduction in CXCL12 mRNA expression, which was restored by CR (Fig. 2B). Additionally, CR increased the CCL25 expression in aging thymus (Fig. 2B). Further analysis of thymic cryosections of 18-mo-old mice revealed a higher immunostaining for lipid-bearing ERTR7/H11001 thymic fibroblasts (Fig. 2C). Interestingly, the ERTR7 and intrathymic lipid accumulations in 18-mo-old mice were markedly reduced when these mice were maintained on CR (Fig. 2C). Consistent with immunohistological data, the FACS analysis of thymic digests revealed that CR significantly decreased the CD45− lipid+ cells in age-matched 18-mo-old mice (Fig. 2D).

Using genetic fate-mapping approaches, we have recently demonstrated that TECs can transition to fibroblasts via the process of epithelial-mesenchymal transition (EMT) (22). We therefore hypothesized that CR-induced increase in TECs and reduction in fibroblasts may be mediated through the inhibition of EMT. Interestingly, we found that thymic aging was associated with increase in pro-EMT regulators fibroblast-specific protein-1 (FSP-1)/S100A4, FoxC2, vimentin, and N-cadherin (Fig. 2E). Consistent with our hypothesis, CR blocked the age-related increase in pro-EMT genes (Fig. 2E). Taken together, these data suggest that CR may also inhibit the generation of local fibroblasts in aging thymus and prevents the age-related deterioration of thymic stromal cell microenvironment.

FIGURE 1. CR reduces thymic adiposity and increases the frequency of naive T cells in aged mice. A, H&E staining of representative thymus section (n = 4, 12 mo old) shows increase in adipocytes in thymic cortex, medulla, and septum of aging mice. Calorie restriction could block the age-related increase in adipocyte accumulation. B, The femurs were decalcified and embedded in paraffin and stained with H&E. Upper panel, Images (×100) reveal that CR did not abolish adipocytes in aging bone marrow but led to a marked reduction in cell size. In the AL fed old mice, the bone marrow adipocyte size was ~200 μm (lower panel, ×200), which was reduced to almost half by CR. C, CR does not increase the thymic size in 12-mo-old mice. The age-related increase in total body weight was prevented by CR. Normalization of body weights with thymic mass (somatic index) displayed a significant increase in thymic somatic index upon CR with no significant difference in total thymocyte counts. The size of thymus of 12-mo-old aging CR mice appeared grossly similar to the young animals. D, Analysis of naive and effector/memory (E/M) CD4 and CD8 cells in spleen during aging. The naive (CD62L+CD44−) cells (CD4 in upper panel and CD8 in lower panel) are highlighted in red and effector/memory cells (CD62L−CD44+) are in blue boxes. CR significantly increases naive CD4 and CD8 cells in aging mice. All data are presented as mean (SEM) of six to eight mice per group.
The transcription factor PPARγ is necessary and sufficient for commitment of fibroblast and preadipocytes to adipocytes (47–49). Given our findings that CR prevents the development of lipid-bearing fibroblasts in aging thymus, we next asked whether PPARγ is involved in age-related thymic adiposity. We found that PPARγ protein was markedly increased by 12 mo of age in thymus (Fig. 3A). Interestingly, CR blocked the age-related elevation of γ1 and γ2 splice variant isoforms of PPAR (Fig. 3A) in thymus. Additionally, CR also significantly inhibited a key adipogenic lipid chaperone, adipocyte fatty acid binding protein aP2 or FABP4 (47), in thymus (Fig. 3A). Furthermore, the age-related increase in thymic PPARγ and aP2 mRNA expression was also reduced by CR (Fig. 3B).

Considering that fibroblasts can be readily induced to develop into adipocytes, we next investigated whether CR prevents the expression of PPARγ protein in PDGFRα+ thymic fibroblasts. Consistent with our hypothesis, we found that compared with age-matched 12-mo-old AL fed mice, CR reduced the frequency of PDGFRα+PPARγ+, PDGFRα+PPARγ+, as well as PDGFRα−PPARγ+ cells in thymus (Fig. 3C). We also investigated whether CR blocks proadipogenic regulators globally. We observed that CR did not inhibit PPARγ mRNA expression in white adipose tissue or brown adipose tissue of 12-mo-old mice (data not shown), suggesting that the effects of CR on inhibition of thymic PPARγ are organ specific.

FIGURE 2. CR maintains thymic stromal microenvironment. A, Keratin 8+ cortical TECs were labeled with anti-TROMA1 Ab and medullary TECs were identified by biotin-conjugated plant lectin *Ulex europaeus* agglutinin 1 (UEA-1). B, Real time-PCR analysis of TEC expressed genes. C, The thymic cryosections were labeled for fibroblast specific marker ERTR7 (red) and LipidTOX (green). Nuclei were counterstained with DAPI. Representative image from a minimum of four thymi in each group is shown. D, The thymi were enzymatically dispersed and labeled with LipidTOX-FITC. The FACS analysis shows that CR decreases the lipid-expressing cells in thymus. A total of three thymi were pooled from each AL and CR group and experiment was repeated twice. E, Real time-PCR analysis of pro-EMT regulators FSP-1, vimentin, N-cadherin, and FoxC2 in the thymus. All data are presented as mean (SEM) of six to eight mice per group.
Given that CR-induced inhibition of thymic PPARγ is associated with reduction of lipid-bearing fibroblasts and adipocytes, we tested the causality of this relationship using an in vitro primary thymic stromal cell (TSC) culture model. Surprisingly, we observed that upon culture, ~92% of CD45− TSCs exhibited fibroblast-like phenotype and were ERTR7+ (Fig. 4, A and B). The mechanism of loss of TEC and emergence of fibroblast in culture are currently under investigation in our laboratory. However, this culture system provided us an in vitro cellular model to study mechanism of adipogenesis of primary thymic fibroblasts. The treatment of these ERTR7+ fibroblasts with PPARγ ligand rosiglitazone led to accumulation of large lipid droplets, reminiscent of an adipocyte phenotype (stained by LipidTOX Green) (Fig. 4B). Compared with vehicle (DMSO)-treated control cells, the incubation of thymic fibroblasts with adipogenic cocktail (MDI) containing dexamethasone (1 μM), 3-isobutyl-1-methylxanthine (MIX, 0.5 mM), and insulin (1.67 μM) also induced robust adipogenesis (Fig. 4C). The Oil Red O staining of neutral lipids revealed differentiation of thymic fibroblasts into adipocytes upon MDI treatment, which was blocked in the presence of the specific PPARγ antagonist GW9662 (Fig. 4C). These data show that PPARγ directly regulates the adipocyte development of thymic fibroblasts and suggest that CR-induced reduction in thymic PPARγ may prevent the development of age-related thymic adiposity.

FIGURE 3. CR inhibits PPARγ in thymus. A. Quantitation of PPARγ and aP2 expression by Western blot in thymi and control white adipose tissue (WAT) (upper panel). B. The mRNA expression was studied by real-time PCR and compared with young (n = 5/group). These data are presented as mean (SEM) of six to eight mice per group. C. The thymic digests were gated on CD45-negative cells, and expression of PDGFα- and PPARγ-expressing cells is displayed. A total of three thymi were pooled from each AL and CR group and experiments were repeated twice.

PPARγ-dependent adipogenesis of stromal cells compromises T cell development

In an effort to test the consequence or impact of elevated PPARγ signaling on T cell development capacity of stromal cells, we used the OP9-DL1 cell model. The stromal-epithelial cellular phenotype is critical for T cell development (51). However, removal of TSCs from three-dimensional thymic meshwork results in loss of Notch ligand Delta-like-1, (DL1) and hence in ex vivo conditions, the TSCs are unable to support the development of T cells from lymphoid progenitors (51). The enriched Lin−Scal−c-Kit+ (LSK) cells when cocultured with OP9-DL1 cells differentiate to CD4+ CD8+ (double-positive) and single-positive T cells (33). We demonstrate that OP9-DL1 cells can transition into adipocytes in the presence of rosiglitazone or MDI (Fig. 6A). We next induced the OP9-DL1 cells to differentiate into adipocytes in the presence of specific PPARγ ligand rosiglitazone, MDI, and MDI together with PPARγ-specific antagonist GW9662 for 1 wk. After 1 wk of culture and stromal cell differentiation into adipocytes, the adipogenic media were replaced, and OP9-DL1 cells were cocultured in presence of enriched bone marrow-derived LSK cells, IL-7, and Flt3 ligand. Interestingly, we observed that both rosiglitazone- and MDI-induced OP9-DL1 adipocytes were severely compromised in their ability to support the development of lymphoid progenitors to DP cells (Fig. 6B). In presence of PPARγ antagonist GW9662, the MDI-induced reduction in double-positive cell numbers was restored to control levels, suggesting a PPARγ-specific mechanism for inhibition of T cell development (Fig. 6B).

To further confirm the specificity of PPARγ pathway in adipogenic OP9-DL1 cells, we next studied the expression of lipoprotein lipase and phospho-enolpyruvate carboxykinase, the downstream target genes indicative of PPARγ activity (52, 53). We observed that rosiglitazone as well as MDI led to significant increases in PPARγ target genes in adipogenic OP9-DL1 cells via PPARγ-specific pathway (Fig. 6, C and D). Furthermore, the real-time PCR analysis of OP9-DL1 cells revealed that stromal adipogenesis...
reduced the expression of Jag1, Jag2, stem cell factor and keratinocyte growth factor without affecting thymic stromal-derived lymphopoietin (TSLP) expression and DL-1 expression (data not shown) in a PPARγ-dependent fashion (Fig. 6, E and F). Thus, our data suggest that loss of stromal cell signatures via a PPARγ-esis. It has been demonstrated that ETPs, Lin−/H9253, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30).

Inhibition of proadipogenic regulators by CR is associated with reduced immunosenescence

We have recently demonstrated that deficient ghrelin signaling accelerates thymic involution (21) with elevated expression of proadipogenic regulators, including PPARγ (22). Since CR reduced the age-related adipogenic programming of TSCs, we next studied the consequence of improved thymic microenvironment on thymopoiesis. It has been demonstrated that ETPs, Lin−/H9253; CD44+; c-Kitlow cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A). The reduction of bone marrow adipocyte cell size by CR was not associated with any change in bone marrow Lin−/H9253; c-Kithigh cells, give rise to T cells upon entry at the cortico-medullary junction in the thymus and their numbers decline with age (29, 30). Consistent with our results that CR maintains TECs and critical chemokines required for progenitor homing, we found a significant increase in the ETP cells (Fig. 7A).

Discussion

Calorie restriction is a potent metabolic intervention that induces a state of chronic negative energy balance and robustly extends mean and maximal lifespan in experimental animals (23, 24). There is a large body of data from animal models that suggest that CR has a significant impact on various arms of the immune system. Most of the reports suggest that CR improves many parameters of immune responses (19, 25, 40), such as responses of T cells to mitogens, NK cell activity, CTL activity, and the ability of mononuclear cells to produce proinflammatory cytokines (55, 56). Additionally, long-term CR in primates enhances thymopoiesis and improves the TCR diversity (36). However, the mechanism of the effects of CR on age-related thymic involution process is incompletely understood. Here we present evidence that CR preserves the thymic microenvironment and prevents the age-related increase in PPARγ-dependent adipogenic progression of thymic stroma. Inhibition of PPARγ and its upstream activator XOR by CR is associated with increased thymopoiesis. The thymic fibroblasts undergo XOR- and PPARγ-dependent differentiation into adipocytes in vitro. Using an OP9-DL1 stromal cell model, we present direct evidence that liganded PPARγ compromises the T cell development that can be restored by blocking PPARγ. Furthermore, inhibition of thymic adipogenesis by CR was associated
with increased ETP frequency, enhanced thymic output, and prevention of age-related restriction of the peripheral TCR repertoire diversity.

Dramatic age-related changes occur in thymic microenvironment. The CD45/H11002 stromal cell number in 12-mo-old animals decreases along with a reduction in MHC class II expression on epithelial cell adhesion molecule-expressing TECs (37, 38). Recent evidence suggests that apart from TECs, the stromal fraction of thymic cellularity is also comprised of fibroblasts, and loss of TECs with age is associated with a concomitant increase in fibroblasts (37, 39, 40). Chemical-shift magnetic resonance imaging analyses of middle-aged human thymus revealed almost complete replacement of thymic space with adipocytes (40). Thymocytes have been demonstrated to control the development of thymic stroma in a stepwise fashion, and the importance of lympho-stromal interactions during thymic development is well recognized (57). Given that the loss of thymocytes precedes development of adipocytes in thymus (14, 22), it is plausible that thymic adipocytes arise secondarily to occupy thymic niches vacated by loss of thymocytes. In RAGnull mice, thymus is hypocellular and T cell development is blocked at the CD44/H11002 CD25/H11001 stage with disorganized medulla and abnormal thymic epithelial cells (57, 58). Given that thymi from young RAGnull mice have equivalent thymocyte numbers as do 28-mo-old C57B6L/J mice (3 to 5\(10^6\)), we

FIGURE 5. Xanthine oxidoreductase regulates PPAR\(\gamma\) expression in TSCs. A, Thymic XOR mRNA expression was quantified by real-time PCR analysis (\(n = 6\)/group). B, Total thymic protein was equalized and analyzed for XOR activity. CR prevents the age-related increase in XOR activity in the thymus (\(n = 6\)/group). C, The TSCs (from 3-mo-old mice) were treated with adipogenic cocktail (MDI), rosiglitazone, and MDI together with PPAR\(\gamma\) antagonist (GW9662. 1 \(\mu\)M). Compared with vehicle (DMSO)-treated cells, activation of PPAR\(\gamma\) up-regulates XOR mRNA. D, XOR inhibitor diphenylenediiodonium (DPI; 100 nM) blocks rosiglitazone-mediated adipogenesis of TSCs. E, Quantitation of PPAR\(\gamma\), perilipin, PPAR\(\gamma\) angiopoietin related (PGAR), and CD36 mRNA expression by real-time PCR demonstrates that XOR inhibitor (DPI) blocks MDI and rosiglitazone-mediated adipogenesis in TSCs. These data are expressed as means \(\pm\) SEM and are representative of duplicate wells from three separate experiments.
expected to observe a large number of thymic adipocytes in RAGnull animals. However, histological analysis of 4-wk-old RAGnull mice revealed no spontaneous increase in intrathymic adipocytes (data not shown). Additionally, the SCID/IL-2R γ-chain-null mice also have severe thymic hypocellularity (59, 60); however, similar to RAGnull mice, no adipocytes have been reported within the thymic

FIGURE 6. Adipogenesis of stromal cells compromises their T cell development capacity in a PPARγ-dependent pathway. A, The OP9-DL1 cells acquire adipocyte morphology upon 1 wk of treatment with rosiglitazone and MDI. B, The OP9-DL1 cells were treated with vehicle, rosiglitazone, MDI, and MDI along with PPARγ antagonist GW9662 (1 μM) for 1 wk. The adipogenic media was then replaced and OP9-DL1 stromal cells were cocultured with LSKs for 18 days with IL-7 and Flt3 ligand. The suspension cells were stained with CD4 FITC and CD8-PE and used for FACS analysis. C, mRNA expression of lipoprotein lipase (LPL) and (D) phosphoenolpyruvate carboxykinase (PEPCK), the PPARγ target genes, in OP9-DL1 cells was analyzed by real-time PCR. E and F, The real-time PCR analysis of stem cell factor (SCF), keratinocyte growth factor (KGF), Jag1, and Jag2 in OP9-DL1 cells induced to undergo adipogenesis in response to PPARγ agonist and adipogenic cocktail (MDI). MDI treatment in presence of the PPARγ-specific antagonist GW9662 blocks the loss of genes supporting T cell development. All experiments were performed in duplicate wells and repeated thrice. These data are expressed as means ± SEM.
space (59, 60). These data suggest that the healthy aging process initiates a specific set of events to promote intrathymic adipocyte development.

We have recently demonstrated that ablation of ghrelin signaling led to loss of TECs and an increase in adipogenic fibroblasts in thymus. Using FoxN1:Cre+/-stop/ROSALacZ double-transgenic...
mice, where the FoxN1-expressing TECs are indelibly marked with LacZ, we reported that TECs can transition into adipocytes via the process of EMT (22). Interestingly, we also found that a population of transitional EMT-derived fibroblast cells express PPARγ, suggesting that they may constitute a subset of intrathymic adipogenic precursors (22). Here, we show that CR preserves thymic stroma and inhibits the age-related increase in EMT and reduces the generation of local thymic fibroblasts. Thus, CR may prevent the age-related transition of TECs to fibroblasts and their further differentiation into adipocytes by reducing proadipogenic regulators (Fig. 8). Fibroblasts are highly plastic, as evidenced by their capacity to be induced to a pluripotent stem cell state by introduction of oct4, sox2, c-myc, and klf4 (61). Together with our recent report that a subset of TECs transition to fibroblasts via the EMT process (22), our current data suggest that PPARγ-driven adipogenic mechanism in thymic fibroblasts may contribute to age-related thymic involution.

It is well known that nuclear receptor PPARγ is required for insulin sensitivity and is necessary and sufficient for adipogenesis (48). PPARγ is regarded as a primary transcription factor for white adipose tissue differentiation and is induced during adipocyte development, and nonadipogenic cells with forced PPARγ expression undergo adipogenesis (47–49). Additionally, in response to chronic positive energy balance, fibroblasts differentiate into adipocytes in the white adipose tissue and serve as an energy storage source by accumulating lipids (47). The purpose of adipocytes is to regulate energy homeostasis and store esterified lipids in a manner that is nontoxic to cells and organisms, while the function of thymus is to produce T cells. Thymus is the major immune organ that is largely replaced with fat at an early age independent of adiposity or disease in humans (40). Given that the function of thymus is to establish and maintain T cell arm of immunity and not to regulate energy homeostasis, the adipocyte development within the thymic space is intriguing. Our findings that CR specifically regulates PPARγ-driven thymic adipogenesis without affecting the global PPARγ are consistent with the maintenance of insulin sensitivity in CR mice. Interestingly, unlike thymus, in bone marrow, CR reduced the adipocyte cell size but did not prevent the adipocyte formation. Reduction in adipocyte size is known to result in greater metabolic efficiency and higher insulin sensitivity (62). This raises the possibility that presence of adipocytes in bone marrow may have a function in regulating local energy balance. Furthermore, the effects of CR on proadipogenic genes appear to be quite specific and dependent on function and nature of adipose and lymphoid microenvironment.

Maintenance of thymic stromal cell microenvironment by CR, presumably through inhibition of EMT, may be one potential mechanism that maintains thymic function during aging. Given that secondary mesenchymal or fibroblast-like cells generated via EMT are multipotent (63), it is likely that these or other fibroblast cells in thymus are specifically driven into adipogenic fate because of age-related increase in PPARγ. Age-related progression of such cellular transition mechanisms and adipogenic cascades may culminate in conversion of thymus into “fatty tissue” in elderly. The testing of this hypothesis through aging of defined genetic animal models may provide definitive in vivo information to solve the puzzle of thymic adiposity.

Caloric restriction robustly prevented the age-related decrease in peripheral naive T cells, which was reflected in elevated TREC numbers. Interestingly, CR also blocked the age-related restriction of TCR repertoire. It is well known that the naive CD4+ T cells from aged animals and humans show reduced IL-2 production, proliferation, and helper functions (64–67). We therefore tested the effect of CR on T cell proliferation and IL-2 expression in 26-mo-old mice that display advanced thymic involution. We reasoned that, by 26 mo, mice are expected to develop greater thymic involution, and if the effects of CR on thymopoiesis in 18 mo of age are robust and inhibition of thymic adipogenic mechanisms has long-term consequence for thymic microenvironment, then the 26-mo-old mice on CR should also have reduced T cell senescence. Therefore, the ability of CR to increase T cell proliferation and IL-2, markers of T cell senescence, provides evidence that CR maintains this key function in aged mice. However, despite the marked improvement of thymic function and reduction in immunosenescence, aged mice on CR are unable to withstand influenza infection (68). This study further underscores that a positive energy balance is required for efficient adaptive immune response and robust T cell function under catabolic conditions induced by infection. The chronic negative energy balance induced by CR may diminish the energy reserves, negating the benefits elicited by the improvement in T cell diversity during aging. Also, the additional in vivo models to evaluate T cell response and cytokine production on chronic CR may provide direct evidence of the role of CR in mitigating age-related immunosenescence. Additionally, it would be important to determine whether shorter periods of CR that do not deplete peripheral energy stores can inhibit or delay age-related thymic function and offer protection from infectious challenges. However, it is important to consider that in several chronic illnesses or hematopoietic stem cell transplantation conditioning regimens, the elderly patients already have anorexia and
frailty, and recommending CR to enhance naïve T cell production is not advisable. Therefore, identification and development of compounds that mimic the biology of CR could help uncover novel pathways to enhance thymopoiesis.

Taken together, we demonstrate that CR inhibits adipose tissue development in the thymus by regulating the PPARγ pathway. Various attempts have been made to regenerate the aging thymus through the use of approaches targeted specifically toward the growth factors, lymphoid progenitors, thymocyte subsets, and thymic stromal cells. Our present findings provide further support to the hypothesis that inhibition of thymoapogenesis may represent an additional strategy to prevent or even reverse age-related thymic involution in the elderly.

Acknowledgments

We thank Drs. Avinash Bhandoola, Donald K. Ingram, and Roy Martin for thoughtful discussions. We also thank Anthony Ravussin, Chiaki Nakata, Rachel Oelmeyer, and Wubing Ye in the Dixoit Laboratory for excellent technical assistance.

Disclosures

The authors have no financial conflicts of interest.

References

