Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1-Dependent Pathway

Yung-Cheng Chiu, Ching-Yuang Lin, Chao-Ping Chen, Kui-Chou Huang, Kwok-Man Tong, Chung-Yuh Tzeng, Tu-Sheng Lee, Horng-Chaung Hsu and Chih-Hsin Tang

J Immunol 2009; 183:2785-2792; Prepublished online 27 July 2009;
doi: 10.4049/jimmunol.0802826
http://www.jimmunol.org/content/183/4/2785

References
This article cites 38 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/183/4/2785.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Peptidoglycan Enhances IL-6 Production in Human Synovial Fibroblasts via TLR2 Receptor, Focal Adhesion Kinase, Akt, and AP-1-Dependent Pathway

Yung-Cheng Chiu,§*† Ching-Yuang Lin,* Chao-Ping Chen,§ Kui-Chou Huang,§ Kwok-Man Tong,§ Chung-Yuh Tzeng,§ Tu-Sheng Lee,§ Horng-Chaung Hsu,* and Chih-Hsin Tang‡*‡

Peptidoglycan (PGN), the major component of the cell wall of Gram-positive bacteria, activates the innate immune system of the host and induces the release of cytokines and chemokines. We investigated the signaling pathway involved in IL-6 production stimulated by PGN in rheumatoid arthritis synovial fibroblasts. PGN caused concentration- and time-dependent increases in IL-6 production. PGN-mediated IL-6 production was attenuated by TLR2 small interfering RNA and nucleotide-binding oligomerization domain 2 small interfering RNA. Pretreatment with PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor, and AP-1 inhibitor (tanshinone IIA) also inhibited the potentiation action of PGN. PGN increased the focal adhesion kinase (FAK), PI3K, and Akt phosphorylation. Stimulation of rheumatoid arthritis synovial fibroblast cells with PGN increased the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element on the IL-6 promoter. PGN mediated an increase in the accumulation of phosphorylated c-Jun in the nucleus, AP-1-luciferase activity, and c-Jun binding to the AP-1 element was inhibited by Ly294002, Akt inhibitor, and FAK mutant. Our results suggest that PGN increased IL-6 production in human synovial fibroblasts via the TLR2 receptor/FAK/PI3K/Akt and AP-1 signaling pathway. *The Journal of Immunology, 2009, 183: 2785–2792.

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by robust infiltration of leukocytes into the synovium, resulting in hyperplasia of the synovial lining, progressive cartilage destruction, and erosion of the underlying bone (1). In response to the proinflammatory cytokines produced by macrophages, such as IL-1β and TNF-α, RA synovial fibroblasts (RASF) produce chemokines that promote inflammation, neovascularization, and cartilage degradation via activation of matrix-degrading enzymes (2). Peptidoglycan (PGN), a cell wall component of Gram-positive bacteria, is an alternating β-linked N-acetylmuramyl and N-acetylgulosamimyl glycan whose residues are cross-linked by short peptides (3, 4). Like LPS as a cell wall component of Gram-negative bacteria, PGN induces most of the clinical manifestations of bacterial infections, including inflammation, fever, septic shock, etc.

1 Address correspondence and reprint requests to Dr. Horng-Chaung Hsu, Graduate Institute of Basic Medical Science, National Taichung University of Science and Technology, Taichung, Taiwan. E-mail addresses: hchuang1954@tzu.edu.tw and mail.cmu.edu.tw
2 Address correspondence and reprint requests to Dr. Chih-Hsin Tang, Department of Pharmacy, College of Medicine, National Taiwan University, No. 4, Hsueh-Shih Road, Taichung, Taiwan. E-mail addresses: cljang@gmail.com and chtang@cmu.edu.tw
3 Abbreviations used in this paper: RA, rheumatoid arthritis; PGN, peptidoglycan; siRNA, small interference RNA; RASF, RA synovial fibroblasts; FAK, focal adhesion kinase; ODN, oligonucleotide; AS, antisense; MS, missense; LF2000, Lipofectamine 2000; NOD2, nucleotide-binding oligomerization domain 2 small interfering RNA; TLR2, toll-like receptor 2; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; CREB, cAMP response element binding protein; NF-IL-6, nuclear factor of interleukin-6; AP-1, activator protein 1; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase.
pathway for PGN in IL-6 production in synovial fibroblasts has not been extensively studied. In the present study, we explored the intracellular signaling pathway involved in PGN-induced IL-6 production in human synovial fibroblast cells. The results showed that PGN activates the TLR2 receptor and results in the activation of FAK/P13K/Akt and AP-1 pathway, leading to up-regulation of IL-6 expression.

Materials and Methods

Materials

Protein A/G beads, anti-mouse and anti-rabbit IgG-conjugated HRP, rabbit polyclonal Abs specific for TLR2, TLR4, nucleotide-binding oligomerization domain 2 (NOD2), α-tubulin, FAK, p85, phosphorylated Akt, Akt, phosphorylated c-Jun, c-Jun, lamin B, and the small interfering RNAs (siRNAs) against FAK, TLR2, NOD2, and control for experiments using targeted siRNA transfection (each consists of a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA) were purchased from Santa Cruz Biotechnology. ON-TARGET smart pool FAK siRNA and ON-TARGET plus siCONTROL. Nontargeting pool siRNA were purchased from Dharmaco. Rabbit polyclonal Abs specific for FAK phosphorylated at Tyr397, Tyr925, and Tyr577 were purchased from Cell Signaling Technology and Neuroscience. Ly294002, wortmannin, and Akt inhibitor (IL-6-hydroxymethyl-chioro-inositol-(2-(R-2-O-methyl-3-O-octadecylcarbonato)) were obtained from Calbiochem. The Tansushe H1A was purchased from BIOMOL. An IL-6 enzyme immunoassay kit was purchased from Cayman Chemical. The AP-1 luciferase plasmid was purchased from Stratagene. The phosphorylation site mutant of FAK(Y397F) was a gift from Dr. J. A. Girault (Institut du Fer à Moulin, Moulin, France). The p85α (P85α; deletion of 35 aa from residues 479–513 of p85) and Akt (Akt K179A) dominant-negative mutants were gifts from Dr. W. M. Fu (National Taiwan University, Taipei, Taiwan). The human IL-6 promoter construct (pIL6-luc51 (651–601 + 1)) was a gift from O. Eickelberg (Department of Medicine II, University of Giessen, Giessen, Germany). The pSV-β-galactosidase vector and luciferase assay kit were purchased from Promega. All other chemicals were obtained from Sigma-Aldrich.

Cell cultures

Human synovial fibroblasts were isolated using collagenase treatment from synovial tissues obtained from knee replacement surgeries of 10 patients with RA and three normal synovial tissues obtained at arthroscopy for trauma/joint derangement after approval by the local ethics committee. Patients with RA fulfilled the diagnostic criteria of the American College of Rheumatology (23). Fresh synovial tissues were minced and digested in a solution of collagenase and DNase. Isolated fibroblasts were filtered through 70-μm nylon filters. The cells were grown on plastic cell culture dishes in 95% air-5% CO2 with RPMI 1640 (Life Technologies) that was supplemented with 20 mM HEPES and 10% heat-inactivated FBS, 2 mM glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin (pH adjusted to 7.6). Fibroblasts from passages four to nine were used for the experiments.

Measurements of IL-6 production

Human synovial fibroblasts were cultured in 24-well culture plates. After reaching confluence, cells were treated with PGN and then incubated in a humidified incubator at 37°C for 24 h. For examination of the downstream signaling pathways involved in PGN treatment, cells were pretreated with various inhibitors for 30 min before PGN (30 μg/ml) administration. After incubation, the medium was removed and stored at −80°C until assay. IL-6 in the medium was measured by the IL-6 enzyme immunoassay kit according to the procedure described by the manufacturer.

mRNA analysis by RT-PCR

Total RNA was extracted from synovial fibroblasts using a TRIzol kit (MDBio). The reverse transcription reaction was performed using 2 μg of total RNA that was reverse transcribed into cDNA using oligo(dT) primer, then amplified for 33 cycles with two oligonucleotide primers: IL-6, AAATGCAACGCTGTGAGCAAG and AACAAAATCTGGAAGTC CCTGAGTCT AAT TAA AAL GTGCATGTCAGTCAGTTACGTC, TLR2, CCG CTA CATACCGCTGTCGCTGCG, TLR4, CGG CATCTACGACCTTCCTACGACACCTTGCTACAAACCACCTTGCTC, and GAPDH, AAGGCCATCACCATCTCCGGCATGACCATCTCTC. Each PCR cycle was conducted for 30 s at 94°C, 30 s at 55°C, and 1 min at 68°C. PCR products were then separated electrophoretically in a 2% agarose-DNA gel and stained with ethidium bromide.

Western blot analysis

The cellular lysates were prepared as described previously (24). Proteins were resolved on SDS-PAGE and transferred to Immobilon polyvinylidene difluoride membranes. The blots were blocked with 5% BSA for 1 h at room temperature and then probed with rabbit anti-human Abs against p85, phosphorylated Akt, Akt, or FAK (1/1000) for 1 h at room temperature. After three washes, the blots were subsequently incubated with a donkey anti-rabbit peroxidase-conjugated secondary Ab (1/1000) for 1 h at room temperature. The blots were visualized by ECL using Kodak X-Omat LS film (Eastman Kodak). Quantitative data were obtained using a computing densitometer and ImageQuant software (Molecular Dynamics).

Oligonucleotide (ODN) transfection

RASF cells were cultured to confluence; the complete medium was replaced with Opti-MEM (Invitrogen) containing the antisense phosphorothioate ODNs (5 μg/ml) that had been preincubated with 10 μg/ml Lipofectamine 2000 (LF2000; Invitrogen) for 30 min. The cells were washed after 24 h of incubation at 37°C and washed again before the addition of medium containing PGN. All antisense ODNs were synthesized and then purified by HPLC (MDBio). The sequences used were as follows: c-Jun antisense (AS)-ODN, CGTTCATCATTTGCAAGT and missense (MS)-ODN, ACTGCAAAGATGGAACCG.

Synthesis of NF-κB and AP-1 decoy ODNs

We used a phosphorothioate double-stranded decoy ODN carrying the NF-κB consensus sequence 5′-CCTGTGAGGATTTCCCTCTC-3′/3′-GGAAACCTCTTCAAGGGAGG-5′. The AP-1 decoy ODN sequence was 5′-TGGCTAGTACCGTGCTC-3′/3′-ACAGACTGATACGAG-5′. The mutated (scrambled) form 5′-TGGCTGCCTACGTGCTC-3′/3′-ACAGACTGATACGAG-5′ was used as a control. ODN (5 μM) was mixed with LF2000 (10 μg/ml) for 25 min at room temperature, and the mixture was added to cells in serum-free medium. After 24 h of transfection, the cells were used for the following experiments.

Transfection and reporter gene assay

Human synovial fibroblasts were cotransfected with 0.8 μg of AP-1-luciferase plasmid and 0.4 μg of β-galactosidase expression vector. RASF cells were grown to 80% confluence in 12-well plates and were transfected on the following day by LF2000 (Invitrogen). DNA and LF2000 were premixed for 20 min and then applied to the cells. After a 24-h transfection, the cells were incubated with the indicated agents. After a further 24-h incubation, the medium was removed and cells were washed once with cold PBS. To prepare lysates, 100 μl of reporter lysis buffer (Promega) was added to each well and cells were scraped from the dishes. The supernatant was collected after centrifugation at 13,000 rpm for 2 min. Aliquots of cell lysates (20 μl) containing equal amounts of protein (20–30 μg) were placed into wells of an opaque black 96-well microplate. An equal volume of luciferase substrate was added to all samples, and luminescence was measured in a microplate luminometer. The value of luciferase activity was normalized to transfection efficiency monitored by the cotransfected β-galactosidase expression vector.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation analysis was performed as described previously (24). DNA immunoprecipitated by anti-c-Jun Ab was purified. The DNA was then extracted with phenol-chloroform. The purified DNA pellet was subjected to PCR. PCR products were then resolved by 1.5% agarose gel electrophoresis and visualized by UV light. The primers 5′-GAATCTGACGTCCCCATACATA-3′ and 5′-TTGCCG CTCATGGAATATGACGC-3′ were used to amplify across the human IL-6 promoter region (∼312 to ∼39).

Statistics

For statistical evaluation, the Mann-Whitney U test for non-Gaussian parameters and Student t test for Gaussian parameters (including Bonferroni correction) were used. The difference was significant if p < 0.05.

Results

PGN induces IL-6 production in human synovial fibroblasts

The typical pathology of RA includes chronic inflammation of the synovium, which is characterized by infiltrations of inflammatory
cells and synovial hyperplasia, especially fibroblast-like synoviocytes. Therefore, we decided to use human synovial fibroblasts to investigate the signaling pathways of PGN in the production of IL-6, an inflammatory response gene. We found that the RASF expressed higher levels of IL-6 than normal synovial fibroblasts (Fig. 1A). Treatment of RASF with PGN (1–100 μg/ml) for 24 h caused concentration- and time-dependent increases in IL-6 production by PGN. A. Normal synovial fibroblasts (n = 3) and RASF (n = 5) were cultured for 48 h. Media were collected to measure IL-6. Human synovial fibroblasts were incubated with various concentrations of PGN for 24 h (B) or with PGN (30 μg/ml) for 4, 6, 12, or 24 h (C). Media were collected to measure IL-6. Results are expressed of four independent experiments performed in triplicate. *p < 0.05 as compared with basal level. D. RASF cells were pretreated with polymyxin B (Poly B; 1 μM) for 30 min followed by stimulation with LPS (1 μM) or PGN (30 μg/ml) for 24 h. Media were collected to measure IL-6. Results are expressed of four independent experiments performed in triplicate. *p < 0.05 compared with basal level and #p < 0.05 compared with LPS or PGN-treated group.

FIGURE 1. Concentration- and time-dependent increases in IL-6 production by PGN. A. Normal synovial fibroblasts (n = 3) and RASF (n = 5) were cultured for 48 h. Media were collected to measure IL-6. Human synovial fibroblasts were incubated with various concentrations of PGN for 24 h (B) or with PGN (30 μg/ml) for 4, 6, 12, or 24 h (C). Media were collected to measure IL-6. Results are expressed of four independent experiments performed in triplicate. *p < 0.05 as compared with basal level. D. RASF cells were pretreated with polymyxin B (Poly B; 1 μM) for 30 min followed by stimulation with LPS (1 μM) or PGN (30 μg/ml) for 24 h. Media were collected to measure IL-6. Results are expressed of four independent experiments performed in triplicate. *p < 0.05 compared with basal level and #p < 0.05 compared with LPS or PGN-treated group.

FIGURE 2. Involvement of TLR2 receptor in PGN-mediated IL-6 production in synovial fibroblasts. Total RNA was extracted from RASF cells and subjected to RT-PCR for IL-6 and TLR2 mRNAs using the respective primers. Note that RASF cells express IL-6 and TLR2 receptor mRNA, and IL-6 and TLR2 mRNA increased in response to PGN (30 μg/ml) application for 24 h (A). RASF cells were transfected with TRL2 or control siRNA for 24 h and the protein levels of TLR2 and TLR4 were determined by using Western blot analysis (B). RASF cells were transfected with TLR2 or control siRNA for 24 h followed by incubation with PGN (30 μg/ml) for 24 h to analyze the mRNA and protein expression, respectively. Total RNA and medium were collected and the expressions of IL-6 were analyzed by RT-PCR and ELISA (C and D). RASF cells were transfected with NOD2 or control siRNA for 24 h and the protein levels of NOD2 were determined by using Western blot analysis (E). RASF cells were transfected with NOD2 or control siRNA for 24 h and then stimulated with PGN (30 μg/ml) for 24 h. Media were collected to measure IL-6 (F). Results are representative of at least three independent experiments. *p < 0.05 compared with control and #p < 0.05 as compared with PGN-treated group.
induced IL-6 production in a concentration-dependent manner (Fig. 1B), and this induction occurred in a time-dependent manner (Fig. 1C). After PGN (30 μg/ml) treatment for 24 h, the amount of IL-6 released had increased in RASF cells (Fig. 1C). To further confirm this stimulation-specific mediation by PGN without LPS contamination, we used polymyxin B, a LPS inhibitor. We found that polymyxin B (1 μM) completely inhibited LPS (1 μM)-induced IL-6 release. However, it had no effect on PGN (30 μg/ml)-induced IL-6 release in RASF cells (Fig. 1D).

Involvement of TLR2 receptor in PGN-mediated increase of IL-6 production

PGN exerts its effects through interaction with a specific TLR2 receptor (6). To investigate the role of the TLR2 receptor in the PGN-mediated increase of IL-6 production, we assessed the distribution of the TLR2 receptor in human synovial fibroblasts by RT-PCR analysis (Fig. 2A). The mRNA of the TLR2 receptor could be detected in human synovial fibroblasts (Fig. 2A). Upon PGN treatment for 24 h, the mRNA levels of IL-6 and TLR2 receptor were evidently increased (Fig. 2A). We next examined whether the TLR2 receptor is involved in the PGN-mediated increase of IL-6 release; specific inhibition of TLR2 receptor expression was accomplished with siRNA (Fig. 2B). The TLR2 siRNA did not affect the expression of TLR4 (Fig. 2B) and also did not affect the LPS-induced IL-6 production in human RASF cells (data not shown). By using RT-PCR and ELISA, we found that TLR2 receptor-specific siRNA but not control siRNA significantly blocked the PGN-mediated increase of IL-6 production in human synovial fibroblasts. It has been reported that PGN can also stimulate IL-6 expression through the intracellular receptor NOD2 pathway (25). We next examined whether the NOD2 pathway is involved in PGN-mediated IL-6 production. Transfection of RASF cells with NOD2 siRNA suppressed the NOD2 expression (Fig. 2E). In addition, NOD2 siRNA also reduced PGN-induced IL-6 production in human RASF cells (Fig. 2F). Therefore, the NOD2 signaling pathway is also involved in PGN-mediated IL-6 expression.

The signaling pathways of FAK, PI3K, and Akt are involved in the potentiating action of PGN

It has been reported that FAK is involved in the TLR2-mediated inflammatory response (26, 27). Phosphorylation of tyrosine 397 of FAK has been used as a marker of FAK activity. As shown in Fig. 3A, FAK phosphorylation increased in a time-dependent manner in a concentration-dependent manner (Fig. 1B), and this induction occurred in a time-dependent manner (Fig. 1C). After PGN (30 μg/ml) treatment for 24 h, the amount of IL-6 released had increased in RASF cells (Fig. 1C). To further confirm this stimulation-specific mediation by PGN without LPS contamination, we used polymyxin B, a LPS inhibitor. We found that polymyxin B (1 μM) completely inhibited LPS (1 μM)-induced IL-6 release. However, it had no effect on PGN (30 μg/ml)-induced IL-6 release in RASF cells (Fig. 1D).
manner in response to PGN stimulation, reaching the maximum 
between 10 and 30 min. However, PGN did not affect the phos-
phorylation of tyrosine 577 and 925 of FAK (Fig. 3A). Transfec-
tion of cells with FAK(Y397F) mutant reduced the PGN-mediated 
IL-6 production (Fig. 3B). We also used FAK siRNA to confirm 
the role of FAK in PGN-induced IL-6 expression. Transfection of 
cells with FAK siRNA reduced the expression of FAK (Fig. 3C). 
In addition, FAK siRNA also abolished PGN-mediated IL-6 pro-
duction (Fig. 3D). To avoid the off-target effect of siRNA, we also 
assessed the role of FAK by using ON-TARGET smart pool FAK, 
which decreases nonspecific effects by chemical modification and 
pooling (28). Transfection of RASF cells with ON-TARGET smart 
pool FAK siRNA reduced the basal level of FAK (Fig. 3E). Simi-
larly, inhibition of ON-TARGET smart pool FAK siRNA de-
creased PGN-induced IL-6 production (Fig. 3F). Therefore, FAK 
plays an important role in PGN-induced IL-6 expression. Phos-
phorylation of tyrosine 397 of FAK may provide a binding site for 
the Src homology 2 domain of the p85 subunit of PI3K (29). We 
next examined whether PGN stimulation also enhances the asso-
ciation of FAK with PI3K. Treatment of RASF cells with PGN led 
to a significant increase of phosphorylation of the p85 subunit of 
PI3K, as assessed by the measurement of phosphotyrosine from 
immunoprecipitated lysates using p85 (Fig. 4A). Pretreatment of 
cells with the PI3K inhibitor Ly294002 and wortmannin or trans-
fection of cells with FAK(Y397F) mutant decreased PGN-increased p85 activity (Fig. 4B). Akt phosphorylation in response to 
PGN was then measured. As shown in Fig. 4C, treatment of RASF 
cells with PGN resulted in a time-dependent phosphorylation of 
Akt. Furthermore, the PGN-induced increase in Akt phosphoryla-
tion was markedly inhibited by the pretreatment of cells for 30 min 
with Ly294002 and Akt inhibitor (1L-6-hydroxymethyl-chiro-ino-
sitol-2-[(R)-2-O-methyl-3-O-octadecylcarbonate]) or transfection 
with the FAK(Y397F) mutant for 24 h (Fig. 4D). Transfection of 
cells with FAK siRNA also reduced PGN-increased Akt phosphor-
ylation (Fig. 4E). In addition, pretreatment of RASF cells for 30 
min with Ly294002, wortmannin, and Akt inhibitor or transfection 
with p85, Akt mutant, or vector (control) for 24 h followed by 
stimulation with PGN for 24 h (F and G). Media were collected for the measurement of IL-6. *, p < 0.05 compared with control 
and #, p < 0.05 compared with PGN-treated group.

Involvement of AP-1 in PGN-induced IL-6 production

There are NF-κB- and AP-1-binding sites on the IL-6 promoter 
region (14, 15). The increase of IL-6 production by PGN was 
agonized by the cis-element decoy agonist AP-1-binding site 
(decoy AP-1 ODN) but not by the NF-κB binding site (decoy 
NF-κB ODN) or scrambled decoy (ODN) (Fig. 5A). The promoter 
region of human IL-6 contains three known cis-regulatory ele-
ments including AP-1, C/EBP-β, and NF-κB binding sites (30). 
Three different IL-6 promoter constructs containing mutations at 
NF-κB, AP-1, or C/EBP-β sites, respectively, were generated by 
site-directed mutagenesis. We found that PGN-stimulated luci-
ferase activity was abolished by AP-1 binding site mutation, but not 
by NF-κB or C/EBP-β site mutations (Fig. 5B). Therefore, the 
AP-1 binding site is more important than the NF-κB or C/EBP-β 
site in PGN-induced IL-6 production.

The role of AP-1 was further established using the AP-1 inhibi-
tor (tanshinone IIA) and showed that this inhibitor blocked the 
enhancement of IL-6 production induced by PGN. Fig. 5C shows 
that tanshinone IIA inhibited the enhancement of IL-6 production
induced by PGN. It has been reported that the AP-1 binding site between −283 and −276 was important for the activation of the IL-6 gene (14). AP-1 activation was further evaluated by analyzing the accumulation of phosphorylated c-Jun in the nucleus, as well as by the chromatin immunoprecipitation assay. Treatment of cells with PGN resulted in a marked accumulation of phosphorylated c-Jun in the nucleus (Fig. 5D). PI3K and Akt inhibitors or FAK mutant reduced PGN-induced accumulation of phosphorylated c-Jun in the nucleus (Fig. 5E). Transfection of cells with c-Jun AS-ODN or MS-ODN for 24 h and the protein levels of c-Jun were determined by Western blot analysis. G, RASF cells were transfected with c-Jun AS-ODN or MS-ODN for 24 h and then stimulated with PGN (30 μg/ml) for 24 h. Media were collected to measure IL-6. *, p < 0.05 compared with control and #, p < 0.05 compared with PGN-treated group.

Discussion
PGN, the major component of the cell wall of Gram-positive bacteria, activates the innate immune system of the host and induces the release of cytokines and chemokines (4, 31). It has been reported that PGN induces the expression of inflammatory cytokines through activation of the transcription factor AP-1 in myeloma cells (32). In this study, we further identified IL-6 as a target protein for the PGN signaling pathway that regulates the cell inflammatory response. We also showed that potentiation of IL-6 by PGN requires activation of the TLR2 receptor, FAK, PI3K, Akt, and AP-1 pathway. These findings suggest that PGN acts as an inducer of inflammatory cytokines such as IL-6 in human RASF cells.
The AP-1 sequence binds to members of the Jun and Fos families and induces IL-6 secretion through the AP-1-dependent pathway (36). It has been reported that PGN increases IL-6 expression in human RASF cells via the TLR2/FAK/PI3K/Akt signaling pathway. Taken together, our results provide evidence that PGN increases IL-6 production in RASF cells. In addition, the Akt inhibitor or cotransfected with p85, Akt, and FAK mutant or c-Jun AS-ODN before incubation with PGN for 24 h (C and D). Luciferase activity was then assayed. *, p < 0.05 compared with control and #, p < 0.05 compared with PGN-treated group.

FAK, a potential candidate signaling molecule, has been shown to be capable of regulating integrin-mediated signaling (34, 35). It has been shown that FAK is involved in the TLR2-mediated inflammatory response (26, 27). We demonstrated that PGN increased phosphorylation of tyrosine 397 but not 577 and 925 of FAK. Furthermore, the FAK(Y397F) mutant antagonized the PGN-induced IL-6 production. These results suggest that FAK mediates PGN-induced IL-6 release.

PGN, as a component of the cell wall of Gram-positive bacteria, may act through the FAK, PI3K, Akt, c-Jun, and AP-1 pathway to induce IL-6 activation in human RASF cells. Furthermore, the FAK(Y397F) mutant antagonized the PGN-induced IL-6 production in RASF cells. Therefore, the c-Jun activation is mediated by PGN-increased IL-6 expression. Furthermore, PGN increased the binding of c-Jun to the AP-1 element on the IL-6 promoter, as shown by chromatin immunoprecipitation assay. Binding of c-Jun to the AP-1 element was attenuated by Ly294002, Akt inhibitor, and FAK mutant. Using transient transfection with AP-1-luciferase as an indicator of AP-1 activity, we also found that PGN induces IL-6 production in RASF cells. Therefore, the c-Jun activation is mediated by PGN-increased IL-6 expression. Furthermore, PGN increased the binding of c-Jun to the AP-1 element on the IL-6 promoter, as shown by chromatin immunoprecipitation assay. Binding of c-Jun to the AP-1 element was attenuated by Ly294002, Akt inhibitor, and FAK mutant.

FAK is involved in the TLR2-mediated inflammatory response (26, 27). We demonstrated that PGN increased phosphorylation of tyrosine 397 but not 577 and 925 of FAK. Furthermore, the FAK(Y397F) mutant antagonized the PGN-induced IL-6 production. These results suggest that FAK mediates PGN-induced IL-6 release.

FAK, a potential candidate signaling molecule, has been shown to be capable of regulating integrin-mediated signaling (34, 35). It has been shown that FAK is involved in the TLR2-mediated inflammatory response (26, 27). We demonstrated that PGN increased phosphorylation of tyrosine 397 but not 577 and 925 of FAK. Furthermore, the FAK(Y397F) mutant antagonized the PGN-mediated potentiation of IL-6 expression, suggesting that tyrosine 397 of FAK activation is an obligatory event in PGN-mediated potentiation of IL-6 expression. Furthermore, the FAK(Y397F) mutant antagonized the PGN-induced accumulation of phosphorylated c-Jun in the nucleus. In addition, c-Jun AS-ODN also abolished the PGN-induced IL-6 production in RASF cells. Therefore, the c-Jun activation is mediated by PGN-increased IL-6 expression. Furthermore, PGN increased the binding of c-Jun to the AP-1 element on the IL-6 promoter, as shown by chromatin immunoprecipitation assay. Binding of c-Jun to the AP-1 element was attenuated by Ly294002, Akt inhibitor, and FAK mutant.

Patients with RA are at increased risk of developing infections and appear to be particularly susceptible to septic arthritis, osteomyelitis, and skin and soft tissue infections (37), which are mostly caused by Staphylococcus aureus. It has been shown that S. aureus and other Gram-positive bacteria are potent inducers of TNF-α secretion from macrophages (38). In response to TNF-α, RASF cells produce chemokines that promote inflammation neovascularization and cartilage degradation. To simply observe the effects of Gram-positive bacteria infection in RA patients, we used the major component of the cell wall of Gram-positive bacteria, PGN, to examine the proinflammatory cytokine (IL-6) in human RASF cells. We found that PGN increased IL-6 production and that the TLR2, FAK, Akt, and AP-1 signaling pathway may be involved in such production. Furthermore, the discovery of a PGN-mediated TLR2/AP-1-dependent pathway helps us to understand the mechanism of RA and may help us to develop more effective therapies in the future.
In conclusion, we explored the signaling pathway involved in PGN-induced IL-6 production in human synovial fibroblasts. We found that PGN increases IL-6 production by binding to the TLR2 receptor and activating of FAK, PI3K, Akt, which enhances binding of c-Jun to the AP-1 site, resulting in the transactivation of IL-6 expression.

Acknowledgments
We thank Dr. J. A. Girault for providing the FAK(Y397F) mutant; Dr. W. M. Fu for providing p85 and Akt mutants; and Dr. Oliver Eickelberg for providing IL-6 promoter plasmids.

References