Intracellular Replication-Deficient
Leishmania donovani Induces Long Lasting
Protective Immunity against Visceral
Leishmaniasis

Angamuthu Selvapandiyan, Ranadhir Dey, Susanne Nylen,
Robert Duncan, David Sacks and Hira L. Nakhasi

J Immunol 2009; 183:1813-1820; Prepublished online 10
July 2009; doi: 10.4049/jimmunol.0900276
http://www.jimmunol.org/content/183/3/1813

Supplementary
Material

http://www.jimmunol.org/content/suppl/2009/07/13/jimmunol.0900276.DC1

References

This article cites 42 articles, 26 of which you can access for free at:
http://www.jimmunol.org/content/183/3/1813.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Intracellular Replication-Deficient Leishmania donovani Induces Long Lasting Protective Immunity against Visceral Leishmaniasis

Angamuthu Selvapandiyan,* Ranadhir Dey,* Susanne Nylen,† Robert Duncan,* David Sacks,† and Hira L. Nakhasi1,*

No vaccine is currently available for visceral leishmaniasis (VL) caused by Leishmania donovani. This study addresses whether a live attenuated centrin gene-deleted L. donovani (LdCen1Δ−/−) parasite can persist and be both safe and protective in animals. LdCen1Δ−/− has a defect in amastigote replication both in vitro and ex vivo in human macrophages. Safety was shown by the lack of parasites in spleen and liver in susceptible BALB/c mice, immune compromised SCID mice, and human VL model hamsters 10 wk after infection. Mice immunized with LdCen1Δ−/− showed early clearance of virulent parasite challenge not seen in mice immunized with heat killed parasites. Upon virulent challenge, the immunized mice displayed in the CD4+ T cell population a significant increase of single and multiple cytokine (IFN-γ, IL-2, and TNF) producing cells and IFN-γ/IL10 ratio. Immune response, the Th1 response correlated with a significantly reduced parasite burden in the spleen and no parasites in the liver compared with naive mice 10 wk post challenge. Protection was observed, when challenged even after 16 wk post immunization, signifying a sustained immunity. Protection by immunization with attenuated parasites was also seen in hamsters. Immunization with LdCen1Δ−/− also cross-protected mice against infection with L. braziliensis that causes mucocutaneous leishmaniasis. Results indicate that LdCen1Δ−/− can be a safe and effective vaccine candidate against VL as well as mucocutaneous leishmaniasis causing parasites. The Journal of Immunology, 2009, 183: 1813–1820.

The obligate kinetoplastid protozoan parasites of the genus Leishmania are spread by sand fly vectors and cause a spectrum of diseases collectively known as leishmaniasis that ranges from self-healing cutaneous leishmaniasis (CL),2 mucocutaneous leishmaniasis (MCL), and to fatal visceral leishmaniasis (VL). Leishmaniasis is endemic to 88 countries in the tropical and subtropical world, affecting 12 million people and threatening 350 million more. Drug treatment requires long-term medication, which is expensive and highly toxic. A vaccine for leishmaniasis has been a goal for a century, but there are still no effective vaccines (1). The knowledge that a cured disease either due to a natural infection or cutaneous leishmanization (1) protects the individual from reinfection and the persistence of a few parasites in the body can impart life-long protection against leishmaniasis, has encouraged researchers to develop live attenuated Leishmania vaccine candidates.

So far, several procedures have been used to develop live attenuated Leishmania parasites including long-term in vitro cultures, selection for temperature sensitivity, chemical mutagenesis, and irradiation (1, 2). Although such live attenuated lines have shown substantial protection against challenge in animal models, undefined random genetic mutations and concerns arising from potential reversion to virulence make such vaccines unsuitable for human vaccination. Indeed, the persistence of asymptomatic infection especially in immunocompromised individuals raises the risk of reversion to clinical disease. Moreover, attenuations due to undefined genome alterations can reduce effective protective immunity, either they fail to persist long enough to elicit an immune response or lack critical epitopes to evoke the protective response (3). Alternatively, attenuation obtained through targeted genetic disruptions of essential growth regulating or virulence genes by homologous recombination is nonrevertible, hence can be safe (1). Moreover, sustained exposure of parasite Ag to the host eliminates the need of any adjuvants that are required in other nonliving vaccines (e.g., subunit vaccines).

There are several examples of targeted gene deletions that have been conducted for developing Leishmania-attenuated vaccine strains. Among the vaccine candidates studied for CL, L. major dihydrofolate reductase thymidylate synthase (dhfr-ts−) knockout parasites protect mice (4) but not Rhesus monkeys (5). L. major deficient in surface and secreted phosphoglycans (lpq−), although unable to survive in sand flies and macrophages, retained the ability to persist indefinitely in mice and conferred protection against virulent challenge, even in the absence of a strong Th1 response (6, 7). Over time, however, lpq− (a complete gene knockout) parasites unexpectedly regained virulence (8). L. major deleted for phosphomannomutase-protected mice, despite no increase in either effector or...
memory response (9). In contrast, L. mexicana that also causes CL, deficient in cysteine proteinase genes (Δpap and Δpab), conferred protection in mice and hamsters against homologous challenge (10, 11). Among the vaccination studies in VL, mice immunized with a L. donovani strain deleted for bioprotein transporter (Bti) were similarly protected (12). Recent attempts using partial knockout parasites A2-A2rel gene cluster in L. donovani (13) and SIR2 gene in L. infantum (14) as immunogens induced protection against virulent challenge in BALB/c mice. However, such mutants cannot be used as vaccine candidates, because they still carry wild-type (Wt) allele(s) and could cause disease.

Despite limitations with most of the mutant strains, these experiments clearly demonstrate the potential as well as the pitfalls of generating live attenuated Leishmania vaccines by targeted gene deletions. Hence it is critical to develop attenuated lines through complete gene knockouts that generate avirulent organisms that persist for a brief duration but eventually are completely eliminated, thereby inducing effective immunity without clinical disease or the risk of reactivation. Recently, we have developed a L. donovani strain completely deleted for the centrin1 gene (15). Centrin1 is a calcium-binding basal body-associated protein involved in cell division in protozoan parasites like Leishmania, Trypanosoma, and Plasmodium (16–18) and centrosome associated in higher eukaryotes (19). We demonstrated that deletion of LdCent1 (LdCent1Δ/Δ) did not affect the growth of the promastigote in vitro, however, the growth of the mammalian-infecting, amastigote form of the parasite, was blocked. These amastigotes showed failure of basal body duplication and cytokinesis, resulting in large multinucleated cells in culture and ex vivo in human macrophages (15). We tested this unique parasite line for its safety and protective efficacy against homologous and heterologous virulent Leishmania challenge and the immune response correlating with protection in rodent animal models.

Materials and Methods

Animals and parasites

Five- to six-wk-old female BALB/c mice from National Cancer Institute, SCID mice (BALB/c background) from The Jackson Laboratory, and 40–50 gm male Syrian golden hamsters from Charles River Laboratories were used in the experiments. Procedures used were reviewed and approved by the Animal Care and Use Committee, Center for Biologics Evaluation and Research, Food and Drug Administration. Among parasites, the Wt, centrin1-deleted (LdCent1Δ/Δ) and centrin1 deleted but epitomally with centrin1 protein expressing line (LdCent1Δ/Δ AB) of L. donovani (15) were used. The parasite culture procedure and the routine molecular biology practices were as previously described (16).

Vaccinations and challenge studies

In independent experiments, the mice were inoculated/vaccinated via tail vein with 3 million metabolic cells of either L. donovani Wt, or LdCent1Δ/Δ parasites. Infective-stage metacyclic promastigotes of L. donovani were used (20) in motion cultures by density gradient centrifugation as described (20). Control groups (naive) corresponded to mice that received a saline solution (PBS). Mice vaccinated with LdCent1Δ/Δ parasites after different time periods were challenged via tail vein with 3 million virulent Wt L. donovani metacyclic parasites. Age-matched naive mice as control groups were also similarly challenged with 3 million virulent metacyclic L. donovani parasites. In separate experiments, mice vaccinated (with LdCent1Δ/Δ) or not (naive with saline) were also challenged by injecting i.m. on left hind footpad with 3 million metacyclic L. braziliensis parasites. Hamsters were inoculated intracardially with 10 million metabolic cells of Wt or LdCent1Δ/Δ parasites. The hamsters vaccinated with LdCent1Δ/Δ or not (naive with saline) were challenged after 5 wk intracardially with 10 million metacyclic virulent L. donovani parasites. After post challenge periods, parasite load was recorded from spleens and livers from the L. donovani-challenged mice and hamsters and footpads and lymph nodes from the 5. Leishmania-induced susceptibility to infection with L. major and L. tropica in mice

Centrin1-deleted L. donovani metacyclics when used to infect human macrophages in vitro or injected in susceptible BALB/c mice, displayed an attenuated growth (i.e., reduction in the number of
infection; WC, wk after challenge; shown. Cha, challenged; Imm, immunized; ND, not detected; WI, wk after similar results. Mean and SEM of four or more mice in each group are from the organs were measured after different time points post challenge. periods with virulent Wt LdCen1
L. donovani Avirulence and immunoprotective properties of centrin FIGURE 1. Induction of multifunctional Th1 effector cells correlates with LdCen1−/−-induced protection
infection; spleen or liver 5 wk postinfection com-
ab
b
para
DNA from spleens of mice infected either with Wt or LdCen1−/− parasites (supplementary Table 1). Detection of the parasite mini-circle DNA target indicated the presence of a substantial number of parasites in both Wt-infected (6 wk) and LdCen1−/−-infected (5 wk) mice. However, the mice infected with LdCen1−/− for 12 wk showed a level equivalent to naïve mice, which can be considered as a background, signifying either no LdCen1−/− parasites or significantly reduced parasite burden in mice at this time point. Hence, it appears that the parasites are present for at least 5 wk in the viscera as opposed to disappearing within just a few days. Similarly, we did not observe any LdCen1−/− parasites at 12 wk postinfection in SCID mice, indicating that their clearance is not dependent on functional T and B cells (Fig. 1b).

Protective efficacy of LdCen1−/− parasites against virulent infection
The ability of LdCen1−/− parasite to protect against Leishmania infection was determined in 5-wk immunized mice (WI) followed by challenge with virulent Wt L. donovani. Spleen and liver were analyzed for parasite burden 4, 8, and 10 wk post challenge (WPC), measured by limiting dilution. The results showed that the immunized mice had ~2-log-fold reduced (p < 0.01) parasite burden in spleen and undetectable parasite in liver compared with naïve-challenged mice at 10 WPC (Fig. 1c). However, there was no significant change in the weight of liver or spleen of immunized or unimmunized mice. To evaluate the ability of LdCen1−/− immunization to confer lasting protection, mice were challenged with virulent Wt L. donovani 12 or 16 wk following LdCen1−/− immunization, and evaluated after 10 wk. The parasite burden in the spleen and liver indicated that the level of protection in both immunized groups (12 WI and 16 WI) was similar to the level observed for the 5 WI group, indicating a sustained protective response after immunization (Fig. 1c). A similar result was observed in a separate experiment where mice were challenged after 24 wk of immunization (data not shown). No protection was observed 8 WPC in mice immunized with heat killed 3 million LdCen1−/− metacyclics challenged 5 wk after immunization (supplementary Fig. 1b), suggesting that live attenuated parasites were required to induce protective immunity. Overall, the results suggest that mice immunized with LdCen1−/− elicit a strong and sustained protection against the virulent challenge.

Induction of multifunctional Th1 effector cells correlates with LdCen1−/−-induced protection
The involvement of IFN-γ-producing Th1 cells in immunity against Leishmania is described (25). We also observed an absolute requirement for IFN-γ in LdCen1−/−-induced immunity. IFN-γ knockout mice immunized with LdCen1−/− for 5 wk followed by challenge were not protected. Parasite burden from these mice was similar to naïve-challenged control observed at 10 wk post challenge (Fig. 2). To further investigate the cell-mediated responses induced by LdCen1−/− parasites and find a correlate of protective immunity, we measured the Th1 cytokines IFN-γ, TNF, and IL-2 produced by splenic CD4+ and CD8+ T cells from the BALB/c mice using multiparameter flow cytometry. Spleen cells grown in vitro with or without freeze thaw Ags followed by multicolor staining were gated based on forward and side scatter in FlowJo to select only the lymphocyte population devoid of dead cells and other larger leukocytes (Fig. 3a, left) and further gating of the lymphocytes for the CD3+ (Fig. 3a, middle) followed by gating of CD3+ in to CD4+ and CD8+ T cells (Fig. 3a, right). Seven distinct populations of cytokine-producing cells were defined from the CD4+ and CD8+ T cells based on different combinations of IFN-γ,
FIGURE 2. Lack of protection of LdCen1−/− vaccinated IFN-γ knock-out mice against virulent challenge. IFN-γ knockout mice vaccinated with LdCen1−/− parasites were challenged after 5 wk with virulent Wt L. donovani and the challenge parasite burdens from organs were measured after 10 wk post challenge. Mean and SEM of four mice in each group are shown.

TNF, and IL-2 (a representative analysis is shown in Fig. 3b). The quality of the Th1 response is based on the relative frequency of these distinct populations (26). Five weeks after immunization with LdCen1−/−, single cytokine-producing CD4+ and CD8+ T cells, making either IFN-γ or IL-2, were more predominant than multicytokine-producing subpopulations post immunization (Fig. 3, a and d). Similar analysis conducted with spleens of immunized mice analyzed 10 WPC showed a significantly higher percent (2- to 10-fold; p < 0.01) of the cytokine-producing subpopulations than in the naive challenged mice (Fig. 3, c and f). Importantly, the expansion of multifunctional cells was clearly evident in the immunized mice 10 WPC. Interestingly, the percent of both CD4+ and CD8+ T cells that make TNF alone increased significantly (up to 2-fold; p < 0.01) after challenge in LdCen1−/− immunized mice. The percentage of T cells that produce Th1 cytokines increased after immunization and the increased frequency of multifunctional cells after challenge strongly correlated with protection.

We also quantitated T cells that produce IL-10, a cytokine involved in the pathogenesis of VL (27). The ratio of IFN-γ to IL-10 serves as an additional correlate of immune protection (14). In the restimulated CD4+ T cells from the spleen, the IFN-γ/IL-10 ratio was significantly higher in the immunized mice both at the time of challenge (5 WI) and after challenge (5 WI plus 10 WC) compared with either naive or naive-challenged controls (Fig. 3g). The results thus indicate an increased IFN-γ secretion coinciding with reduced IL-10 production among the immunized mice, indicating a strong Th1 response that could be accountable for protective immunity.

Recent studies in CL infection in mice indicate a role for nonregulatory T cells, which simultaneously produce IFN-γ and IL-10, for immune suppression during pathogenesis of a nonhealing lesion (28). Hence, we also looked at IFN-γ+ T cells that coproduce IL-10 cytokine after immunization with LdCen1−/−. The results indicated a significantly higher percentage of CD4+ T cells positive for both IFN-γ and IL-10 in the 5-wk-immunized mice than in controls (Fig. 3h). No increase of such cells in the CD4+ population was observed either 12 or 16 wk after immunization (data not shown). The presence of IFN-γ and IL-10 coproducing CD4+ cells early after immunization (5W, a time point when LdCen1−/− parasites are still detectable), might reflect immune modulation to reduce inflammation-mediated host damage.

Induction of humoral response in the immunized mice

We evaluated the humoral response in the immune-challenged mice. Sera from BALB/c mice taken 10 wk post challenge after 5, 12, or 16 immunization weeks were measured for Leishmania-specific IgG, IgG1, and IgG2a responses. Results indicated a higher level of all three Ab populations in the immune-challenged groups compared with the naive challenged groups (Fig. 4a). Importantly, the immunization led to a selective increase in Th1-driven IgG2a Ab levels during infection (p < 0.01). The results indicate a higher Leishmania specific humoral immune response generated by immunization with LdCen1−/− that correlates with the increase in the Th1 response.

Increased NO production in spleen cells in the immune-challenged mice

Because the production of NO by macrophages is a key factor in killing Leishmania, we determined the level of NO produced by in vitro Ag restimulated splenocytes that included macrophages derived from the immune-challenged mice by ELISA. Interestingly, significantly higher (p < 0.01) levels of the reactive NO radical (nitrite) were demonstrated in the supernatants of splenocytes of the three immune-challenged groups (Fig. 4b). We also analyzed Ag-specific release of nitrite from the cultured macrophages derived from the peritoneal fluids of mice. There is a small increase in NO production in macrophages of the naive mice, suggesting a background level in this assay, as well as in the naive challenged mice with the addition of FTAg. However, in the immunized, challenged mice the production of NO in response to FTAg is significantly higher (p < 0.01) than the naive challenged mice, which clearly correlates with protection (supplemental Fig. 2).

Safety and efficacy of LdCen1−/− in the hamster model

Because golden Syrian hamsters are considered a more appropriate model for VL (29), we evaluated the safety and protection of LdCen1−/− against L. donovani challenge in this species. The LdCen1−/− parasite burden in spleens, measured by limiting dilution, was 3-log-fold less than Wt L. donovani 5 wk after inoculation in hamsters and no LdCen1−/− parasites were found in the liver, whereas at 10 wk post immunization, no LdCen1−/− parasites were observed in any of the organs in contrast to hamsters inoculated with virulent parasites, which had significantly higher number of parasites in both spleen and liver (Fig. 5a). Further persistence of the parasites in the hamster model was evaluated by performing real-time minicircle PCR on spleen DNA samples collected more than 3 mo postinfection. Samples from Wt-infected hamsters gave a Ct value indicating a substantial number of parasites, while at the same time point, LdCen1−/−-infected samples gave a Ct value equivalent to the uninfected hamsters. After 5 wk of immunization with LdCen1−/− and challenge with virulent L. donovani, the immunized hamsters had significantly lower parasite burden in both the organs, measured by limiting dilution, compared with the naive-challenged animals, with a reduction of 99.9% in spleen and 99.7% in liver (p < 0.01) (Fig. 5b).

Centrin1 KO L. donovani cross protects mice against challenge with L. braziliensis

We wanted to determine whether immunization with LdCen1−/− could provide heterologous protection against infection involving other Leishmania species. For this purpose, 5 wk LdCen1−/− immunized as well as naive BALB/c mice were challenged by s.c. inoculation in the footpad with 2 million metacyclics purified from L. braziliensis, the causative agent of
The naive, challenged mice developed progressive lesions during the 7 wk of observation, whereas the immunized mice developed significantly smaller lesions (\(\times 3 \)-fold; \(p < 0.01 \)) throughout the 7 wk (Fig. 5c). The immune-challenged mice showed significantly lower parasite burdens both in the footpads and lymph nodes compared with the controls (Fig. 5d), with a 99.9% reduction in both the tissues (\(p < 0.02; p < 0.01 \)). A similar type of experiment conducted to examine cross
To evaluate it as a vaccine candidate, the \textit{LdCen1}^-/- parasite was tested both in susceptible BALB/c mice and Syrian hamsters. \textit{LdCen1}^-/- parasites showed persistence of low numbers of parasites both in mice and hamsters for at least 5 wk. Ten (both in mice and hamsters) or 16 wk postinfection and in some cases even longer periods (24 wk; data not shown), \textit{LdCen1}^-/- parasites were not detected in liver or spleen of mice, suggesting the complete clearance demanded of a safe vaccine candidate. Similar observations in SCID mice lacking both T and B cells reinforce its safety even in the immune compromised host.

While searching for correlates of protection against homologous challenge, we found that \textit{LdCen1}^-/- immunized mice developed an increased percent of \textit{Leishmania} specific CD4^+ and/or CD8^+ T cells expressing Th1 cytokines (IFN-\(\gamma\), TNF, and IL-2) either singly or in multiple combinations. Multifunctional effector cells associated with protection have been described by others in mice vaccinated with Leish-111f recombinant polyproteins plus adjuvant (30) and with \textit{Leishmania} MNL protein expressed in a replication-defective adenovirus (26). We found an especially strong increase of TNF-producing T cells, reinforcing prior data suggesting that TNF along with IFN-\(\gamma\) secretion are important cytokines for protection in vivo (26). We also observed an increased IFN-\(\gamma\)/IL-10 ratio among the CD4^+ T cells in the \textit{LdCen1}^-/- vaccinated mice both at the time of and after challenge, revealing another correlate of protection. A similar polarization to an increased IFN-\(\gamma\) to IL-10 ratio in the splenocyte supernatant measured by ELISA after \textit{L. infantum} infection is observed (14). We also observed an increase of CD4^+ T cells that coproduce IFN-\(\gamma\) and IL10 during the initial period (5W) of infection with \textit{LdCen1}^-/-, suggesting

Discussion

In pursuit of a candidate live attenuated vaccine, we generated a \textit{L. donovani} parasite that had a complete deletion for a cell division gene, centrin1 (\textit{LdCen1}^-/-) (15). We have demonstrated that \textit{LdCen1}^-/- attenuation is due to the failure of cytokinesis, resulting in multiplicity of cellular organelles, cell enlargement, and eventual programmed cell death. We think that the genetically targeted and defined attenuation reduces the risk of reversion to virulence, a concern generally raised for attenuated organisms that are created by random genomic mutations. \textit{LdCen1} deletion specifically attenuated the amastigote stage of the parasite that replicates inside macrophages, and has no effect on the growth of the promastigote form. This could be advantageous to grow large quantities of parasites for vaccine trials.

FIGURE 5. Avirulence and immuno-protective properties of \textit{LdCen1}^-/- parasites in hamsters. \(a\), Parasite load in organs of hamsters infected with either \textit{Wt} or \textit{LdCen1}^-/- metacyclic parasites was measured at 5 and 10 wk after infection. \(b\), Protection of the \textit{LdCen1}^-/- vaccinated hamsters against virulent challenge. Hamsters vaccinated with \textit{LdCen1}^-/- parasites were challenged after 5 wk of immunization with virulent \textit{Wt L. donovani} and the challenge parasite burdens from the organs were measured after 4 wk. \(c\), Cross-protection of BALB/c mice vaccinated with \textit{LdCen1}^-/- against heterologous challenge with \textit{L. braziliensis}. Five wk post vaccinated mice were infected with metacyclics of \textit{L. braziliensis} injected i.m. in the left hind footpad of each mouse. Graph shows footpad swelling due to infection in the injected footpad calculated by measuring the difference in the footpad size between the two hind footpads. \(d\), Parasite numbers per organ of infected footpad or draining lymph nodes from 7 wk postchallenge with \textit{L. braziliensis} are shown. The data presented are representative of two experiments with similar results. Mean and SEM of four animals in each group are shown. Cha, challenged; Imm, immunized; ND, not detected; W, wk after infection; *, \(p < 0.02\) and **, \(p < 0.01\).
possible immune modulation at this time as also observed previously, during *L. major* infection in mice (28). In the *L. major* case, the nonregulatory T cells (CD4+CD25+Foxp3+) that were the source of IL-10 (most of them also produced IFN-γ) were immunosuppressive during protozoan infection for the reduction of infection mediated damage to host cells. Hence, the *LdCen1*−/− immunization may be facilitating a desirable balance in the immune response allowing brief parasite persistence that facilitates protection without causing host damage.

In the present study, we observed a robust Th1-specific serum Ab (IgG2a) response in the immune-challenged mice, further supporting the observation that *LdCen1*−/− induces a generalized Th1 type response. In addition, the increased release of NO observed in the splenocyte culture derived from the immune-challenged mice coincided with the increase of *Leishmania* specific T cells producing IFN-γ, TNF, and IL-2 cytokines. NO production induced by Th1 cytokines is a main leishmanicidal mechanism of murine macrophages (31, 32). Thus, in the *LdCen1*−/−-immunized mice, NO production by macrophages that are stimulated by Th1 cytokine producing T cells correlates with the control of infection.

Importantly, immunization with *LdCen1*−/− protected both mice and hamsters against virulent homologous challenge, as indicated by significantly reduced parasite burdens in the organs of the immune-challenged mice and hamsters compared with naive controls. The protective response was sustained for up to 24 wk after immunization. Complete elimination of wild-type parasites from the livers of *LdCen1*−/−-immunized mice after virulent challenge, is superior to the protection induced by *L. donovani BT1*/−*, the only other complete gene knockout strain reported to target VL, which reduced parasite level in liver by 75% of the level in naive challenged mice (12). The *dhfr-ts* auxotrophic *L. major* line was safe in both mice and rhesus monkeys but protected only the mice (4, 5). Because the immune responses due to *dhfr-ts* were not studied in those animals, it would be difficult to know if there were weakness in the mouse immune response that could have predicted failure in the monkey. However, the quality of *LdCen1*−/−-induced immune response in mice and protection in mice and hamsters encourage us to proceed with immune studies in higher animal models. The level of protection achieved by *LdCen1*−/− was similar to the protection due to *L. infantum SIR2*/−* in mice (14). Because *L. infantum SIR2*/−* is a partial knockout, it may be at a greater risk of reversion and therefore is unlikely to be pursued as a vaccine candidate. *Lpg2*/−*, the only complete gene knockout that has reverted to virulence in mice, is also known to establish prolonged persistence in the host (7), which may have permitted the acquisition of compensating mutations. Because *LdCen1*−/− does not persist in mice and hamsters beyond 2 mo, such a reversal to virulence is less likely.

There are several possible explanations for the protection by *LdCen1*−/− parasite vaccination. First, there could be residual parasite burden (beyond the detection sensitivity of our methods, which would allow continued presence of *Leishmania*-specific effector cells and maintain anti-*Leishmania* immunity (21, 33). Second, vaccination with *LdCen1*−/− parasites could lead to generation of a central memory T cell response after the KO parasites are cleared that could develop into an effector memory T cell response upon challenge, and provide protection (34). Third, there could be Ag persistence in peripheral tissues long after the parasites are cleared. These persistent Ag “deposits” may contribute to specific memory T cells through the activation of naive T cells as has been reported for some viral infections (35, 36). However, these hypotheses need to be tested and are the subject of future studies.

Finally, heterologous protection induced by infection with one virulent species of *Leishmania* against infection with another species of *Leishmania* has been documented in animal model studies (37–39). In mice, experimental vaccination using dp72 protein isolated from *L. donovani* cross-protected against *L. major* infection (40) and immunization with exogenous Ags (*Lm*SEAGs) of *L. major* cross-protected against *L. donovani* (41). Our results show that *LdCen1*−/−-immunized mice were cross-protected to a high degree against a heterologous challenge with *L. braziliensis*, that causes MCL, and to some degree against *L. major* that causes CL. Therefore, our results confirm that the live attenuated parasites also confer resistance to infection with other species.

In the literature, several routes of administration of *Leishmania* vaccine candidates have been studied with varied degree of protection (reviewed in Ref. 42). In the present study, we have used the i.v. route in mice and intracardial route in hamster, however we recognize that in general a recommended route of administration of a vaccine in humans is either intraderal or i.m. Future studies in our laboratory will focus on defining the ideal route of administration for optimal protection for *LdCen1*−/− parasites.

In summary, this study demonstrates that in mice and hamsters, the live attenuated *LdCen1*−/− is highly immunogenic and confers a significant degree of protection against *L. donovani* and also is capable of inducing cross protection against *L. braziliensis*. The vaccine-elicited parasite Ag-specific Th1 responses coinciding with a robust Ab response and NO production, all strongly correlated to a sustained protection. This report thus presents a well characterized amastigote specific, live attenuated *L. donovani* candidate vaccine that has been evaluated for its in vivo persistence, immunological response, and protective (against homologous and heterologous challenges) efficacy.

Acknowledgments

We acknowledge Kimberly Beacht for technical assistance and Sanjai Kumar and Alain Debrabant for valuable suggestions.

Disclosures

The authors have no financial conflict of interest.

References

Legends to Supplementary Figures:

Supplementary Figure 1: (a) Episomal expression of centrin1 protein in the *LdCen1^{−/−}* parasites restores positive growth in cultured macrophages. Survival of parasites of *LdCen1^{−/−}* and *LdCen1^{−/−}* episomally expressing LdCen1 protein (add back; *LdCen1^{−/−} AB*) and wild type (Wt) in macrophages is shown. Newly differentiated macrophages *in vitro* from freshly elutriated human monocytes in the presence of Macrophage colony-stimulating factor (M-CSF) in culture for 7 days were infected with metacyclic parasites and the percent of infected macrophages at different time periods post infection up to day 10 were measured. The data presented are the mean and S.E.M. of three independent experiments. At each time point in an experiment at least 300 total macrophages were counted. (b) Heat-killed (HK) *LdCen1^{−/−}* parasites do not protect mice against virulent challenge. BALB/c mice vaccinated with either *LdCen1^{−/−}* parasites, heat killed *LdCen1^{−/−}* or PBS alone were challenged 5 wk post immunization with virulent *L. donovani*. Graph shows the number of challenge parasites in spleen and liver measured 8 wk post challenge. The data presented are representative of two experiments with similar results. Mean and S.E.M. of four animals in each group are shown. *, p<0.01.

Supplementary Figure 2: *Leishmania* antigen specific stimulation of nitric oxide synthase (NOS2) in the *in vitro* cultured peritoneal macrophages from naïve mice, mice immunized with *LdCen1^{−/−}* for 5 wk followed by 10 wk challenge or naïve challenged mice. The activity of NOS2, indicated by the amount of released nitrite (NO) in the splenocyte supernatant, was measured by the Griess reaction. The data presented are representative of two experiments with similar results. Mean and S.E.M. of three or more mice in each group are shown. Cha’: challenged; FTAg: Freeze-thaw antigen; Imm’: immunized; WI: wk after immunization; WC: wk after challenge *, p<0.01.
Fig S2

![Bar chart showing nitrite concentration (μM) for Naive, Naive Cha', and Imm Cha' with and without FTAg. The x-axis represents different conditions: Naive, Naive Cha', Imm Cha'. The y-axis represents nitrite concentration (μM). The chart indicates a significant difference (*) between conditions with and without FTAg.](image-url)
Supplemental Table 1. Real-time PCR confirmation of parasite presence in spleens of mice infected with either the virulent or *LdCen1^{−/−}* parasites

<table>
<thead>
<tr>
<th>Groups</th>
<th>Ct Values<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Naïve</td>
<td>39.6 ± 0.6</td>
</tr>
<tr>
<td>6 wk infection with wild type parasites</td>
<td>31.2 ± 4.9</td>
</tr>
<tr>
<td>5 wk infection with LdCen1<sup>−/−</sup> parasites</td>
<td>31.9 ± 1.8</td>
</tr>
<tr>
<td>12 wk infection with LdCen1<sup>−/−</sup> parasites</td>
<td>37.7 ± 2.3</td>
</tr>
<tr>
<td>Intracellular Amastigotes<sup>b</sup> (cell count per reaction)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>28.5 ± 0.4</td>
</tr>
<tr>
<td>1</td>
<td>30.1 ± 0.4</td>
</tr>
<tr>
<td>0.1</td>
<td>33.5 ± 0.3</td>
</tr>
</tbody>
</table>

^a Mean and S.E.M. of three mice in each group are shown.

^b Standard curve of ex vivo infected macrophages, 4 replicates at each concentration (see Materials and Methods for details)