CD30 Is Required for CCL21 Expression and CD4 T Cell Recruitment in the Absence of Lymphotoxin Signals

Vasileios Bekiaris, Fabrina Gaspal, Mi-Yeon Kim, David R. Withers, Fiona M. McConnell, Graham Anderson and Peter J. L. Lane

J Immunol 2009; 182:4771-4775; doi: 10.4049/jimmunol.0803481
http://www.jimmunol.org/content/182/8/4771

References

This article cites 30 articles, 13 of which you can access for free at:
http://www.jimmunol.org/content/182/8/4771.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
CD30 Is Required for CCL21 Expression and CD4 T Cell Recruitment in the Absence of Lymphotoxin Signals

Vasileios Bekiaris,†* Fabrina Gaspal,‡ Mi-Yeon Kim,§ David R. Withers,∥ Fiona M. McConnell,∥ Graham Anderson,‡ and Peter J. L. Lane3†

Lymphoid tissue inducer cells express a diverse array of tumor necrosis family ligands, including those that bind CD30 and the lymphotoxin β receptor. Both of these signaling pathways have been linked with B/T segregation in the spleen. In this study, we have dissected a lymphotoxin-independent CD30-dependent signal for the induction of expression of the T zone chemokine, CCL21. Reduced expression of CCL21 due to CD30 deficiency was functionally significant: mice deficient in both lymphoxygen and CD30 (dKO) signals had significantly smaller accumulations of lymphocytes in their splenic white pulp areas, with no evidence of focal aggregation of T cells. Furthermore, recruitment of wild-type CD4 T cells was poor in dKO mice compared with both wild-type or lymphotoxin-deficient mice. Phylogeny suggests that CD30 signals predated those through the lymphotoxin β receptor. We suggest that CD30 signals from lymphoid tissue inducer cells were a primitive mechanism to recruit and prime CD4 T cells. This would have been a stepping stone in the evolution of the highly organized lymphoxygen dependent B and T white pulp areas within which CD4-dependent memory Ab responses now develop. The Journal of Immunology, 2009, 182: 4771–4775.

The white pulp areas of the spleen are organized into B and T cell areas by the expression of homeostatic chemokines within defined fixed stromal cells in B (CXCL13) and T (CCL19, CCL21) cell areas (1). Although required for the formation of B follicles, B/T segregation is not dependent on CXCL13, as B and T cells segregate normally in mice deficient in CXCR5 (2). Of the two CCR7 ligands, CCL21 is produced in greater abundance (100-fold greater protein levels than CCL19) (3). Furthermore, ectopic expression of CCL21 induces larger and more organized infiltrates than CCL19, so it is functionally and quantitatively more important than CCL19.

The main structural difference between CCL19 and CCL21 is that the latter has an extra 32 amino acid C terminus-containing basic amino acids (4, 5). Through this basic motif, it binds negatively charged structures, including the highly glycosylated mucin-type protein podoplanin (6) expressed on T zone stroma (7). As a consequence of its immobilization, CCL21 is less chemotactic than soluble CCL19 (4, 5). The result of this immobilization is that unlike CCL19, CCL21 does not desensitize its receptor (8). Furthermore, immobilization of CCL21 in vitro (simulating immobilization on podoplanin-expressing T zone stroma) stimulates integrin-independent T cell chemokinesis (9, 10), a process fundamental to the promotion of interactions between T cells migrating on T zone stromal cells (11) and dendritic cells (DCs)† in the T zone.

The relationship between CCL21 and podoplanin implies that the coexpression of the two molecules by T zone stromal cells is fundamental to their function, and they require lymphotoxin β receptor (LTβR) signals for the expression of both (12, 13). Recently, we identified a distinct role for another TNF receptor, CD30, in splenic B/T segregation (14). Despite normal levels of homeostatic chemokines including CCL21, CD30-deficient (CD30−/−) mice demonstrate impaired B/T segregation, with blurring of the normally crisp boundary between the B follicle and T zone. This deficit maps to lack of expression of podoplanin, supporting the view that podoplanin is functionally important for B/T segregation.

The work described above suggests that LTβR and CD30-signal coordinate T zone stromal differentiation. Although lymphoxygen signals can be provided by lymphocytes, lymphoid tissue inducer cells (LTi) can provide both LTα and CD30L (15). During splenic ontogeny, lymphoxygen-expressing LTi are the first cells to associate with embryonic T zone stroma and activate the expression of VCAM-1 (16). At this stage of their development, LTi fail to express CD30L (17), which appears around 1 wk of age, coincident with the up-regulation of podoplanin and B/T segregation (14). It was therefore possible that LTi CD30 signals were dependent on upstream lymphoxygen signals also provided by lymphocytes (14). Phylogeny, however, indicates otherwise: CD30 and its ligand are present in mammalian and avian genomes, whereas the LTβR and the lymphoxygen genes are exclusive to mammals (18). So the effects of CD30 on chemokine expression are just as likely to be independent of lymphotoxin. This suggested that CD30 might have effects on chemokine expression independent of lymphotoxin. To decide between the two scenarios, we generated mice deficient in both CD30 and LTα and compared their phenotype to single deficient and wild-type (WT) mice. In this study, we

*La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; †Medical Research Council Centre for Immune Regulation, Birmingham Medical School, Birmingham, United Kingdom; and ‡Department of Bioinformatics and Life Sciences, Soonchun University, Seoul, Korea

Received for publication October 16, 2008. Accepted for publication February 13, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by a Wellcome Programme Grant (to P.J.L.L. and G.A.).

2 Current address: La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037.

3 Address correspondence and reprint requests to Dr. P. J. L. Lane, Medical Research Council Centre for Immune Regulation, Institute for Biomedical Research, Birmingham Medical School, Birmingham, U.K. E-mail address p.j.l.lane@bham.ac.uk

© 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0803481
demonstrate that in the absence of lymphotoxin signals, CD30 has a clear effect on CCL21 expression. Mice deficient in both CD30 and lymphotoxin signals, have white pulp areas that are smaller and even less organized than those of lymphotoxin deficient mice, and exhibit impaired recruitment of CD4 T cells.

Materials and Methods

Mice

All experiments were performed in accordance with U.K. laws and with the approval of the University of Birmingham ethics committee. Mice were bred in our animal facility and were of the C57BL/6 background. We generated CD30 and LT\(_{\alpha}^{-/-}\) double-deficient mice by crossing CD30\(^{-/-}\) and LT\(_{\alpha}^{-/-}\). Male or female mice were used when they were 6–10 wk old.

Confocal microscopy and quantitative real-time PCR

Tissue preparation, staining, and image acquisition and analysis were performed as previously described (14, 19). B cells were detected after staining with anti-mouse IgM conjugated to Rhodamine red (Jackson ImmunoResearch Laboratories) or anti-mouse B220 conjugated to Pacific blue (eBioscience). T cells were stained either with anti-mouse CD3e-FITC (eBioscience) or CD3-biotin (eBioscience) followed by streptavidin-Alexa Fluor-647 (Invitrogen). CD45.1\(^{-/-}\) transferred cells were detected in situ after staining with anti-mouse CD45.1-FITC (eBioscience). Sample preparation for and analysis of quantitative real-time PCR was as previously described (14, 19). Primer/probe sequences (ccl19, ccl21, cxcl13, \(\beta\)-actin) were published previously (14).

Cell transfers and immunizations

OT2 (20) spleen cells were adoptively transferred i.v. in WT, LT\(_{\alpha}^{-/-}\), or dKO mice at a density of 5 \(\times\) 10\(^6\) cells per mouse. One day later, mice were immunized i.p. with 200 \(\mu\)g OVA (Sigma-Aldrich), which was precipitated with a commercial alum gel, Alu-Gel-S (SERVA).

Statistical analysis

All statistical analyses were performed with the nonparametrical Mann-Whitney \(U\) test using StatView 5.0 (\(p < 0.05\) is considered significant).

Results

Mice deficient in both CD30 and LT\(_{\alpha}\) have smaller splenic white pulp areas and impaired T cell retention relative to mice deficient in LT\(_{\alpha}\) alone

To test the hypothesis that CD30 and LT\(_{\alpha}\) might have independent effects on B/T segregation, we made mice deficient in both. We

FIGURE 1. B/T segregation and white pulp size in WT and gene deficient mice. A, WT, CD30\(^{-/-}\), LT\(_{\alpha}^{-/-}\), and dKO mice were stained for IgM (green) and CD3 (red). B, LT\(_{\alpha}^{-/-}\) and dKO mice were stained for B220 (green) and CD3 (red). White pulp areas were demarcated by B220 expression as indicated by white lined areas. C, The graph shows the size of dKO (○) and LT\(_{\alpha}^{-/-}\) (●) white pulp areas; 12 dKO and 10 LT\(_{\alpha}^{-/-}\) mice were analyzed (each symbol represents a white pulp area). Each confocal micrograph (scale bar is 100 \(\mu\)m) was taken with a \(\times\)10 objective.

FIGURE 2. T cell distribution between red and white pulp areas in LT\(_{\alpha}^{-/-}\) and dKO mice. Spleen sections from dKO (○) and LT\(_{\alpha}^{-/-}\) (●) mice were stained and analyzed as in Fig. 1B. A, The percentage of CD3\(^\dagger\) pixels present in white and red pulp. B, CD3\(^\dagger\) pixels per \(\mu\)m\(^2\) of total (white + red pulp), white, or red pulp. C, CD3\(^\dagger\) pixels present in total (white + red pulp), white, or red pulp. Seven dKO were compared with five LT\(_{\alpha}^{-/-}\) mice. Each symbol represents one micrograph.
Spleens that lack both CD30 and LTα/− lost and the size of the white pulp areas is reduced. Although B/T white pulp areas are normal (14). In LTα/− B/T segregation and small T zones although B follicles and total mice using this method (data not shown and Ref. 14). To identify whether there were specific differences between LTα/− and dKO white pulp areas, we evaluated the size of splenic white pulp areas (Fig. 1C). We found that the white pulp size of dKO (median = 113000 μm²) was significantly reduced compared with LTα/− (median = 175000 μm²) mice (p < 0.0001) (Fig. 1C).

The decreased white pulp areas observed in dKO mice were also correlated with decreased frequency of CD3⁺ pixels/μm² of total spleen (1.0 pixels/μm² dKO vs 1.22 pixels/μm² LTα/−; p = 0.04) (Fig. 2B). When we calculated the percentage of CD3⁺ pixels in red and white pulp areas, we found that a higher percentage of CD3⁺ pixels were located in the red pulp of dKO mice (Fig. 2A). However, this abnormal ratio was attributed solely to decreased CD3⁺ pixel densities in white pulp areas (1.7 pixels/μm² dKO vs 2.32 pixels/μm² LTα/−; p = 0.0006) (Fig. 2B). Red pulp CD3⁺ frequency was not significantly different (0.64 pixels/μm² dKO vs 0.69 pixels/μm² LTα/−; p = 0.8). When the total white pulp was taken into account, the numbers of CD3⁺ pixels/white pulp was ~2-fold greater in LTα/− vs dKO mice (median 4.1 × 10⁵ vs 2 × 10⁵ pixels/white pulp). However, the total numbers of CD3⁺ pixels/red pulp was not significantly different (p = 0.6). In contrast to CD3 cells, there were no significant differences in either the total number of IgM⁺ pixels/μm² or in their distribution between red and white pulp areas (data not shown). Furthermore, when we examined localization of CD11c⁺ DCs, there were no obvious differences in either total DC numbers, or their relative distribution between red and white pulp areas (data not shown).

In the absence of LTα, CD30 signals induce modest expression of CCL21

Our data suggested that there was a specific defect in localization of CD3⁺ T cells in white pulp areas in dKO vs LTα/− mice.
CD30 induces CCL21 expression in the absence of lymphotoxin.

To distinguish between CD30 effects on forming the microenvironment and CD4 T cell responses, we injected WT CD45.1+ OVA-specific OT2 CD4 cells (20) into CD45.2+ dKO, LTα−/−, or WT hosts. All recipient mice were immunized with OVA and the numbers of OT2 cells in red and white pulp of the spleen were enumerated 5 days postimmunization.

Transferred CD45.1+ CD4+ cells were easily detectable in the spleens of recipient immunized mice (Fig. 4). OT2 cells were identified by their coexpression of CD4, CD3, and CD45.1 in spleen sections. In WT mice, OT2 cells were clearly demarcated within the T zone areas, with few transgenic cells found outside this location (Fig. 4A). In LTα−/− mice, OT2 cells were also concentrated in the T cell-rich central compartment of the white pulp areas (Fig. 4B). However, in dKO mice, OT2 cells were poorly localized to the small white pulp areas and could also be identified in the red pulp (Fig. 4C).

The numbers of transferred OT2 cells in white and red pulp areas were quantified (an example of how the analysis was performed is shown in Fig. 4D). We found that the total number of OT2 cells per section area (Fig. 5A), in both dKO (median = 32 OT2 cells/section) and LTα−/− hosts (median = 41 OT2 cells/section), was significantly reduced compared with cells in WT hosts (median = 81 OT2 cells/section) (p < 0.0001). However, OT2 numbers in dKO recipient mice were also significantly reduced compared with LTα−/− mice (p = 0.04) (Fig. 5A). When this was analyzed further, we found that numbers of OT2 cells/ white pulp were significantly reduced in dKO mice (median = 22 OT2 cells/white pulp) compared with LTα−/− (median = 35 OT2 cells/white pulp) (p = 0.002) and WT mice (median = 75 OT2 cells/white pulp) (p < 0.0001). In addition, a smaller percentage of OT2 cells were contained in the white pulp of dKO compared with either LTα−/− or WT (p < 0.0001) mice (Fig. 5B).

Discussion

Phylogeny suggests that the development of the capacity to make high affinity memory Ab responses was linked closely with the development of organized lymphoid structures (25), and we have highlighted the central role of LTα in the development of both functions (15). LTα are found tightly associated with fixed B and T zone stromal cells in secondary lymphoid organs (26, 27). They constitutively express a diverse set of TNF ligands (TRANCE, TNF-α and lymphotoxins, α and β, OX40, and CD30L). All of these genes with the exception of OX40L have been linked with the development and organization of secondary lymphoid structures (14, 28, 29); in addition we have shown that OX40L and CD30L together are critical for the generation and maintenance of CD4 memory (24, 26).

The crucial point about CD30 signals is that they alone are linked with both functions: they contribute to organization in the presence of lymphotoxin signals (14) but also to CD4 memory (23). Because a comparison of mammalian genomes with those of lower vertebrates suggested that CD30 signaling predates LTβR signals, we speculated that a function for CD30 in organization might be revealed in LTα−/− mice. To test this, we generated mice deficient in both CD30 and lymphotoxin (dKO), and compared their phenotype to LTα−/− mice. Our studies show that white pulp areas in dKO mice are significantly smaller and less organized than in LTα−/− mice and that this is correlated with decreased expression of CCL21. Furthermore, we demonstrated a functional role for this decreased organization by showing that recruitment and localization of WT CD4+ T cells is impaired in dKO compared with LTα−/− mice.

Although LTβR and CD30 are both members of the TNF receptor family, they are located on different chromosomes (in both man and mouse), in different TNF receptor clusters. The TNF receptor cluster containing CD30 (TNFR2, CD30, 4–1BB, DR3, DR4, and lymphotoxin) are all functionally critical for the development of organized lymphoid structures as well as for the maintenance of CD4 memory B and T cells (24).
HVEM, OX40, GITR) is principally linked with T cell memory (15, 30, 31) whereas the LTβR cluster (TNFR1, LTβR, and CD27) is primarily associated with organization. The two gene clusters are likely to be derived from tandem gene duplication (32), with subsequent separation and relocation to different chromosomes. Evidence for this (besides the fact that both locations contain TNF receptor family members) is that both gene clusters encode structurally and functionally related serine proteases that catalytically activate complement component C4. On human chromosome 1, MASp2 (activates C4 via the mannann binding lectin pathway) is ~1 MB away from human CD30. On human chromosome 12, the Clrs complex (activates C4 via the classical C1q pathway) is 0.7 MB from LTβR. We think that the residual CD30-dependent induction of CCL21 expression in lymphotoxin deficient animals could be the modern remainder of the CCL21 induction elicited by signals from the ancestral TNF receptor before its duplication.

The main advantage conferred by gene duplication is the creation of redundancy, which allows diversification of function among duplicated genes. Chromosomal translocation is equally important, as it could be the modern remainder of the CCL21 induction elicited by signals from the ancestral TNF receptor before its duplication. In this respect, the flanking genes of the LTβR are instructive: CD4, which controls the development of CD4 T cells, is only 0.4 MB from LTβR, and the activation induced cytokine deaminate, required for somatic mutation and Ig class switching, 2.2 MB away. Is this a chance association? We suspect not. Inactivation of any of these three genes results in failure to generate high affinity class switchable Abs. Examination of the syntenic fish locus shows activation induced cytokine deaminate and CD4 are linked with TNFR1 but there is no true LTβR homologue. This suggests to us that LTβR-dependent organization (generation of B follicles) evolved in the context of genes also essential for the generation of high affinity Ab responses. We suspect that such linkage confers a minor advantage for the selection of new function, which when iterated over millions of generations translates into a substantial advantage in performance. In this regard, mammalian CD30 is also linked with the gene, podoplanin (1.8 MB distant), whose expression on splenic T zone stroma is CD30 dependent (14).

The data presented in this study therefore are consistent with the proposal that CD30 and LTβR are the descendants, by way of a gene duplication event, of an ancestral TNF receptor which organized the recruitment and survival of CD4 T cells through the induction of CCL21 expression. In this case, the coevolution of function for these two related receptors would have fuelled the transition to the highly organized lymphotoxin and CD30 dependent B and T zone structures that today support the generation of high affinity CD4 dependent memory Ab responses in mammalian immune systems.

Disclosures
The authors have no financial conflict of interest.

References