Identification and Characterization of a Human CD5 + Pre-Naive B Cell Population

Jisoo Lee, Stefan Kuchen, Randy Fischer, Sooghee Chang and Peter E. Lipsky

J Immunol 2009; 182:4116-4126; doi: 10.4049/jimmunol.0803391
http://www.jimmunol.org/content/182/7/4116

References
This article cites 44 articles, 24 of which you can access for free at:
http://www.jimmunol.org/content/182/7/4116.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2009 by The American Association of
Immunologists, Inc. All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Identification and Characterization of a Human CD5⁺ Pre-Naive B Cell Population

Jisoo Lee,‡ Stefan Kuchen,‡ Randy Fischer,‡ Sooghee Chang,‡ and Peter E. Lipsky²

We have identified a distinct pre-naive B cell population circulating in human peripheral blood that exhibits an intermediate phenotype between transitional and naive B cells. Like human transitional B cells, these cells express CD5 but have intermediate densities of CD38, CD10, CD9, and the ABCB1 transporter compared with transitional and naive B cells. These pre-naive B cells account for a majority of circulating human CD5⁺ B cells. Importantly, CD5⁺ pre-naive B cells could be induced to differentiate into cells with a naive phenotype in vitro. CD5⁺ pre-naive B cells show only partial responses to BCR stimulation and CD40 ligation and undergo more spontaneous apoptosis and cell death than do naive B cells, whereas BAFF/BLyS (B cell-activating factor belonging to the TNF family) did not enhance their survival compared with naive B cells. In contrast, CD5⁺ pre-naive B cells carry out certain functions comparable to naive B cells, including the capacity to differentiate into plasma cells and the ability to function as APCs. Notably, an increased proportion of CD5⁺ pre-naive B cells were found in peripheral blood of patients with systemic lupus erythematosus. These results have identified a unique intermediate in human naive B cell development within the peripheral blood and derangements of its homeostasis in patients with systemic lupus erythematosus. The Journal of Immunology, 2009, 182: 4116–4126.

The BCRs are generated by random recombination of Ig V, D, and J gene segments during B cell development (1). The randomness of the process generates BCRs that have affinity for self Ags. However, most of the autoreactive B cells are eliminated or silenced at several tolerance checkpoints during B cell maturation, and only B cells that survive the checkpoints can continue on in the maturation process. To develop into a naive B cell, a B cell must survive at least two checkpoints. The first checkpoint is at the immature B cell stage in the bone marrow where most B cells that react with autoantigens present in the bone marrow are lost by mechanisms that include deletion, anergy, or receptor editing (2–5). The second checkpoint is in the periphery before transition of new emigrant immature B cells into the mature naive B cell subset. Tolerance mechanisms operating at the second checkpoint are less clear, although anergy and deletion have been proposed as major mechanisms (6–9). Failure to remove autoantibodies at either stage would increase the number of circulating self-reactive naive B cells that can participate in immune responses, and can result in increased susceptibility to autoimmunity.

B cell tolerance checkpoints remove self-reactive B cells that arise during development. However, the presence of certain autoreactive B cells in normal individuals is revealed by the identification of serum polyspecific autoantibodies referred to as natural Abs (9, 10). Persistence of autoreactive B cells that secrete natural Abs seems paradoxical to the concept of B cell tolerance, and it raises the possibility that autoantibodies may perform some useful functions in immune regulation.

In mice, natural Ab-secreting B cells belong to a specific B cell lineage called B-1 B cells, which reside in the peritoneal cavity (11). B-1 B cells were identified initially by their expression of the CD5 surface glycoprotein, but subsequently CD5⁻ B cells similar to B-1 B cells were found, and, thus, CD5⁺ B-1 cells are referred to as B-1a cells, and CD5⁻ B-1 cells as B-1b cells (11, 12). B-1 B cells have been shown to participate in thymus-independent type 2 responses by rapid production of Ab before induction of adaptive immune responses (13–15). Like murine B-1a cells, human peripheral blood CD5⁺ B cells have been reported to produce polyspecific autoreactive Ab, such as rheumatoid factor and anti-ssDNA (16, 17). However, human CD5⁺ B cells have not been clearly characterized, and whether these cells are equivalent to B-1a cells in mice is unclear. In humans, most of the mature B cells in fetal circulation express CD5 (18), but they decrease to 11–49% in the adult circulation (19). Recently, human transitional T1 B cells were shown to express CD5, although the murine counterpart does not express this molecule (20). However, human transitional B cells account for only 1–2% of total circulating B cells, suggesting the existence of other CD5⁺ B cell subsets.

Since human transitional B cells express the CD5 molecule, it is possible that CD5 may serve some functional role during peripheral B cell maturation. During a systemic analysis to address this issue, we have identified a distinct pre-naive B cell population in peripheral blood that exhibits an intermediate phenotype between transitional and naive B cells. Functionally, pre-naive B cells exhibited some B cell functions in common with naive B cells, including the capacity to differentiate into plasma cells and Ag presentation, whereas they were distinctly more prone to undergo apoptosis and...
FIGURE 1. Characterization of CD27⁺CD38⁺ IgD⁺ B cells. A, Peripheral blood CD19⁺CD27⁻ B cells were gated into CD38low (naive), CD38int (intermediate), and CD38high (transitional) B cell subsets and the differential expression of CD5 was assessed. Numbers represent mean fluorescence intensity of each population (naive, intermediate, and transitional B cells noted from left to right). Data are representative results from a total of 12 donors.

B, Expression of a variety of B cell markers by CD27⁺CD38⁺ IgD⁻ naive, CD27⁺CD38int IgD⁺ intermediate, and CD27⁺CD38high IgD⁺ transitional B cell populations. Numbers represent mean fluorescence intensity of each population (naive, intermediate, and transitional B cells noted from left to right). Data are representative results from a total of 12 donors. The mean (±SE) frequencies of naive B cells, intermediate B cells, and transitional B cells of the total CD19⁺ B cells from the 12 donors were 63.0 ± 2.8% (range, 44–82%), 7.0 ± 0.9% (range, 3–16%), and 2.0 ± 2.9% (range, 1–4%), respectively.

C, Expression of the ABCB1 transporter was assessed by R123 dye extrusion. CD27⁺CD38⁺ IgD⁻ intermediate B cells express an intermediate degree of ABCB1 transporter activity between CD27⁺CD38low IgD⁺ naive B cells and CD27⁺CD38high IgD⁺ transitional B cell populations. Data are representative results from three donors.
responded poorly to ligation of either CD40 or surface IgM. Of interest, this pre-naive B cell population accounted for the majority of circulating human CD5/H11001 B cells, and an increase in the proportion of this population was found in peripheral blood of patients with systemic lupus erythematosus (SLE).3 Our data suggest that increased production or lack of further maturation of these pre-naive B cells can occur in autoimmune diseases, and may contribute to the development of autoimmunity.

Materials and Methods
Cell preparation
Blood samples are obtained from healthy adult donors of various ages, sexes, and races (39 from the National Institutes of Health, 10 from Ewha Womans University) and from 6 patients with active SLE (all from Seoul, Korea). The mean (±SD) ages of the normal donors were 41 ± 14 (range, 20–68) years, and 22 men and 27 women were included. SLE patients were all women, and the mean (±SD) age was 35 ± 10 (range, 26–50) years. At the time of the blood collection, three patients were untreated, and the other three were treated with hydroxychloroquine with or without low-dose glucocorticoids. Bone marrow aspirates were obtained from healthy donors. Cord blood was obtained from healthy newborns. These studies

3 Abbreviations used in this paper: SLE, systemic lupus erythematosus; BAFF/BlyS, B cell-activating factor belonging to the TNF family.
have been approved by the National Institute of Arthritis and Musculoskeletal and Skin Diseases Institutional Review Board and the Ethics Committee of Ewah Womans University School of Medicine, and informed consent was obtained according to the Declaration of Helsinki. B cells and CD4+ T cells were enriched by negative selection from buffy coats or leukapheresis using RosetteSep or StemSep B cell purification ABC cocktails following the manufacturer’s instructions (StemCell Technologies).

Flow cytometry and cell sorting

PBMC, enriched B cells, and postculture B and T cell subsets were stained with various mAbs combinations for 20 min on ice in staining buffer (PBS with 1% BSA). The directly conjugated mAb used were anti-IgD-FITC, anti-CD27-FITC, anti-CD10-PE, anti-CD95-PE, anti-CD4-PerCP-Cy5.5, anti-CD38-PE-Cy7, anti-CD20-allophycocyanin-Cy7, anti-CD11b-allophycocyanin-Cy7, anti-CD69-allophycocyanin-Cy7 (all BD Biosciences), anti-CD21-PE, anti-CD5-PE, anti-HLA-DR-PE, anti-CD19-PE-Texas Red, anti-CD19-PE-Cy5.5 (all Caltag Laboratories). Anti-CD44-Alexa Fluor 647, anti-BAFF-R-Alexa Fluor 647, anti-CD9-Alexa Fluor 647, anti-CD38-Alexa Fluor 647, and anti-CD27-Alexa Fluor 647 were labeled from purified mAbs (BD Biosciences) using the Alexa Fluor 647 mAb labeling kit (Molecular Probes/Invitrogen). Anti-IgM-Pacific Blue, anti-CD27-Pacific Blue, anti-IgD-Pacific Blue, and anti-CD19-Pacific Blue were prepared from purified mAbs (BD Biosciences) using the Pacific Blue 647 mAb labeling kit (Molecular Probes/Invitrogen). Annexin-V-allophycocyanin (Caltag Laboratories) and the Live/Dead Fixable Violet dead cell staining kit (Invitrogen) were used to assess apoptosis and cell death. Stained cells were washed and fixed in 1% paraformaldehyde, and data were collected by performing eight-color flow cytometry using the CyAn multiparameter flow cytometer (Dako). Data were analyzed using FlowJo software (Tree Star). B cell populations were sorted using the Dako MoFlo cell sorter.

Cell culture

B cell populations were cultured in 96-well plates at 3 × 10^4 cells/ml in 100–μl volumes of culture medium (RPMI 1640 with 10% FCS, GlutaMAX, and gentamicin) at 37°C alone or supplemented with various cytokines and/ or mitogens. The mean (±SE) of 104 cells/ml in 100–μl volumes of culture medium (RPMI 1640 with 10% FCS, GlutaMAX, and gentamicin) at 37°C for 3 h at room temperature. B cell culture supernatants and standards were diluted in blocking solution and incubated on coated plates overnight at 4°C. Normal human IgG, IgM (both Caltag Laboratories/Invitrogen) and human reference serum (Bethyl Laboratories) for IgA ELISA were used as standards. Culture supernatants and standards were removed by vacuum aspiration and plates were washed three times with PBS/Tween. Alkaline phosphatase-conjugated IgA anti-human IgG (Caltag Laboratories) in blocking solution (200 ng/ml, 50 μl/well) were added as secondary Abs and incubated overnight at 4°C. SigmaFast (Sigma-Aldrich) was used as alkaline phosphatase substrate and specific absorbance measured at 410 nm using a PowerWave X 96-well plate reader (Bio-Tek Instruments) and KC4 version 3.1 software (Bio-Tek Instruments).

Statistics

Statistical analysis was performed using JMP 7. Comparison between two groups was performed using unpaired Student’s t test, and comparison between different conditions was performed using one-way analysis (error bars represent SEM values). The Mann-Whitney U nonparametric test was used for comparisons between patients and controls (data are expressed as means ± SD). For analysis of correlation between variables, a linear regression analysis was performed. Values of p < 0.05 was considered statistically significant (*, p < 0.05; **, p < 0.005).

Results

We examined in detail the human CD27− IgD+ B cell population in the peripheral blood to search for a CD5+ B cell population other than transitional B cells. Previous studies revealed that transitional B cells and naive B cells in humans could be distinguished by expression of CD38, in that transitional B cells expressed high levels of CD38 compared with low levels in naive B cells (20). This suggested that the CD38 expression profile might serve as a marker of peripheral B cell maturation. We therefore performed multicolor flow cytometric analysis of peripheral blood B cells including staining for CD19, CD27, CD38, and IgD expression. As shown in Fig. 1A, CD19+ CD27− B cells can be subdivided by CD38 expression into previously described CD38low (naive) and CD38high (transitional) B cell populations. Additionally, we observed another B cell subpopulation that expresses intermediate levels of CD38. When differential expression of CD5 was assessed on these populations, CD27− CD38lowIgD+ intermediate B cells, expressed CD5, as did CD27+ CD38lowIgD+ transitional B cells, and accounted for the majority of circulating CD5+ B cells (87% of total CD5+ B cells). Of the total 12 normal donors examined, the mean (±SE) frequency of naive B cells was 63 ± 2.8% (range, 44–82%), intermediate B cells 7 ± 0.9% (range, 3–16%), and transitional B cells 2 ± 2.9% (range, 1–4%) of the total CD19− B cells. CD27− CD38lowIgD+ intermediate B cells accounted for a mean (±SE) of 10 ± 1% of the total circulating CD19− CD27− B cells.

Using eight-color flow cytometry, we determined phenotypic characteristics of the CD27+ CD38lowIgD+ intermediate B cells (Fig. 1B). When expression of a variety of B cell markers was analyzed, intermediate B cells displayed similar levels of expression of most B cell markers including CD23, CD21, CD24, IgM, CD95, and CD11b as naive B cells. Both naive B cells and CD27− CD38lowIgD+ intermediate B cells could be distinguished from transitional B cells by expression of CD23, CD21, CD24,
Intermediate B cells are functionally distinct. A, The CD27+ CD38low B cell population represents the naive B cell subset, and the CD27+ CD38high B cell population represents the intermediate B cell population. CD5 and IgD expression by each B cell population is shown. B, Proliferative responses of purified B cell subsets after incubation for 48 h and 72 h in medium alone, or with anti-IgM or anti-CD40. Proliferation was analyzed by dilution of CFSE and is representative of results from three experiments. C, Ca²⁺ mobilization of intermediate and naive B cells after crosslinking of BCR with 15 μg/ml anti-IgM. Ca²⁺ flux was measured by flow cytometry after loading cells with Fluo-3. D, Spontaneous apoptosis and cell death were analyzed in intermediate and naive B cells immediately ex vivo and after 48 h of culture. Apoptosis was measured by the frequency of annexin V-positive cells, excluding Live/Dead-binding cells. Cell death was measured by the frequency of Live/Dead-binding cells. Data shown are the means ± SEM of three experiments. **, p < 0.01 between naive and intermediate B cells. E, Intermediate and naive cells were cultured in medium alone or with either the addition of anti-IgM or anti-CD40. After 48 h, apoptosis and cell death were assessed by staining the cells with annexin V and Live/Dead as described in D. Data are the means ± SE of three experiments. *, p < 0.05 and **, p < 0.01 between culture medium alone and anti-IgM or anti-CD40. F, Sorted cells were cultured with medium alone or with various cytokines, including BAFF, IL-4, IL-21, and IL-10. After 48 h, apoptosis and cell death were assessed as described in D. Data are the means ± SEM of three experiments. ***, p < 0.01 between cultures with medium alone and various cytokines.
BAFF-R, CD44, IgM, CD95, CD11b, and CD86. However, the expression of B cell maturation markers CD9 and CD10 by CD27CD38intIgD B cells was distinct from naive and transitional B cells, with intermediate levels of these markers noted. Additionally, ABCB1 transporter expression was assessed by R123 dye extrusion. CD27CD38intIgD intermediate B cells also displayed an intermediate degree of R123 extrusion, whereas transitional B cells showed poor extrusion, and naive B cells showed full extrusion (Fig. 1).

CD27CD38intIgD+ intermediate B cells are increased in cord blood, but not in normal bone marrow

We next examined the distribution of intermediate B cells in human cord blood. As previously reported, transitional B cells were markedly increased in cord blood (20). Additionally, intermediate B cells were also significantly increased in cord blood (Fig. 2A). In contrast, intermediate B cells were infrequent in normal bone marrow (Fig. 2B). As in the blood, bone marrow intermediate B cells expressed CD5, as did transitional and immature B cells, but not pro- or pre-B cells.

Functional activity of CD27CD38intIgD+ intermediate B cells

We next determined the in vitro functional responses of intermediate B cells to BCR ligation, anti-CD40, and various cytokines. For functional studies, we developed a strategy to sort naive and intermediate B cells without engaging receptors that could activate them. A combination of mAbs to CD20, CD38, and CD27 was employed that, as shown in Fig. 3A, could identify a unique population of CD20+CD38intCD27− B cells comparable to the CD19−CD38+CD27+IgD+ B cells previously analyzed. As also shown in Fig. 3A, these cells could be easily distinguished from CD20+CD27−CD38low naive B cells. These two populations were both IgD+, but only the CD20+CD38intCD27− population expressed CD5 (Fig. 3A). Naive B cells started to proliferate to both anti-BCR and anti-CD40 stimulation after 48 h of culture, and they proliferated robustly to both stimuli by 72 h of culture, whereas intermediate B cells showed no proliferative responses to either stimulus after 48 h, and by 72 h of culture, they exhibited a minimal proliferative response, but only to anti-CD40 stimulation (Fig. 3B). To characterize responsiveness of intermediate B cells, Ca2+ mobilization was measured after crosslinking of BCR with anti-IgM. The increase in intracellular Ca2+ of intermediate B cells in response to BCR crosslinking was significantly less than that of the naive B cells (Fig. 3C). To evaluate apoptosis and cell death, the frequencies of annexin V and Live/Dead violet stain-positive cells were measured in both populations immediately ex vivo and after 48 h of culture. Intermediate B cells contained a significantly higher percentage of apoptotic cells and dead cells compared with the naive B cells (Fig. 3D). To evaluate apoptosis and cell death, the frequencies of annexin V and Live/Dead violet stain-positive cells were measured in both populations immediately ex vivo and after 48 h of culture. Intermediate B cells contained a significantly higher percentage of apoptotic cells and dead cells compared with the naive B cells (Fig. 3D). Both intermediate and naive B cells were rescued from undergoing apoptosis by anti-CD40 stimulation, but apoptosis of intermediate B cells was significantly increased by anti-IgM, whereas this was not observed in the naive B cells. When total dead cells were evaluated, intermediate B cells were rescued from cell death only by the anti-CD40 signal, whereas naive B cells were saved by both anti-CD40 stimulation and by anti-IgM to a lesser degree (Fig. 3E). Various cytokines

FIGURE 4. Intermediate B cells can develop into naive B cells. A, Sorted CD27−CD38int B cells were cultured with mitomycin C-treated CD4+ T cells in anti-CD3-precoated microtiter wells and assessed for CD5 expression and CFSE dilution following 4 days and 6 days of culture. Data are representative of three experiments with similar results. B, CD5−CD27−CD38low B cells were sorted and cultured with anti-CD40 and IL-21. CD5 expression and CFSE dilution were assessed after 4 days and 6 days of culture. Data are representative of three experiments with similar results.

Table 1: Comparison of B cell subpopulations

<table>
<thead>
<tr>
<th>Markers</th>
<th>Naive B Cells</th>
<th>Transitional B Cells</th>
<th>Intermediate B Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD27</td>
<td>CD27+</td>
<td>CD27+</td>
<td>CD27+</td>
</tr>
<tr>
<td>CD5</td>
<td>CD5-</td>
<td>CD5+</td>
<td>CD5+</td>
</tr>
<tr>
<td>CD38</td>
<td>CD38int</td>
<td>CD38int</td>
<td>CD38int</td>
</tr>
<tr>
<td>IgD</td>
<td>IgD+</td>
<td>IgD+</td>
<td>IgD+</td>
</tr>
</tbody>
</table>

Diagram A

- **CD27−CD38int B cells**
- **Anti-CD3 activated CD4+ T & CD27−CD38int B cells**

Diagram B

- **CD5−CD27−CD38low B cells**
- **Anti-CD40 + IL-21**
were examined to determine the effect on survival of intermediate and naive B cells. BAFF had no significant effect on the survival of intermediate B cells, in contrast to its ability to rescue naive B cells from both apoptosis and cell death ($p < 0.01$). Of note, IL-4, IL-21, and IL-10 increased survival of both intermediate and naive B cells significantly ($p < 0.01$), with IL-10 having the least consistent effect (Fig. 3F).

CD20$^+$CD38intCD27$^-$ intermediate B cells can develop into naive B cells via transition to CD5$^+$ naive B cells

Levels of expression of CD38, CD10, CD9, and the ABCB1 transporter by CD20$^+$CD38intCD27$^-$ B cells that were between those displayed by transitional and naive B cells suggested that these B cells might be developmental intermediates between these two B cell populations. When we examined expression of CD5 on naive B cells, we noticed a small fraction of naive B cells that expressed CD5 (Fig. 3A). This suggested the possibility that CD20$^+$CD38intCD27$^-$ B cells might mature into naive B cells and gradually lose CD5. To test this hypothesis, we attempted to induce differentiation of intermediate B cells and CD5$^+$ naive B cells into CD5$^-$ naive B cells by providing Ag nonspecific bystander T cell help conferred by activated T cells. As can be seen in Fig. 4A, activated CD4$^+$ T cells induced CD38intIgD$^+$ intermediate B cells to proliferate, and they differentiated into CD38lowIgD$^+$ naive B cells, and this population subsequently lost expression of CD5. To ensure that T cell signals could also induce CD5$^+$ naive B cells to become CD5$^-$, CD5$^+$ naive B cells were cultured with a combination of anti-CD40 and IL-21. As can be seen in Fig. 4B, such stimulation induced CD5$^+$ naive B cells to become CD5$^-$.

Intermediate B cells can manifest some functions of mature naive B cells

To determine whether intermediate B cells can perform normal mature B cell functions, we assessed their ability to differentiate and present Ag. Stimulation of both intermediate and naive B cells with anti-CD40 and IL-21 induced down-modulation of surface IgD and the differentiation of CD38highIgD$^-$ plasma cells (Fig. 5). Similar results were noted when intermediate B cells were stimulated by culturing them with activated CD4$^+$ T cells. As can be seen, by day 10 of culture, a large population of IgD$^-$ B cells was generated (Fig. 6A). All of these had proliferated, as gauged by dilution of CFSE (data not shown). Of these, a fraction was plasma cells. Plasma cells derived from intermediate B cells secreted mainly IgM (4.2–5.6 μg/ml), and less IgG (0.06–0.08 μg/ml) and IgA (0.24–0.53 μg/ml) than those from naive B cells, but the total amount of secreted Abs was 2– to 6-fold less than plasma cells derived from naive B cells (Fig. 6B).

The capacity of intermediate B cells to function as APCs was also examined. First, CD86 expression was assessed after stimulating intermediate and naive B cells with anti-CD40. As shown in Fig. 7A, intermediate B cells increased CD86 expression when stimulated with anti-CD40. In additional experiments, intermediate or naive B cells were cultured with allogeneic T cells to assess their capacity to stimulate the MLR. As shown in Fig. 7B, both populations induced comparable degrees of allogeneic T cell proliferation with or without stimulation by anti-CD40.

Increased frequencies of intermediate B cells are found in peripheral blood of SLE patients

Since SLE is associated with a loss of B cell tolerance and resultant disturbances in many B cell populations (22–25), we examined the frequency of intermediate B cells in the peripheral blood of SLE patients. The relative frequency of this B cell population in the peripheral blood of 10 healthy adult donors was compared with that of 6 active SLE patients. Intermediate B cells were found in increased proportions in patients with active SLE. Of note, the frequency of intermediate B cells was inversely proportional to the frequency of total B cells, suggesting that the expansion of the intermediate B cell population was related to
lymphopenia. Additionally, naive B cells of SLE patients also expressed CD5, suggesting a B cell population shift toward immature B cells (Fig. 8).

Discussion

We have defined a pre-naive B cell population that stands between transitional and naive B cells, comprising an additional definable subset during normal human B cell development in the periphery. This new subset accounted for the majority of the circulating CD5⁺ B cell population, and it was defined by both its phenotypic and functional characteristics. Although pre-naive B cells exhibit some capabilities of normal mature naive B cells, their main functional role under physiologic conditions appears to be as a developmental intermediate in maturation of human naive B cells, as shown for transitional B cells of both mice and humans (26, 27).

In mice, transitional B cells, which bridge immature B cells in the bone marrow and mature naive B cells in the periphery, can be subdivided into several developmental subsets. Initially, murine transitional B cells were separated into two maturational subsets, T1 and T2, based on expression of CD21 and IgD. Thus, CD24high transitional B cells could be subdivided into CD21lowIgDlow T1 and CD21highIgDhigh T2 cells. These two populations appear to have different population dynamics and require different maturational signals (28). Others have subdivided murine transitional B cells into three populations, that is, T1 (CD23⁺, IgMhigh), T2 (CD23⁺, IgMlow), and T3 (CD23⁺, IgMlow), based on CD23 and IgM expression (29). It is unclear how these subsets relate to stages of human B cell maturation. However, their functional maturity suggests that under certain circumstances they could be inappropriately activated and contribute to autoimmune disease.

In mice, transitional B cells, which bridge immature B cells in the bone marrow and mature naive B cells in the periphery, can be subdivided into several developmental subsets. Initially, murine transitional B cells were separated into two maturational subsets, T1 and T2, based on expression of CD21 and IgD. Thus, CD24high transitional B cells could be subdivided into CD21lowIgDlow T1 and CD21highIgDhigh T2 cells. These two populations appear to have different population dynamics and require different maturational signals (28). Others have subdivided murine transitional B cells into three populations, that is, T1 (CD23⁺, IgMhigh), T2 (CD23⁺, IgMlow), and T3 (CD23⁺, IgMlow), based on CD23 and IgM expression (29). It is unclear how these subsets relate to stages of human B cell maturation. However, it is clear in both mice and humans, B cell development during the transition from immature to mature naive B cells is a multistep process, and at each step B cells are influenced by selection pressure to ensure tolerance before full maturation (29–31). It is notable that these populations reside in the murine spleen and are usually not found in other sites. A similar multistep developmental process is presumed to exist in...
adult donors were stained with anti-CD19, anti-CD27, anti-CD38, and anti-IgD to examine the frequencies of CD27 B cells in peripheral blood of healthy adult donors (n = 10) and in patients with active SLE (n = 6) was determined. Mann-Whitney U test was used to detect significant differences (**p < 0.01). C, Frequency of intermediate B cells is inversely proportional to the frequency of total B cells shown in a linear regression plot (r = -0.6363, p = 0.0048). Data include results from 6 SLE patients and 10 normal donors.

One of the difficulties in identifying human peripheral B cell subsets is that there are multiple phenotypic changes during development, and current understanding of the pattern of expression of these markers is remarkably limited. Previous studies revealed that transitional cells and naive B cells in humans could be distinguished by expression of CD38, among other phenotypic markers, in which transitional B cells express high levels compared with low levels in naive B cells (20). We found an additional B cell population that expressed an intermediate level of CD38 within the CD27 Ag inexperienced B cells, which were neither CD38low naive nor CD38high transitional B cells. Further analysis revealed that these cells were phenotypically more similar to the naive B cells and not to transitional B cells. In this regard, CD38intCD27- intermediate B cells differed from transitional B cells by expression of CD23, CD21, CD24, IgM, CD95, and CD11b. However, these cells also differed in phenotype from naive B cells by expression of the immature B cell markers CD9 and CD10, and they were intermediate between transitional and naive B cells, distinguishing this CD38int B cell population as a distinct subset. Importantly, these cells expressed CD5, which is also characteristic of human transitional B cells and immature B cells in the bone marrow, but not of naive B cells, suggesting that CD5 might be an important development marker for human B cells.
unable to enhance survival or prevent these cells from undergoing apoptosis (20, 37).

Previously, it has been shown that human transitional B cells also did not respond to BAFF by increasing survival, although they expressed BAFF-R, but at a lesser density than that of mature naive B cells (20). Thus, during human B cell development, neither transitional B cells nor pre-naive CD38+/CD27 CD5+ B cells respond to BAFF with increased survival. Since both populations express BAFF receptors, failure of BAFF to promote survival of these populations cannot be explained by absence of these receptors, although downstream signaling events may be defective. Moreover, it is clear that a number of T cell-derived cytokines, such as IL-4 and IL-21, can promote survival of pre-naive B cells, whereas IL-4 can also promote survival of transitional B cells (20).

These results indicate that different signaling pathways than those activated by BAFF are involved in promoting survival of human pre-naive and transitional B cells. Finally, the lack of responsivity of transitional and pre-naive human B cells to BAFF differs from findings in the mouse, in which B cell developmental stages from the T2 stage on are thought to be BAFF responsive (34).

Pre-naive B cells proliferated minimally to anti-CD40 or anti-IgM stimuli, and mlgM-induced Ca2+ mobilization was much lower compared with that manifested by naive B cells. This may relate to the fact that CD5 is expressed by human pre-naive B cells. CD5 expression appeared to be characteristic of human immature B cells, being expressed on immature B cells, transitional B cells, and pre-naive B cells. In this regard, the most notable difference in phenotype between murine and human T1 B cells was reported to be the expression of CD5 (20). CD5 expression has been shown to be associated with negative regulation of BCR and TCR signaling, as well as maintenance of tolerance in anergic B cells (38–40). These findings suggest that during development from the immature to the pre-naive stages, human B cells may be inhibited from responding to BCR stimulation by expression of CD5. Presumably, this could contribute to the culling of autoreactive B cells during these stages of development, since a considerable percentage of immature B cells is known to be autoreactive (9). Interestingly, we have observed that activated T cell help caused down-regulation of CD5 on pre-naive B cells and induced proliferation and differentiation into naive B cells. These findings are consistent with a role for CD5 in limiting BCR stimulation and autoantigen-induced activation during B cell development. However, noncognate T cell help may permit autoreactive pre-naive B cells to expand and differentiate, thus bypassing this checkpoint.

As experimentally defined in our study, the pre-naive B cells comprise a population with the capacity to differentiate into plasma cells, and also the capacity to function as APCs. When these cells were stimulated with anti-CD40 in the presence of IL-21, a potent set of signals capable of inducing plasma cell differentiation, pre-naive B cells exhibited the potential to undergo terminal differentiation into plasma cells, as previously shown for human peripheral blood naive B cells (41). Similarly, activated T cells induced pre-naive B cells to proliferate and differentiate into plasma cells that mainly secreted IgM. We also found that anti-CD40 stimulation enhanced expression of CD86 by pre-naive B cells and that pre-naive B cells could stimulate proliferation of allogeneic T cells in an MLR. These results clearly indicate that pre-naive B cells have acquired some of the functions associated with mature naive B cells. These findings also suggest the possibility that under certain circumstances, activation of pre-naive B cells, perhaps during noncognate bystander interactions with activated T cells, could contribute to the functional activation and differentiation of these cells and the emergence of autoimmunity.

Human pre-naive B cells can be distinguished from the murine T2 B cells by several distinctive observations that may be associated with their functional role. In contrast to the murine T2 cells, which are found exclusively in the spleen, human pre-naive B cells were observed in the peripheral blood, suggesting that their maturation occurs at multiple sites. It is possible that human pre-naive B cells matured at different sites may give rise to different subsets of pre-naive B cells with different functions, as exemplified by marginal zone B cells and B-1 B cells in the murine system (14). However, phenotypic markers are not currently available that would permit examination of this question. Human pre-naive cells also seem to be phenotypically more mature than murine T2 cells, with most markers other than CD9, CD10, and the ABCB1 transporter assuming naive B cell density, whereas murine T2 B cells continue to express a more immature pattern of B cell markers, with the exception of IgD and CD21 (28). The expression of CD5 and the lack of responsiveness to BAFF are also characteristic of human pre-naive B cells but not murine T2 B cells, and suggest additional mechanisms to avoid responsiveness to autoantigens. These differences predict unique developmental functions for pre-naive B cells in humans that are different from the role of T2 B cells in the murine system.

We found that subjects with SLE have increased proportions of pre-naive B cells, and this expansion correlated with the degree of B cell lymphopenia. Previously, it had been observed in patients with SLE and Sjögren’s syndrome who had been treated with the B cell-depleting therapy rituximab that CD38 IgD CD5+ immature B cells repopulated during the recovery phase of B cell depletion, and this correlated with an increase in serum BAFF level (42, 43). Furthermore, an expanded population of CD38+ IgD+CD5+ B cells within the naive B cell compartment was found in peripheral blood of active SLE patients (44). These previously described B cell populations appear to fall within the pre-naive B cell subset characterized in our study. Collectively, these observations strongly imply that pre-naive B cells can be specifically amplified under certain conditions that can alter B cell homeostasis, including those characteristic of patients with active SLE and those recovering from B cell depletion. Characterization of this B cell population as pre-naive and demonstration that it has the capacity to respond to bystander T cell signals with differentiation into Ab-secreting plasma cells suggest that these cells may, under specific circumstances, contribute to autoimmunity.

In summary, human peripheral B cell development is a multistep process involving at least three developmental subsets: transitional, pre-naive, and naive B cells, and likely subsets within each stage. Pre-naive B cells possess a phenotype and function that are intermediate between transitional and naive B cells in that they have some of the characteristics of the more immature transitional B cells, but, at the same time, they have some of the functional capacity of the mature B cells to differentiate and present Ag. These immature features of the human pre-naive B cells may provide the basis for normal selection mechanism in the periphery at this stage of differentiation. However, the finding that human pre-naive B cells can proliferate and differentiate in response to noncognate T cell signals suggests that under certain circumstances tolerance may be bypassed at this stage of development and autoimmunity could result.

Acknowledgments

We thank James Simone and Rafael Villasnil of the National Institute of Arthritis and Musculoskeletal and Skin Diseases Flow Cytometry Facility for expert technical assistance with cell sorting, and Ho-Youn Kim (Catholic University) for providing some of the SLE patient samples.
Disclosures
The authors have no financial conflicts of interest.

References

26. Meyer-Balhund, A.,...