Polysaccharide-Protein Complex from *Lycium barbarum* L. Is a Novel Stimulus of Dendritic Cell Immunogenicity

Zhisong Chen, Jinhua Lu, Nalini Srinivasan, Benny Kwong, Huat Tan and Soh Ha Chan

J Immunol 2009; 182:3503-3509; doi: 10.4049/jimmunol.0802567
http://www.jimmunol.org/content/182/6/3503

References

This article cites **35 articles**, 11 of which you can access for free at:
http://www.jimmunol.org/content/182/6/3503.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Polysaccharide-Protein Complex from *Lycium barbarum* L. Is a Novel Stimulus of Dendritic Cell Immunogenicity

Zhishong Chen,*†‡ Jinhua Lu,† Nalini Srinivasan,*† Benny Kwong Huat Tan,‡ and Soh Ha Chan2*†

Dendritic cell (DC) immunogenicity correlates with its maturation, which can be induced by toxic microbial products such as LPS. In this study, we report that a nontoxic polysaccharide-protein complex isolated from a Chinese medicinal herb, *Lycium barbarum* (LBP), induces phenotypic and functional maturation of DCs with strong immunogenicity. LBP up-regulated DC expression of CD40, CD80, CD86, and MHC class II molecules; down-regulated DC uptake of Ag; enhanced DC allostimulatory activity; and induced IL-12p40 and p70 production. All of its five fractions were active. LBP developed enhanced Th1 response, and LBP-treated DCs enhanced Th1 and Th2 responses in vitro and in vivo. Our study provides evidence and rationale on using LBP in various clinical conditions to enhance host immunity and suggests LBP as a potent adjuvant for the design of DC-based vaccines. *The Journal of Immunology, 2009, 182: 3503–3509.*

Lycium barbarum L. (*L. barbarum*), also known as wolfberry, is a common Chinese herbal medicine as well as tonic. In thousands of years of traditional medicine in East Asia, it has been used in the treatment and prevention of diseases such as insomnia, liver dysfunction, diabetes, and visual degeneration. It is also used as a food supplement. One of its bioactive components is *L. barbarum* polysaccharide-protein complex (LBP), which consists of six monosaccharides (galactose, glucose, rhamnose, arabinose, mannose, and xylose) and 18 aa (1, 2). It is a β-glycan possessing a backbone of (1→6)-β-galactosyl residues, about one-half of which are substituted at C-3 by galactosyl or arabinosyl groups. The carbohydrate is linked O-glycosidically to serine/threonine residues of the protein part (3, 4). The β-glycan structural aspect may contribute to their biologic function (5). Previous studies have shown that LBP can enhance the immune function (1, 2, 6), antagonize aging and oxidation (7–10), protect liver damage (11), lower blood glucose level (12), reduce the side effects of chemotherapy and radiotherapy (13, 14), and act against cancer (2, 15, 16). We speculate that the immunostimulatory activity of LBP is through activating dendritic cells (DCs).

DC represents a heterogeneous population of APCs that initiate primary immune response (17). These cells take up Ag in peripheral tissues and migrate to secondary lymphoid organs, where they become mature and competent in presenting Ag to T cells, thus initiating Ag-specific immune responses or immunological tolerance (18). DC immunogenicity correlates with its functionally mature state, which is characterized by high levels of expression of MHC and T cell co-stimulatory molecules, acute decrease in Ag uptake, and the ability to present Ag captured in the periphery to T cells (19). DC maturation can be induced by microbial products (such as LPS) or inflammatory cytokines (such as TNF) (20–22). Although these mediators are potent stimuli of DC maturation, they are toxic and have limited applications. In this regard, nontoxic vehicles that are able to induce DC maturation and immunogenicity are useful.

In the present study, we report that LBP induces DC maturation and enhances its immunogenicity. LBP stimulated DC production of IL-12p40 and p70 and promoted DC stimulation of Ag-specific Th1 and Th2 cells in vitro and Th1 immunity in vivo.

Materials and Methods

Animals

Female BALB/c and C57BL/6 mice, 6 wk old, were obtained from the Singapore Laboratory Animal Centre. All procedures were performed in accordance with protocols approved by the Institutional Animal Care and Use Committee, National University of Singapore.

Preparation of LBP

LBP was isolated from *L. barbarum*, as described previously (23). Briefly, *L. barbarum* dried fruit was extracted in water. The water extract was precipitated with ethanol, followed by removal of free proteins by Sevag reagent (CHCl3:n-BuOH = 4:1), dialysis against water, and freeze drying. LBP was separated by DEAE-cellulose ion exchange chromatography (successively eluted with water, followed by 0.05, 0.1, 0.2, and 0.5 M NaCl) and further purified by size exclusion chromatography (eluted with water). Five homogenous fractions, designated LBP fraction (LBPF)1, LBPF2, LBPF3, LBPF4, and LBPF5, were obtained (23). The molecular masses of LBPF1–4 were ~150 kDa, determined by SDS-PAGE. The molecular mass of LBPF5 was 293 kDa, determined by gel filtration (3, 23). The carbohydrate contents were 48.2, 30.5, 34.5, 20.3, and 23.5%, respectively, as determined by phenol-sulfuric acid assay (23, 24). The protein contents were 1.2, 4.8, 4.1, 13.7, and 17.3%, respectively, as measured by the Bradford method using protein assay kit (23). LBP and LBPF1–5 were dissolved in PBS or normal saline (for in vivo experiment), filtered through a 0.22-μm filter, and stored at 4°C.

Test of LPS contamination

LPS contamination was tested by Limulus amebocytes lysate (LAL) assay and B cell proliferation assay. LAL assay was performed using E-TOX-A TE kit (Sigma-Aldrich), according to the manufacturer’s instruction. Briefly, 100 μl of samples (10 mg/ml), LPS standards (0.5, 0.25, 0.125, 0.06, 0.03, and 0.015 EU/ml), or endotoxin-free water (negative control)
was mixed with 100 μl of LAL in a microcentrifuge tube. The mixture was incubated at 37°C for 1 h and observed for gelation. A positive test is the formation of hard gel that permits complete inversion of the tube or vial without disruption of the gel. All other results (soft gels, turbidity, increase in viscosity, or clear liquid) are considered negative. B cell proliferation assay was performed by incubation of isolated BALB/c mouse spleen B cells (2 × 10^5/well) with LPS (0.01–10 μg/ml; Sigma-Aldrich; Escherichia coli serotype 026:B6), LBP (100 μg/ml), or LBPF1–5 (100 μg/ml) for 24 h. Cell proliferation was measured by [3H]thymidine (0.5 Ci/well) incorporation.

DC culture and activation

Mouse bone marrow-derived DCs (BMDCs) were prepared, as previously described, with some modifications (25, 26). Briefly, bone marrow cells were harvested from the femurs and tibias of BALB/c mice and filtered through a 70-μm cell strainer (BD Falcon). RBC were lysed with Tris-NCI lysis buffer. Cells were washed and cultured in six-well plates at 10^6 cells/ml (3 ml/well) in RPMI 1640 (Sigma-Aldrich) supplemented with 5% FBS, 50 μg 2-ME, 10 mM HEPES, 100 U/ml penicillin, and 100 μg/ml streptomycin, in the presence of mouse GM-CSF (10 ng/ml; Pierce) and IL-4 (10 ng/ml; Pierce). On day 3, floating and loosely adherent cells were harvested and cultured in fresh medium. On day 6, nonadherent cells were harvested and cultured in 60-mm petri dishes at 10^6 cells/ml (5 ml/dish). The cells were stimulated for 24–48 h with LPS (1 μg/ml), LBP (100 μg/ml), or LBPF1–5 (100 μg/ml), and then analyzed.

Mouse splenic DC isolation

BALB/c mouse spleens were removed aseptically and minced in Mg^2+ and Ca^2+ free HBSS supplemented with 5% FBS. The homogenate was incubated with collagenase A (1 mg/ml; Sigma-Aldrich) and DNase I (0.2 mg/ml; Sigma-Aldrich) for 35 min at 37°C. EDTA (20 mM) was added. The cells were incubated for 5 min at room temperature and passed through a 70-μm cell strainer. The cells were layered over a 14.5% Histodenz (Sigma-Aldrich) gradient in RPMI 1640 containing 10% FBS and centrifuged for 20 min at 450 × g. Cells at the interface were collected and incubated for 15 min at 4°C with anti-CD11c microbeads (Miltenyi Biotech). DCs were positively selected on a MACS separator (Miltenyi Biotec). These isolated DCs were routinely ≥85% positive for CD11c, as determined by flow cytometry.

Flow cytometry

Cells were washed with cold PBS containing 0.1% NaN_3 and 1% FBS. A total of 10^6 cells was incubated with allophycocyanin-conjugated anti-mouse CD11c and FITC-conjugated anti-mouse CD40, CD80, CD86, and I-A/I-E, or isotype control IgG (BD Biosciences) for 40 min at 4°C. The cells were washed and fixed in PBS containing 2% paraformaldehyde, and analyzed by flow cytometry (DakoCytomation).

Mixed leukocyte reaction

CD4^+ T cells were isolated from C57BL/6 mouse spleen using mouse T cell isolation kit (Dynal Biotech). Day 6 BMDCs from BALB/c mice were stimulated with LBP or LBPF1–5 (100 μg/ml), or LPS (1 μg/ml) for 24 h, and then incubated with mitomycin C (50 μg/ml; Sigma-Aldrich) for 1 h. After washing, DCs (5 × 10^5) were cocultured with the allogeneic T cells (2 × 10^6) in 96-well U-bottom plates for 72 h, and the cells were pulsed with [3H]thymidine (0.5 μCi/well) for the last 18 h. The cells were harvested, and cell-incorporated [3H]thymidine was measured using a beta scintillation counter (Packard Instrument TopCount).

Endocytosis assay

Day 6 BMDCs (10^5/ml) were incubated with FITC-dextran (42 kDa, 1 mg/ml; Sigma-Aldrich) for 1 h at 37°C. The cells were washed and stained with allophycocyanin-conjugated anti-CD11c mAb before analysis by flow cytometry. As controls, BMDCs were incubated with FITC-dextran at 4°C.

DC presentation of OVA in vitro

Day 6 BMDCs (10^5/ml) were pulsed with OVA (100 μg/ml; Sigma-Aldrich) for 2 h and then stimulated with LBP (100 μg/ml) or LBPF1–5 (100 μg/ml) for 24 h. The cells were washed, and 5 × 10^6 DCs were cocultured with 2 × 10^6 BALB/c mouse spleen CD4^+ T cells for 48 h in ELISPOT plates precoated with anti-IL-4 or anti-IFN-γ mAbs. IL-4- and IFN-γ-producing cells were measured by ELISPOT assay.

DC presentation of OVA in vivo

Day 6 BALB/c BMDCs (10^6/ml) were pulsed with OVA (100 μg/ml) for 2 h and then activated with LBP (100 μg/ml) for 24 h. After washing, 5 × 10^6 cells were injected s.c. into each BALB/c mouse in groups of four. Saline, unstimulated BMDCs, or BMDCs treated with OVA or LBP alone were controls. After 7 days, mice were sacrificed. Splenocytes were harvested and restimulated with OVA (10 μg/ml) in the ELISPOT assay for IL-4 and IFN-γ measurement.

DC stimulation with LBP in vivo

LBP (20 mg/kg) was administered s.c., i.p., or by mouth (p.o.) to BALB/c mice in groups of four. Naive mice without LBP injection were control. After 24 h, splenic DCs were isolated and examined for CD40, CD80, CD86, and I-A/I-E expression by flow cytometry.

Th cell response to OVA plus LBP in vivo

BALB/c mice in groups of four were injected s.c. with OVA (100 μg) three times at 1-wk intervals, and were also given s.c., i.p., or p.o. LBP (20 mg/kg) daily. Mice given OVA or LBP alone were controls. After 21 days, splenocytes were harvested and restimulated with OVA (10 μg/ml) for 48 h in ELISPOT plates. IL-4 and IFN-γ-producing cells were determined.

Real-time RT-PCR

Total RNA was extracted from BMDCs using the Qiagen RNeasy mini kit and reverse transcribed to cDNA using the Invitrogen SuperScript first-strand synthesis system. PCR primers and fluorogenic probes for the target gene (IL-12p40) and endogenous control (β-actin) were purchased as TaqMan Gene Expression Assays (Applied Biosystems). PCR was performed in optical 96-well reaction plate on the ABI 7900 Fast Real-Time PCR System. Experiments were performed in triplicate. The thermal cycle conditions were 20-s hold at 95°C, followed by 50 cycles of 1 s at 95°C (denaturation) and 20 s at 60°C (annealing/extension). The relative expression of the target genes was calculated by comparative cycle threshold (C_T) ΔΔC_T method using the SDS 1.3.1 software. Values reported have a 95% confidence interval as determined by the software.

ELISA

IL-12p40 and p70 in the cell culture supernatant were quantified by sandwich ELISA using BD Pharmingen OptiELISA sets, according to the manufacturer’s instruction. The absorbance was measured at 450 nm with a reference of 570 nm using a spectrometer (Tecan Sunrise, 2017).

Results

LBP and LBPF1–5 are free of LPS contamination

LPS contamination was excluded by LAL assay and B cell proliferation assay. LAL assay is the most common method to test LPS contamination. The principle is that LAL will form hard gel when exposed to minute quantities of LPS. As shown in Table I, the lowest concentration of LPS capable of inducing gel formation was 0.03 EU/ml (i.e., 20 pg/ml), and at 0.015 EU/ml (i.e., 10
pg/ml) it did not induce hard gel formation. Gel formation was not induced by LBP or its fractions (LBPF1–5) at 10 mg/ml. In most experiments, LBP and its fractions were used at 100-fold lower concentration (0.1 mg/ml), which means less than 0.1 pg/ml LPS (if any). LPS is a strong B cell stimulus. We previously found that LBP do not activate B cells (23). Therefore, we used B cell proliferation assay to further exclude LPS contamination. Effective B cell proliferation was induced with LPS at 10 ng/ml (Fig. 1). However, at 100 μg/ml, neither LBP nor its fractions caused significant B cell proliferation (Fig. 1). These results indicate that LBP and LBPF1–5 are free of LPS contamination.

LBP induces DC maturation in vitro and in vivo

To determine whether LBP induces DC maturation, we generated DCs from BALB/c mouse bone marrow and stimulated them with LBP or its individual fractions. The expression of CD40, CD80, CD86, and MHC class II molecules was examined. Twenty-four-hour treatment with LBP or LBPF1–5 up-regulated all of these molecules to various extent, compared with medium control (Fig. 2A). The increase in mean fluorescence intensity was most...
prominent for MHCII and CD86 by LBP, BLPF4, or LBPF5 stimulation. CD40 expression was weak, but there was still 2-fold increase after treatment. Increase of CD80 was 1.5-fold in all fractions except LBPF1. Overall, LBPF4 and LBPF5 appeared to be more potent than the other three fractions. These results indicate that DCs are phenotypically mature after LBP and LBPF1–5 stimulation in vitro.

Due to the fact that LBP is effective in inducing DC maturation in vitro and the difficulty in getting enough LBPF1–5 for in vivo study, we tested whether LBP (s.c., i.p., or p.o.) causes DC maturation in vivo. Twenty-four hours after administration, mouse splenic DCs were isolated and analyzed. LPS (s.c., i.p., or p.o.) was positive control. As a positive control, LPS (s.c) induced 2-fold increase in all molecules. When LBP or LPS was applied through i.p. or p.o. route, the effects were weaker (Fig. 2B). These results indicate that LBP is able to induce DC maturation in vivo.

LBP strengthens DC allostimulatory activity

DC is a potent stimulator of allogeneic T cell proliferation in MLR (27). We next performed MLR using LBP-activated DCs (from BALB/c mice) and CD4+ T cells (from C57BL/6 mice). As a control, fresh bone marrow cells were cocultured with allogeneic CD4+ T cells, which caused 10-fold increase in proliferation. Immature DCs induced 26-fold increase (Fig. 3), but DCs, activated by LBPF fractions, especially LBPF2 and LBPF3, were more potent in allogeneic T cell stimulation (32- to 45-fold).

LBP down-regulates DC endocytosis

Efficient Ag uptake is a specific attribute of immature DCs, which are down-regulated upon maturation (20). In this experiment, DCs with or without LBP and LBPF1–5 activation were incubated with soluble FITC-dextran. Result shown in Fig. 4 is representative of three independent experiments. LBP- and LBPF1–5-treated DCs showed ~2-fold decrease in soluble dextran uptake (Fig. 4). When data from all three experiments were analyzed by Student’s t-test, p < 0.05; **, p < 0.01; $$$, p < 0.001, compared with medium control.
LBP induces IL-12 production from DCs

Bioactive IL-12 is a disulfide-linked p35/p40 heterodimer, known as IL-12p70 (28). mRNA for p35 is constitutively expressed in many cell types, whereas the expression of the p40 mRNA is highly restricted and appears to be expressed only by cells that produce IL-12 (29, 30). To examine whether LBP induces IL-12 from DCs, BMDCs were stimulated with LBP or LBPF1–5 for 48 h. IL-12p40 mRNA was determined by quantitative RT-PCR. LBP induced IL-12p40 mRNA expression 2.6-fold. At 1 mg/ml, a 10-fold increase was observed. LBP at 100 μg/ml was as potent as LPS at 1 μg/ml in the induction of IL-12p40 mRNA (Fig. 5B). Among the five fractions, LBPF3 was most potent; it induced more IL-12p40 mRNA than crude LBP and LPS. LBPF2 and LBPF4 showed no difference from crude LBP. However, LBPF1 and LBPF5 showed markedly reduced IL-12p40 mRNA induction. In line with the RT-PCR results, LBP also induced IL-12p40 secretion from BMDCs in a dose-dependent manner (Fig. 5C). At 100 μg/ml, LBP stimulated BMDCs to produce 8.6 ng/ml IL-12p40, which is highly significant compared with unstimulated BMDCs (p < 0.01). IL-12p40 secretion was markedly increased when LBP was used at 0.5 and 1 mg/ml (Fig. 5C). Among the fractions, LBPF3 was most potent in inducing IL-12p40 secretion (Fig. 5D). It was noted that LBP and its fractions were less potent than LPS in IL-12p40 secretion. This is particularly true when IL-12p70 secretion was examined. At 100 μg/ml, LBP significantly increased IL-12p70 production by DCs, but it requires 0.5–1 mg/ml to induce IL-12p70 to a level that is comparable to that induced by LPS (Fig. 5, E and F). Nonetheless, LBP indeed induced IL-12p70 from DCs.

LBP promotes Th1 and Th2 responses in vitro

To investigate whether LBP-activated DCs exhibit augmented capacity in Ag presentation, BALB/c BMDCs were pulsed with OVA Ag and then activated with LBP and LBPF1–5. These cells were then cocultured with BALB/c CD4+ splenic T cells. Stimulation of Th1 and Th2 cells in this experiment was determined by measuring IFN-γ and IL-4-producing cells using ELISPOT assay. More IFN-γ- and IL-4-producing cells were detected in wells in which T cells were cocultured with LBP- or LBPF1–5-stimulated DCs compared with wells in which T cells were cocultured with unstimulated DCs (Fig. 6) (p < 0.01–0.05). There was no difference in IL-2 induction among LBP, LBPF1–5, and medium control, but LPS reduced its production (p < 0.05). IFN-γ and IL-4 are characteristic of Th1 and Th2 cells, respectively. Therefore, DCs activated by LBP in vitro augment T cell differentiation to both Th1 and Th2 cells.

DCs activated by LBP in vitro enhance Th1 and Th2 responses in vivo

To investigate the immunogenicity of LBP-activated DCs in vivo, BMDCs were pulsed with OVA, activated with LBP in vitro, and then injected s.c. into mice. After 7 days, spleen cells were isolated and examined for IFN-γ and IL-4 production. Splenocytes from mice injected with OVA-pulsed and LBP-stimulated DCs produced more IFN-γ and IL-4 spots than those from mice injected with saline, OVA, untreated DCs, LBP-stimulated DCs, or OVA-pulsed DCs (Fig. 7) (p < 0.01–0.05, compared with untreated DCs). Splenocytes from mice injected with saline or single dose of OVA produced a few IFN-γ and IL-4 spots. A total of 2 × 105
LBP- and OVA-treated mice produced more IFN-γ. LBP was given s.c., i.p., or p.o. daily. Splenic cells were isolated from naive BALB/c mice in ELISPOT plates for 48 h. IL-4 and IFN-γ SFC were determined by ELISPOT assay. Values are mean ± SD of four replicates. *** p < 0.001, compared with naive control. B. LBP (s.c., i.p., or p.o.) enhances Th1 response. BALB/c mice were injected with OVA (s.c., 5 mg/kg) weekly for three times. Meanwhile, mice were given LBP (20 mg/kg) daily through s.c., i.p., or p.o. route. Mice were given OVA or LBP alone as controls. Splenocytes were harvested and restimulated for 48 h with OVA (10 μg/ml) in ELISPOT assays. Data are presented as mean ± SD of four replicates. * p < 0.05, compared with OVA alone. C. ELISPOT images of A, D. ELISPOT images of B.

FIGURE 8. LBP primes Th1 response in vivo. A. DCs matured by LBP in vivo prime Th1 response. BALB/c mice were given s.c., i.p., or p.o. a single dose of LBP (20 mg/kg). Naïve mice were control. Splenic DCs were isolated 24 h later. Splenic DCs (5 × 10⁴) were incubated with CD4⁺ T cells (2 × 10⁵) isolated from naïve BALB/c mice in ELISPOT plates for 48 h. IL-4 and IFN-γ SFC were determined by ELISPOT assay. Values are mean ± SD of four replicates. *** p < 0.001, compared with naïve control. B. LBP (s.c., i.p., or p.o.) enhances Th1 response. BALB/c mice were injected with OVA (s.c., 5 mg/kg) weekly for three times. Meanwhile, mice were given LBP (20 mg/kg) daily through s.c., i.p., or p.o. route. Mice were given OVA or LBP alone as controls. Splenocytes were harvested and restimulated for 48 h with OVA (10 μg/ml) in ELISPOT assays. Data are presented as mean ± SD of four replicates. * p < 0.05, compared with OVA alone. C. ELISPOT images of A. D. ELISPOT images of B.

LBP primes Th1 response in vivo

Because LBP was shown to induce DC maturation in vivo, we examined whether it enhances DC immunogenicity in vivo. This was tested using two animal models. First, LBP was given s.c., i.p., or p.o. to mice. After 24 h, splenic DCs were isolated and cocultured with CD4⁺ T cells from naïve mice. T cells cocultured with DCs from LBP-treated mice produced more IFN-γ spots than those cocultured with DCs from naïve mice (Fig. 8, A and C) (p < 0.001). Few IL-4-producing cells were detected. In another experiment, OVA was injected s.c. into mice weekly for three times, and LBP was given s.c., i.p., or p.o. daily. Splenic cells were isolated and examined by ELISPOT assay. We found that splenocytes from LBP- and OVA-treated mice produced more IFN-γ spots than those from the OVA control mice (p < 0.05). A total of 2 × 10⁵ splenocytes from OVA-injected mice produced ~120 IFN-γ spots, which were increased to ~170 in the mice administered with OVA plus LBP. Again, few IL-4-producing cells were detected. Mice that were given LBP alone did not produce IFN-γ and IL-4 spots, suggesting the immune response is OVA specific (Fig. 8, B and D).

Discussion

This is the first study showing that LBP induces DC maturation and immunogenicity both in vitro and vivo. Because LPS is a strong stimulus of DC activation, we first of all excluded its contamination in the sample by LAL assay and B cell proliferation assay; LAL assay showed that the amount of LPS in the sample, if any, was less than 0.015 EU (0.01 ng/mg sample) (negative). LBP or LBPF1–5 (100 μg/ml) failed to cause mouse B cell proliferation. In contrast, LPS, as low as 10 ng/ml, strongly activate mouse B cells. In addition, we previously found that only LBPF4 and LBPF5 are able to induce mouse splenocyte (containing T and B cells) proliferation (23). If the samples were contaminated by LPS, all fractions would cause mouse splenocyte proliferation, not only LBPF4 and LBPF5. Overall, these results indicate that LBP and LBPF1–5 are free of LPS contamination. The effect of LBP on DCs is truly on its own.

We demonstrated that LBP and its five homogeneous fractions LBPF1–5 up-regulated the expression of MHC class II molecules, CD40, CD80, and CD86, on BMDCs, suggesting that LBP induces phenotypically mature DCs. Surprisingly, the result was reproducible in vivo. Administration of LBP via s.c., i.p., or p.o. routes induced splenic DC phenotypic maturation. LBP (s.c.) is most effective, perhaps because the in situ activated DCs migrate to the spleen more effectively through the lymphatic system. DC phenotypic maturation is related to its immunogenicity. Priming of T cells needs that both peptide-MHC complex and CD80/CD86 on APCs bind to TCR and CD28 on T cells, respectively (31).

LBP induces not only phenotypic, but also functional maturation of DCs, as characterized by decrease in Ag uptake and increase in the ability in allogeneic T cell stimulation and IL-12 production. IL-12 is a functional DC maturation marker with a molecular mass of 70 kDa composed of two subunits, p35 and p40. Neither p40 nor p35 alone appears to be bioactive; only a combination of soluble p40 with soluble p35 to form the heterodimeric p70 exhibits bioactivity (32). We found that LBP and LBPF-5 significantly enhanced the inducible IL-12p40 mRNA expression and protein production, and the functional p70 production by BMDCs. Both IL-12p40 and p70 protein levels were consistent with the p40 mRNA amount. It is noted that the concentration of IL-12p70 was ~20 times lower than that of p40, indicating that most p40 is free and does not combine with the p35 subunit to form the heterodimeric p70. This is consistent with the previous findings (33). Cells that secrete bioactive IL-12p70 usually also secrete free p40 chains in ~10-fold excess, whereas secretion of significant amounts of p35 in the absence of p40 has not been found (34).

Most importantly, LBP-treated DCs are highly immunogenic. Immunogenic DCs can induce Th1 cell differentiation, Th2 cell differentiation, and/or CTL priming, depending on the nature of the maturation signal they received, as well as the constraints imposed by ontogeny and/or environmental modifiers (35). LBP-treated BMDCs induced higher levels of IFN-γ and IL-4 production from T cells in vitro, suggesting they are more potent in priming Th1 and Th2 response. Injection of LBP-treated BMDCs s.c. to mice...
also showed similar effect. Furthermore, splenic DCs matured by LBP in vivo induced Th1 response. Mice given OVA together with LBP also showed higher level of Ag-specific Th1 response, indicating LBP has adjuvant activity.

Admittedly, LBP is not as strong as LPS in terms of inducing IL-12 production. However, it is comparable to LPS with regard to enhancement of Ag presentation. As we know, LPS is toxic and may cause severe inflammation. In contrast, LBP is prepared from food and is nontoxic. Administration of LBP by the safe p.o. route also showed moderate effect. This advantage makes it a good supplement for people whose immunity may be low or suppressed, such as those with cancer, chronic infection, and aging. Improvement of immunity in these cases can be achieved by simply oral consumption of wolfberry.

Overall, the data presented in this study show that LBP induces phenotypic and functional maturation of DCs with strong immunogenicity. Our study provides scientific support and rationale on using LBP in various clinical conditions with poor immunity, especially for the design of DC-based vaccine in the future.

Acknowledgments
We thank Dr. Paul A. Macary for his assistance in radioactive work, and Fei Chuiun Lew for her assistance in flow cytometric analysis.

Disclosures
The authors have no financial conflict of interest.

References

The Journal of Immunology
5309