RhoH/TTF Negatively Regulates Leukotriene Production in Neutrophils

Arezoo Daryadel, Shida Yousefi, David Troi, Inès Schmid, Jan Schmidt-Mende, Carlo Mordasini, Clemens A. Dahinden, Andrew Ziemiecki and Hans-Uwe Simon

J Immunol 2009; 182:6527-6532; doi: 10.4049/jimmunol.0803846

http://www.jimmunol.org/content/182/10/6527

<table>
<thead>
<tr>
<th>References</th>
<th>This article cites 42 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/182/10/6527.full#ref-list-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subscription</td>
<td>Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription</td>
</tr>
<tr>
<td>Permissions</td>
<td>Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html</td>
</tr>
<tr>
<td>Email Alerts</td>
<td>Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts</td>
</tr>
</tbody>
</table>

The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
RhoH/TTF Negatively Regulates Leukotriene Production in Neutrophils

Arezoo Daryadel,1,2* Shida Yousefi,2* David Troi,* Inès Schmid,* Jan Schmidt-Mende,* Carlo Mordasini,§ Clemens A. Dahinden,† Andrew Ziemiecki,3§ and Hans-Uwe Simon4*

Leukotriene B₄ (LTB₄) is an important proinflammatory lipid mediator generated by neutrophils upon activation. GM-CSF stimulation is known to enhance agonist-mediated LTB₄ production of neutrophils within minutes, a process called “priming”. In this study, we demonstrate that GM-CSF also limits the production of LTB₄ by neutrophils via a transcriptional mechanism at later time points. We identified hemopoietic-specific Ras homologous (RhoH)/translocation three four (TTF), which was induced following GM-CSF stimulation in neutrophils, as a key regulator in this process. Neutrophils derived from RhoH/TTF-deficient (RhoH−/−) mice demonstrated increased LTB₄ production upon activation compared with normal mouse neutrophils. Moreover, neutrophils from cystic fibrosis patients expressed enhanced levels of RhoH/TTF and generated less LTB₄ upon activation compared with normal human neutrophils. Taken together, these data suggest that RhoH/TTF represents an inducible feedback inhibitor in neutrophils that is involved in the limitation of innate immune responses. The Journal of Immunology, 2009, 182: 6527–6532.

Received for publication November 17, 2008. Accepted for publication March 4, 2009.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

*Institute of Pharmacology, 1Institute of Immunology, and 3Department of Clinical Research, University of Bern, Bern, Switzerland; and 7Tiefenau Hospital Bern, Bern Switzerland

Abbreviations used in this paper: LTB₄, leukotriene B₄; Cdc42, cell division cycle 42; CHX, cycloheximide; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PKC, protein kinase C; Rac, Ras-related C3 botulinum toxin substrate; Ras, rat sarcoma; Rho, ras homologous; TTF, translocation three four.

Copyright © 2009 by The American Association of Immunologists, Inc. 0022-1767/09/$2.00

www.jimmunol.org/cgi/doi/10.4049/jimmunol.0803846

Materials and Methods

Reagents

Human GM-CSF was purchased from Novartis Pharma. Mouse GM-CSF as well as human IL-3, IL-8, and IFN-γ were from R&D Systems Europe and human complement factor C5a from MBL International. Mouse C5a was from Hypcuit Biotechnology and mouse IL-3 from BD Biosciences. LTB₄ and the signaling inhibitors Gö6976 (PKC inhibitor), PD98059 (MEK inhibitor), SB 203580 (p38 MAPK inhibitor), and LY294002 (PI3K inhibitor) were obtained from Calbiochem. Polyclonal anti-RhoGDI-2 Ab was from Cell Signaling Technology. Polyclonal anti-Rac2 and anti-RhoA Abs as well as anti-CD16 mAb were from Santa Cruz Biotechnology. Anti-GAPDH mAb was from Chemicon International. HRP-conjugated secondary Abs were from Amersham Biosciences. FITC and tetramethylrhodamine isothiocyanate-conjugated anti-mouse and anti-rabbit secondary Abs were purchased from Molecular Probes (Invitrogen). Anti-Gr-1 mAb was from Miltenyi Biotec. Cycloheximide (CHX) and all other reagents were, unless stated otherwise, from Sigma-Aldrich.
Mice

Rhoh\(^{-/-}\) mice were generated and provided by Dr. C. Brakebusch (Department of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark) (13). For all experiments, 6- to 8-wk-old mice with a C57BL/6J background were used. Mice were maintained under pathogen-free conditions. All animal experiments were reviewed and approved by the Animal Experimentation Review Board of the State of Bern.

Cells

Mature human blood neutrophils were isolated from peripheral blood of healthy donors and cystic fibrosis patients by Ficoll-Hypaque centrifugation (14–17). Briefly, PBMC were separated by centrifugation on Ficoll-Hypaque (Seromed-Fakola). The lower phase, mainly granulocytes and erythrocytes, was treated with erythrocyte lysis solution (155 mM NH\(_4\)Cl, 10 mM KHCO\(_3\), and 0.1 mM EDTA (pH 7.5)). The resulting cell populations contained >95% mature neutrophils as assessed by staining with Diff-Quik (Medion) and light microscopy analysis.

Mature mouse neutrophils were also isolated from wild-type and Rhoh\(^{-/-}\) mice. Neutrophils were positively selected from bone marrow (obtained from femur and tibia of the hind legs) using anti-Gr-1 mAb as described previously (18). The purity of the resulting mouse neutrophil populations was >99%.

Cell cultures

Human and mouse neutrophils were cultured at 1 \times 10^7/ml in complete culture medium (RPMI 1640 containing 10% FCS) and, where indicated, treated with GM-CSF (50 ng/ml), IL-3 (50 ng/ml), IFN-\(\gamma\) (250 U/ml), and C\(_5\)a (100 nM) for the indicated time periods. The signaling inhibitors Go6976 (500 nM), PD98059 (50 \(\mu\)M), and LY294002 (10 \(\mu\)M) were added 30 min before cytokine stimulation of neutrophils. CHX was used at 50 \(\mu\)g/ml. For LTB\(_4\) production, neutrophils were primed with GM-CSF or IL-3 for 30 min and subsequently stimulated with C\(_5\)a for 30 min.

LTB\(_4\) immunoassay

LTB\(_4\) concentrations were measured in human and mouse neutrophil supernatants by using commercial ELISA kits (Assay design; LuBioScience) according to the manufacturer’s recommendations.

Gene expression profiling

The transcriptional repertoire of mature human blood neutrophils cultured for 7 h in the presence and absence of GM-CSF was analyzed using HG-U95Av2 GeneChip arrays (Affymetrix) as described previously (19). Each array was performed in triplicate.

RT-PCR

Neutrophils (1 \times 10^7) were washed with PBS and total cellular RNA was isolated using TRIzol solution (Invitrogen). Approximately 1 \(\mu\)g of total RNA was reverse-transcribed using oligo-(dT)\(_18\) priming (Promega) and Superscript Reverse Transcriptase (Invitrogen). Primers for human RhoH/TTF (5'-CGG CAA GGT TTA GAA GAT GTT CCA CTC ATT GAT GGA G-3' and 5'-GGC TGG ATC CAT GGT GAT TTC CAT CAA GTG CGT GTT G-3') amplifications were synthesized (MWG Biotec). The cycling parameters for RhoH/TTF cDNA amplification were as follows: 94°C for 5 min; 25 cycles of 94°C for 30 s, 60°C for 1 min, and 72°C for 30 s; and 72°C for 7 min. Primers for GAPDH were described previously (20). RhoH/TTF (580 bp) and GAPDH (417 bp) PCR products were separated on 1% agarose gels and visualized by means of ethidium bromide staining. The identity of the RhoH/TTF PCR product was confirmed by sequence analysis.

Quantitative real-time PCR (TaqMan)

One microgram of total RNA from mouse neutrophils isolated with SV Total RNA Isolation System (Promega) was used for RT-PCR (ImProm-II Reverse Transcription System; Promega) using random primer for amplification. After cDNA synthesis, 25 ng of cDNA were used for additional analysis. Primers were designed based on the published sequence of mouse Rhoh (National Center for Biotechnology Information (NCBI), accession no. NM_001081105; Gene ID: 74734) and synthesized by Microsynth Laboratory. Sequences were as follows: 5'-CTC AAT CAA GTG CGT GCT GGA TGT CTT CCA CTT TCT GGT C-3' and 5'-GGC CAA ATT CTT ACG AAG AGA TCT TCT ACT C-3'. The reporter dye was SYBR green. The PCR buffer was from Bio-Rad. The run was performed on the iQ5 Multicolor Real-Time PCR detection system from Bio-Rad. The cycling conditions were as follows: 95°C for 15 min (1 cycle), 95°C for 15 s and 58°C for 1 min (40 cycles). The Bio-Rad iQ5 2.0 Standard edition optical system software was used to analyze real-time and endpoint fluorescence. The fold induction values were obtained according to the \(\Delta\Delta CT\) method.

Production of RhoH/TTF and polyclonal anti-human RhoH/TTF Ab

The RhoH/TTF cDNA was obtained by RT-PCR using cDNA from Jurkat cells. Primers were designed based on the published sequence (NCBI, accession no. NM_004310; Gene ID: 399) and synthesized by MWG Biotec. Sequences were as follows: 5'-CCG CCG ATC CAT GCT GAG TCC CAT CAA-3' and 5'-CCG CQA ATT CTT ACG AAG AGA TCT TCT ACT C-3'. These primers included restriction sites (underlined). The PCR product was subcloned into pGEX-2T with GST (GE Healthcare Europe). The RhoH/TTF sequence was confirmed by sequence analysis. Recombinant RhoH/TTF was produced and purified using Glutathione Sepharose 4B (GE Healthcare Europe). Polyclonal rabbit antisera were raised against purified GST-RhoH/TTF fusion protein (21). The production of anti-RhoH/TTF Abs was controlled by immunoblotting using GST-RhoH/TTF and unrelated GST-fusion recombinant proteins. For confocal microscopic analysis, the anti-RhoH/TTF serum was affinity purified.

Immunoblotting

Gel electrophoresis and immunoblotting were performed as described previously (18, 22, 23). Cells were lysed with 2\(\times\) loading buffer (Invitrogen) and sonicated. After electrophoretic transfer of the separated proteins, the filters were incubated overnight with anti-RhoH/TTF (1/5000), anti-Rac2 (1/1000), anti-Rho-A (1/1000), and anti-RhoGDI-2 (1/1000) Abs at 4°C in PBS/0.1% Tween 20/5% nonfat dry milk. For loading controls, stripped filters were incubated with anti-GAPDH (1/5000) mAb. Filters were developed by an ECL technique (ECL Kit; Amersham Biosciences) according to the manufacturer’s recommendations.

Confocal laser scanning microscopy

Indirect immunofluorescent stainings were conducted on 5-\(\mu\)m-thick paraformaldehyde-fixed, paraffin-embedded tissue sections from appendixitis and ulcerative colitis patients (18, 24). Slides were dried at 55°C for 2 h and deparaffinized using NeosClear Solution (Merck), ethanol (100, 90, 80, and 60%, and distilled water at room temperature. Following microwave treatment in buffer solution (10 mM sodium citrate (pH 6.0)), slides were washed in distilled water. To prevent nonspecific binding, slides were incubated in blocking solution (33% human IgG polyvalent, 33% normal goat serum, 33% BSA (7.5% in PBS) and 1% human IgG whole molecule) at room temperature for 1 h. Immunostainings with primary Abs were performed at 4°C overnight. RhoH/TTF was stained by using affinity-purified anti-RhoH/TTF Ab (colitis: 1/20; appendixitis: 1/25). To specifically detect neutrophils in these tissues, we used mouse anti-CD16 mAb (colitis: 1/20; appendixitis: 1/25). For confocal microscopic analysis, the anti-CD16 agent Daco Mounting Medium (DakoCytomation) was added. Slides were covered by coverslips and analyzed by confocal laser scanning microscopy (LSM 510; Carl Zeiss) equipped with argon and helium-neon lasers.

Statistical analysis

ANOVA followed by Tukey’s HSD test was used to compare mean levels. A p value of <0.05 was considered statistically significant. Mean levels are presented together with SEM.

Results

GM-CSF rapidly induces RhoH/TTF expression in mature neutrophils

To gain an understanding of the molecular processes that occur during infection in neutrophils, we screened 12,599 genes in these cells for changes in gene expression following 7-h GM-CSF stimulation (19). There were four genes, which were up-regulated >20-fold: SOCS-1, RhoH/TTF, CD69, and CD44 (Fig. 1A). RhoH/TTF mRNA was induced 23.43-fold as assessed by the used microarray assay. The full microarray data set is provided at the
Culturing of the cells in the absence of GM-CSF had no effect on RhoH/TTF levels (data not shown). In contrast to RhoH/TTF protein, levels of RhoGDI-2 were not regulated by GM-CSF. GM-CSF stimulation as assessed by immunoblotting. In contrast to RhoH/TTF, levels of RhoGDI-2 were not regulated by GM-CSF.

To determine whether the induction of RhoH/TTF mRNA is followed by increased protein production, we performed immunoblot analysis using an anti-RhoH/TTF Ab, which we generated in the course of this study. This Ab detected RhoH/TTF protein at the expected size of 21.3 kDa in GM-CSF-treated neutrophils (Fig. 1C). Freshly isolated neutrophils contained only little or no detectable RhoH/TTF mRNA expression but induced RhoH/TTF mRNA upon GM-CSF stimulation within 30 min. Maximal levels of RhoH/TTF mRNA were seen after 1 h and appeared to decline thereafter (Fig. 1B). These data confirmed our previous work, demonstrating increased RhoH/TTF mRNA expression in GM-CSF-treated neutrophils as assessed by Northern blot analysis (12).

To test whether activation of protein kinase C (PKC), PI3K, and/or MAPK pathways are involved in GM-CSF-mediated RhoH/TTF expression in neutrophils, neutrophils were preincubated with defined kinase inhibitors. Gö6976, an inhibitor of PKC, SB203580, a selective inhibitor of p38 MAPK, and LY294002, an inhibitor of PI3K, blocked RhoH/TTF expression (Fig. 1F), suggesting that PKC, p38 MAPK, and PI3K pathways are involved in the transcriptional activation of the gene. In contrast, PD98059, an inhibitor of MEK proximal to p42/44 MAPKs had no blocking effect.

Neutrophils express RhoH/TTF under inflammatory conditions

Because RhoH/TTF is markedly up-regulated under conditions of GM-CSF exposure, we hypothesized that neutrophils under inflammatory conditions should express higher levels of RhoH/TTF. Indeed, compared with normal neutrophils, blood neutrophils from patients with cystic fibrosis had increased RhoH/TTF protein levels (Fig. 2A). Moreover, to demonstrate RhoH/TTF expression in neutrophils under in vivo inflammatory conditions, we analyzed neutrophils in tissue sections of patients suffering from appendicitis and ulcerative colitis, respectively. Neutrophils were identified using anti-CD16 mAb. Neutrophils expressed RhoH/TTF in these tissues, and it appeared that RhoH/TTF was located both in the cytosol and at the cell membrane (Fig. 2B). In the ulcerative colitis sections, we also obtained evidence for strong RhoH/TTF expression in infiltrating CD16-negative cells, most likely eosinophils.

LTB₄ is decreased in neutrophils from cystic fibrosis patients and increased in mouse neutrophils defective in RhoH

Human neutrophils are known to generate LTB₄ upon priming with GM-CSF and subsequent short-term stimulation with C5a (2). Indeed, significant LTB₄ production was seen in GM-CSF-primed cells only, whereas single stimulation with neither GM-CSF nor C5a resulted in a functional response (Fig. 3, left panel). Interestingly, neutrophils from patients suffering from cystic fibrosis were defective in LTB₄ production upon GM-CSF priming and subsequent C5a stimulation (Fig. 3, right panel).
To obtain first evidence whether such a defective LTB₄ production could be due to increased RhoH/TTF expression, we performed a time-course experiment using normal neutrophils in the presence and absence of a protein synthesis inhibitor (CHX). C5a alone did not significantly induce LTB₄ production of freshly isolated neutrophils. However, pretreatment with GM-CSF for 30 min and subsequent C5a stimulation resulted in the generation of significant amounts of LTB₄ (Fig. 4A). CHX had no effect at this time point. In the absence of CHX, we observed that this priming effect was less after 1-h GM-CSF stimulation and was practically lost at the 2-h time point (Fig. 4A). In contrast, in the presence of CHX, neutrophils kept the capacity to generate LTB₄ after C5a stimulation (Fig. 4A). In these experiments, we monitored RhoH/TTF expression at all time points. As expected, RhoH/TTF was rapidly detectable (within 1 h) after GM-CSF stimulation, and CHX prevented GM-CSF-induced RhoH/TTF protein expression in neutrophils (Fig. 4A). Interestingly, reduced amounts of LTB₄ production were associated with increased RhoH/TTF expression at all time points up to 5 h after GM-CSF stimulation (Fig. 4B). Taken together, these data pointed to the possibility that RhoH/TTF could indeed play a limiting role in LTB₄ production of neutrophils.

The precise investigation of signaling mechanisms in neutrophils has been difficult because the cells are fragile and undergo rapid spontaneous apoptosis. Plasmid transfection appeared to be impossible in neutrophils (26), limiting the common approaches to study signaling pathways in these cells. Therefore, to investigate a possible function of RhoH/TTF in neutrophil’s leukotriene production, we assessed the capacity to generate LTB₄ in neutrophils derived from wild-type and \(\text{Rhoh}^{+/+} / \text{Rhoh}^{++/++} \) mice. Similar to human neutrophils, wild-type mouse neutrophils rapidly induced the \(\text{Rhoh} \) gene following GM-CSF stimulation (Fig. 5A). Neutrophils from \(\text{Rhoh}^{++/++} \) mice demonstrated no detectable \(\text{Rhoh} \) mRNA expression in these experiments (data not shown). Freshly isolated neutrophils from wild-type mice generated similar amounts of LTB₄ after GM-CSF priming and subsequent C5a stimulation (mean level: \(\sim 15,000 \) pg/ml) as seen using human neutrophils. Moreover, there was no significant difference between neutrophils derived from wild-type and \(\text{Rhoh}^{++/++} \) mice (Fig. 5B), consistent with the
stimulated wild-type mouse neutrophils. The time periods of GM-CSF experiments. In control experiments, we verified that IL-3- and C5a-stimulated LTB4 production of neutrophils derived from these conditions of GM-CSF pretreatment and IL-3 priming, neutrophils generated significantly more LTB4 than wild-type neutrophils following GM-CSF pretreatment. The released LTB4 levels from Rhoh−/− compared with wild-type neutrophils were higher at all indicated time points. Stimulation with GM-CSF alone did not result in significant LTB4 production (data not shown). Sem of two independent experiments. In control experiments, we verified that Rhoh−/− mice had no detectable Rhoh mRNA expression. B, GM-CSF priming and subsequent C5a stimulation resulted in significant LTB4 production of neutrophils derived from wild-type and Rhoh−/− mice (mean LTB4 levels were ~15,000 pg/ml in supernatants). Stimulation with GM-CSF or C5a alone did not result in significant LTB4 production (data not shown). C, Time-dependent IL-3- and C5a-stimulated LTB4 production of neutrophils derived from wild-type and Rhoh−/− mice following GM-CSF pretreatment. The released LTB4 levels from Rhoh−/− compared with wild-type neutrophils were higher at all indicated time points. Stimulation with GM-CSF, IL-3, or C5a alone did not result in significant LTB4 production (data not shown). Same results were seen in another independent experiment.

Because both human and mouse neutrophils consistently expressed more Rhoh/TTF after GM-CSF stimulation, we also performed LTB4 release experiments in mouse neutrophils treated with GM-CSF for several hours. Because the priming effect of GM-CSF on human neutrophils did not last longer than 1 h (Fig. 4), neutrophils were primed with IL-3 and subsequently stimulated with C5a. Because maximal levels of Rhoh mRNA were seen after 3-h GM-CSF stimulation (Fig. 5A), we performed these experiments in 3-, 5-, and 8-h pretreated neutrophils. Strikingly, under these conditions of GM-CSF pretreatment and IL-3 priming, neutrophils from Rhoh−/− mice generated significantly more LTB4 after C5a stimulation compared with neutrophils from wild-type mice (Fig. 5C).

Discussion

Ras-like proteins constitute a protein superfamily that can be subdivided into five main families, one of these is the family of Rho proteins (27). The Rho family members are defined by the presence of a Rho-specific insert located between the G4 and the G5 boxes and involved in mediating protein-protein interactions (28). Rho proteins have been shown to participate in multiple signaling pathways (29). Most functional data have been reported for Rac1/2, RhoA, and cell division cycle 42 (Cdc42). In contrast, little is known about the function of the many other members of the Rho family, such as Rhoh/TTF. Recently published work suggests that Rhoh/TTF plays a key role in TCR signaling (13, 30). For instance, it has been demonstrated that Rhoh/TTF is required for recruitment of ZAP70 to the TCR. Consequently, Rhoh/TTF deficiency resulted in decreased activation of phospholipase Cγ1 and impaired calcium influx (13), as well as a T cell proliferation defect (30). These data suggest that Rhoh represents a positive regulator of TCR signaling.

In contrast to these findings obtained in T cells, Rhoh/TTF has been described as a negative regulator of proliferation and engulfment of hemopoietic progenitor cells, perhaps due to the induction of apoptosis in these cells (10). We did not observe differences in the kinetics of neutrophil apoptosis between wild-type and Rhoh−/− mice (data not shown). When acting as a negative regulator, Rhoh/TTF was suggested to antagonize Rac1/2-mediated signaling pathways (9, 10, 31). This assumption was supported by a study performed in Jurkat cells, in which retroviral Rhoh/TTF gene transfer resulted in inhibition of Rac1 signaling (32). Clearly, besides differences in the cell types used and signaling pathways investigated, it cannot be excluded that differences in the methodological approaches account, at least partially, for the different conclusions that have been made regarding Rhoh/TTF functions in the different studies.

We report in this study that Rhoh/TTF is a negative regulator of LTB4 production in neutrophils. In these cells, Rhoh/TTF is transcriptionally regulated by GM-CSF, which plays a key role in antibacterial defense mechanisms. We also show that Rhoh/TTF is expressed in neutrophils under inflammatory conditions, such as cystic fibrosis, ulcerative colitis, and appendicitis. Rhoh family members have previously been reported to exert important functions in neutrophils. For instance, Cdc42 is translocated to lipid rafts, where it activates p38 MAPK upon LPS-induced activation in these cells (33). Similarly, we observed evidence that a proportion of Rhoh/TTF is located at the cell membrane of neutrophils under inflammatory conditions (Fig. 2B), pointing to the possibility that it translocates from the cytosol to the cell membrane upon activation. Indeed, Rhoh/TTF has a conserved polybasic domain and a CAAX prenylation site (9, 34), which allows membrane targeting (35). How Rhoh/TTF exerts its regulatory role in neutrophils remains to be investigated.

Rac2, another member of the Rho family, was found to be essential for primary (azurophilic), but not secondary and tertiary granule release of neutrophils (36). In addition, Rac2 was found to be crucial for superoxide production and chemotaxis in neutrophils (34). These data are in agreement with the increased susceptibility toward bacterial and fungal infections in functional Rac2-deficient mice and humans (37–39). Moreover, RhoA has been studied in neutrophils and is believed to be involved in integrin functions of neutrophils (40). RhoA may also induce stress fibers formation, which affects the efficacy of signal transduction via surface receptors (41). In a recent study, it was suggested that RhoA interacts with Cdc42, exerting both positive and negative signaling effects.
depending on the activation stage of neutrophils (42). Taken together, Rho family members are expressed in neutrophils and are crucial for several functions of these cells. They interact with each other and other signaling molecules; however, the molecular interactions between Rho family members and their effectors are largely not understood.

In summary, this study demonstrates elevated levels of RhoH/TTF in neutrophils in association with GM-CSF exposure in vitro and in vivo. Therefore, GM-CSF does not only exhibit well known proinflammatory activities, it also induces the expression of genes that limit inflammatory responses, such as suppressor of cytokine signaling 1 (see Fig. 1A) and RhoH/TTF. RhoH/TTF negatively regulates agonist-mediated LTβ4 production. Further studies are needed to understand the molecular mechanisms of transcriptional activation of the RhoH/TTF gene. Moreover, the intracellular movement of RhoH/TTF and its binding partners as well as the exact signaling mechanisms and possible additional cellular functions that are regulated by RhoH/TTF in neutrophils remain to be investigated.

Disclosures

The authors have no financial conflict of interest.

References