Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 Pathways Regulates Neutrophil Retention in the Bone Marrow

Joseph M. Petty, Christopher C. Lenox, Daniel J. Weiss, Matthew E. Poynter and Benjamin T. Suratt

J Immunol 2009; 182:604-612; doi: 10.4049/jimmunol.182.1.604

http://www.jimmunol.org/content/182/1/604

References

This article cites 44 articles, 24 of which you can access for free at:
http://www.jimmunol.org/content/182/1/604.full#ref-list-1

Subscription

Information about subscribing to _The Journal of Immunology_ is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 Pathways Regulates Neutrophil Retention in the Bone Marrow

Joseph M. Petty, Christopher C. Lenox, Daniel J. Weiss, Matthew E. Poynter, and Benjamin T. Suratt

Neutrophil retention in and release from the bone marrow is a critical process that remains incompletely understood. Previous work has implicated the CXCR4/stromal derived factor-1 (SDF-1) chemokine axis in the marrow retention of neutrophils, yet the adhesion pathways responsible for this retention are unknown. Because α4β1 integrin (VLA-4) and its ligand VCAM-1 play a central role in the interactions of hematopoietic stem cells, lymphocytes, and developing neutrophils in the marrow, we investigated whether this integrin might be involved in marrow neutrophil retention and release. In this study, we show that VLA-4 is expressed on murine marrow neutrophils and decreases with maturation, whereas blockade of this integrin leads to the release of marrow neutrophils. Marrow neutrophils adhere via VLA-4 to VCAM-1, which is expressed on marrow endothelium and stroma, and inhibition of VCAM causes release of marrow neutrophils. Furthermore, SDF-1 (CXCL12) signaling through neutrophil CXCR4 augments VLA-4 adhesion to VCAM-1 in vitro, an effect that is blocked by preincubation with pertussis toxin. In vivo blockade of both CXCR4 and α4 causes synergistic release of marrow neutrophils, showing that cross-talk between CXCR4 and VLA-4 modulates marrow retention of these cells. Taken together, these results indicate that the VLA-4/VCAM adhesion pathway is critical in the retention and maturation-controlled release of neutrophils from the marrow, while providing an important link between the CXCR4/SDF-1 signaling axis and the adhesion events that govern this process. The Journal of Immunology, 2009, 182: 604–612.

H	omeostatic control of circulating neutrophil levels is a critical process, because divergence of blood neutrophil content toward either extremely low or high levels may lead to overwhelming infection or inappropriate inflammatory states, respectively. Although the processes governing neutrophil recruitment to sites of inflammation have been extensively studied, comparatively little is known of the mechanisms responsible for neutrophil retention within the bone marrow and subsequent release into the circulation, particularly in the homeostatic state (1). We (2) and others (3, 4) have demonstrated that the CXC cytokine stromal derived factor-1 (SDF-1; CXCL12) and its receptor, CXCR4, function to retain neutrophils in the marrow under normal conditions. Modulation of this chemokine/receptor axis by maturation-driven decrease in neutrophil surface CXCR4 expression and signaling in the marrow promotes orderly release of the retained cells to the periphery (2). This work provides insight into the cytokine pathways controlling the retention and release of marrow neutrophils, yet the corollary role of cell surface adhesion molecules in these processes remains unknown.

Several lines of evidence led us to hypothesize that the α4 integrin VLA-4 (α4β1, CD49d/CD29) might participate in the adhesion events governing homeostatic retention and release of bone marrow neutrophils. This integrin has been implicated in the marrow homing and retention of hematopoietic stem cells through its binding of endothelial and stromal cell surface VCAM-1 (CD106) in the marrow (5–10), and both VLA-4 and VCAM appear to be critical for normal lymphopoiesis and myelopoiesis within the marrow (11–14). Furthermore, studies examining G-CSF-mediated hematopoietic stem cell mobilization from the marrow, a process that is accompanied by significant blood neutrophilia, have shown that its effects on the marrow, in part, are mediated by down-regulation of VCAM, presumably interrupting VLA-4 adhesion (15, 16).

Although VLA-4 expression on human blood neutrophils is controversial (17–20), marrow myeloid precursors have been shown to express high levels of VLA-4, which decrease during cell maturation (21–23), a finding that may suggest VLA-4 involvement in subsequent marrow neutrophil release. Yet, understanding of VLA-4 function in marrow neutrophils is limited. Recent studies have suggested a role for α4 integrins in regulating release of neutrophils from the marrow during inflammatory conditions (24). These authors demonstrated failure of MIP-2-mediated mobilization of neutrophils following blockade of CD49d (the α4 subunit of both VLA-4 (α4β1)) and lymphocyte Peyer’s patch adhesion molecule (LPAM) (α4β2) in an isolated perfused rat hind limb model of neutrophil release.

In this study, we show that VLA-4 and its ligand VCAM are crucial in the homeostatic retention and release of bone marrow neutrophils. We further demonstrate that signaling through
CXCR4 affects neutrophil release from the bone marrow by modulating VLA-4/VCAM adhesion.

Materials and Methods

Mice

Four- to 8-wk-old female C57BL/6 mice were obtained from Harlan and housed in the animal facilities of the University of Vermont College of Medicine. All procedures that involved mice were approved by the University of Vermont Institutional Animal Care and Use Committee.

Reagents

Rat anti-mouse VCAM-1 (M/K-2; Serotec), CD49d (2B2.32; US Biological), LPAM-1 (DATK32; BD Pharmingen), CD62L (MEL14; BioSource International), CD106 (FD418; BioSource International) neutralizing Abs, and appropriate isotype control Abs were purchased. CXCR4 neutralizing polyclonal rabbit anti-mouse Abs (727/268b) (2, 25) were the gift of J.-A. Gonzalo (Millennium Pharmaceuticals, Cambridge, MA). All Abs used in the in vivo experiments were azide free. For flow cytometry and fluorescent immunohistochemistry, rat anti-mouse CD16/CD32 (Fc block), FITC-conjugated rat anti-mouse CD49d (clone R1-2), FTTC-conjugated rat anti-mouse LPAM-1 (DATK32), and PE-conjugated rat anti-mouse Gr-1 (Ly-6G/C; RB6C6.C5.8) mAbs and isotype control Abs were obtained from BD Pharmingen. Mouse anti-human/mouse SDF-1 mAb (clone 79018) was obtained from R&D Systems. Alexa Fluor 647-conjugated mouse anti-BrdU (PRB-1) and isotype control Abs, as well as Alexa Fluor 488-conjugated goat anti-rat IgG (H+L) were obtained from Invitrogen. Human rVCAM-1 (catalog ADP5) and mouse rCXCL12 (catalog 4G0-SDCF) were used to R&D Systems.

Determination of neutrophil VLA-4 expression

Marrow and blood neutrophil expression of VLA-4 was determined by flow cytometry, whereas correlation between levels of VLA-4 expression and the maturational state of the marrow myeloid cells was examined using BrdU pulse labeling in vivo, as modified from Basu et al. (26). Briefly, mice were injected with BrdU (50 mg/kg in PBS) by tail vein infusion and, 24 h later, were euthanized, after which whole blood and femoral marrow were harvested. After erythrocYTE lysis, cells were fixed in cold 0.25% paraformaldehyde for 35 min, then treated with 2 N HCl plus 0.5% Tween 20 for 30 min at 37°C, neutralized with 0.1 M sodium borate, and washed with PBS/1% Tween 20.

The prepared samples were then Fc blocked before being stained with a mixture of FITC anti-CD49d (1:100), Alexa Fluor 647 anti-CD11b (1:250), and PBS/1% Tween 20, then washed and resuspended in 0.25% PBS/1% Tween 20 for assay with a LSR II flow cytometer (BD Biosciences). Flow data were then analyzed by FlowJo software (Tree Star). Blood and mature marrow neutrophils were identified by gating for Gr-1high cells, whereas less mature forms of the myeloid lineage were examined by gating for all Gr-1+ cells (both Gr-1high and Gr-1low) when examining marrow neutrophil maturation states with BrdU. These cell populations were then analyzed for CD49d and β2 integrin expression. Results were expressed as both percent positive (using isotype control) and a ratio of the mean fluorescence intensity of cells stained with CD49d mAb vs isotype control Ab.

Preparation of morphologically mature bone marrow neutrophils

To obtain marrow neutrophils from the postmitotic, morphologically mature pool, we used a discontinuous density gradient to separate whole marrow, as previously described (2, 27). These techniques have previously been shown not to cause substantial activation, damage, or apoptosis in the isolated cells (2, 27).

Evaluation of the effects of α4 and VCAM-1 neutralizing Abs on neutrophil marrow retention and release in vivo

Mobility of endogenous and labeled neutrophils from marrow.

In the in vivo effects of Ab-mediated CD49d (α4) blockade were initially assessed by examining the response of circulating neutrophil levels in treated mice. C57BL/6 mice were injected with either anti-CD49d mAb or isotype control Abs via tail vein (30 μg in 200 μl of PBS/BSA). After 4 h, 500 μl of peripheral blood was obtained by cardiac puncture under pentobarbital anesthesia and then analyzed using an Advia 120 hematology analyzer with vetcrit software (Bayer). Similar experiments were performed to evaluate the effects of CD106 (VCAM-1) blockade.

The effects of blocking Abs on marrow neutrophil release were quantified using methods previously described to monitor the release of labeled cells under homeostatic conditions (2, 27). Briefly, morphologically mature bone marrow neutrophils were isolated and radiolabeled with 111indium-tropolonate, as described (27), and aliquots of 5 × 107 labeled neutrophils were infused via tail vein into untreated recipient mice. After infusion, the cells were allowed to localize to marrow for 4 h, a time point at which such sequestration has reached a plateau (typically 60–80% of infused cells) (27). CD49d-blocking or isotype control Abs were then infused via tail vein (30 μg), and the animals were subsequently bled (10 μl), euthanized, and 2 h later dissected for analysis. A Wallac 1420 gamma counter was used to determine 111indium content in each tissue, which was then expressed as a percentage of the total counts present in all tissues (the entire mouse). Values for the estimated total blood cpm were based on a predicted total blood volume of −1.5 ml for the 4– to 8-wk-old C57BL/6 mouse (28).

The marrow content of C57BL/6 mouse femur was estimated to represent 16% of the total marrow pool based on the work of Boggs (29). Similar experiments were performed to evaluate the effects of Ab-mediated CD106 neutralization (30) on marrow neutrophil release. To examine the nonspecific effects of Ab binding of neutrophil or marrow cell surface Ags in this model, blocking Abs against CD62L, CD11a, and CD54 were infused in separate similar experiments and compared with isotype control Ab infusions.

The synergistic effects of very low-dose CD106 and CD184 (CXCR4) Ab blockade on marrow neutrophil release were similarly examined, as we have previously described (2), using Ab doses below the thresholds determined for each individual Ab to show a mobilizing effect. Anti-CD106 (0.01 μg i.v.) and anti-CXCR4 (0.02 μg i.v.) Abs were administered separately and together to mice, as above, and the mice were then analyzed 2 h later.

To further examine the neutrophil mobilization effects of CD49d inhibition, BrdU pulse labeling was performed in mice, as described above. Forty-eight hours after BrdU dosing, a time −12–24 h before normal release of the most mature BrdU-labeled marrow neutrophils (BrdUbright cells), animals were injected with either CD49d Ab or isotype control (30 μg). Four hours later, the mice were euthanized, and blood and marrow were collected and analyzed by flow cytometry for BrdU incorporation, as detailed above. Blood samples were also assayed by hematology analyzer to determine absolute neutrophil content (cells/ml), whereas marrow samples were analyzed for total nucleated cells (per femur). Absolute blood levels for each neutrophil population (BrdU−negative, BrdUbright, and BrdU−negative) were calculated as the percentage of total Gr-1high cells staining for each BrdU pattern multiplied by the absolute blood neutrophil content for each sample. Marrow levels of each neutrophil population were calculated as a percentage of total Gr-1high cells staining for each BrdU pattern, and normalized to the average total nucleated cell content/femur of isotype control animals.

Blockade of neutrophil homing to marrow.

The effects of Ab-mediated CD49d blockade were further assessed by measuring marrow homing of i.v. infused labeled marrow neutrophils. Such homing has previously been used to demonstrate the importance of CXCR4 in marrow neutrophil retention (2). Briefly, 5 × 106 radiolabeled morphologically mature bone marrow neutrophils were infused through the tail vein of each recipient mouse 30 min after treatment with anti-CD49d or isotype control Abs (30 μg). Neutrophil localization was assessed 4 h later, as detailed above. The effects of CD106 blockade on neutrophil marrow homing were examined in similar experiments.

In additional experiments, neutralizing Ab specific for the LPAM-1 integrin complex (α4β1) was infused (40 μg) in attempts to distinguish which of the known heterodimers of CD49d (α4β1, α4β2, α4β7) might be critical for neutrophil retention in the marrow, because both are inhibited by CD49d blockade, and both are known to bind similar ligands in the marrow, including VCAM-1 (30).

Calcium flux assays

To examine whether CD49d-blocking Ab might activate neutrophils, calcium flux assays were performed, as previously described (2). Cells were labeled with the fluorescent Indocarb-1DAM (Invitrogen) and calcium mobilization in response to α4-blocking Ab (20 μg/ml) or fMLP (1 μM; as a positive control) by flow cytometry. Results were expressed as the ratio of Indo-1 Violet to Indo-1 Blue against time.

Immunochemistry

Bone marrow plugs were flushed from mouse femurs with 4% formaldehyde and incubated for 30 min before being washed with PBS, embedded with OCT (Tissue-Tek), and snap frozen before sectioning and mounting. For staining, slides were permeabilized with 0.1% Triton X-100 in PBS, blocked with 1% BSA followed by 10% goat serum, and then incubated with rat anti-VCAM-1 (1/50; MK2) for 60 min, followed by Alexa Fluor 488 goat
anti-rat IgG (H + L; 1/400) for 30 min. Slides were then washed, counterstained with 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich), and coverslipped using Aqua PolyMount (Polysciences), before imaging with an Olympus BX50 upright light microscope (Olympus America) with attached Optronics MagnaFire digital camera (Optical Analysis) and associated MagnaFire software (version 2.0).

Marrow for dual VCAM-1/SDF-1 staining was prepared as above, except for the addition of 0.5% cetlypyridinium chloride to the fixation buffer, and the use of mouse on mouse immunodetection technique, as previously described (31) (M.O.M. Kit; Vector Laboratories). Slides were incubated with mouse anti-VCAM-1 (1/200) and rat anti-VCAM-1 (1/50) overnight at 4°C, before being washed and then stained with biotinylated anti-mouse IgG reagent for 10 min, followed by streptavidin-Alexa Fluor 555 and Alexa Fluor 488 anti-rat IgG (H + L; 1/400) for 30 min. Slides were then washed, counterstained with DAPI, and imaged, as above.

Neutrophil adhesion assays

Neutrophil adhesion assays were performed using 111indium-labeled morphologically mature marrow neutrophils, isolated, and labeled, as described above. Flat-bottom 8-well enzyme immunoassay/RIA strips (Corning Life Sciences) were coated with human rVCAM (at stated concentrations in 0.1 M sodium carbonate (pH 9.0)) overnight in a humidified chamber at 4°C.

In experiments using immobilized SDF-1, wells were first coated with murine rSDF-1 (0.2 μg/ml in carbonate buffer) for 30 min at room temperature. Wells were then washed with carbonate buffer and blocked with PBS/2% FBS for 1 h at 37°C before being washed with running buffer (1× HBSS with 2 mg/ml BSA, 10 mM HEPES, 1 mM CaCl2, and 1 mM MgCl2). A total of 1 × 105 indium-labeled cells in 50 μl of running buffer was added to each well and allowed to adhere for 30 min at 37°C. Wells were then washed several times with running buffer and individually gamma counted. All samples are reported as percentages of total loaded cells by normalizing against separately assayed 50-μl aliquots of labeled cells. In experiments using Ab blockade, labeled cells were preincubated with CD49d neutralizing, LPAM neutralizing, or isotype control Abs (15°C, 30 min) before being labeled with 111indium and assayed (as above).

Results

VLA-4 expression on murine neutrophils is down-regulated during maturation

To examine the expression of VLA-4 on murine peripheral blood and morphologically mature, Gr-1high bone marrow neutrophils, we examined α4 integrin using flow cytometry. As shown in Fig. 1A, the staining profiles for peripheral blood and bone marrow-derived Gr-1 high neutrophils demonstrate that α4 is highly expressed in both populations (98–99% of cells). Although α4 expression is expressed in the context of the α4β7 integrin complex (LPAM) has also been found at low levels on certain neutrophil populations (32), using Abs specific for the α4β7 heterodimer, we found it to be expressed at very low levels on murine neutrophils (Fig. 1B). Thus, the high levels of α4 seen on both blood and marrow neutrophils are presumably expressed in the context of the α4β1 heterodimer (VLA-4). Blood neutrophils show lower levels of α4 expression compared with marrow neutrophils (Fig. 1C), suggesting that VLA-4 expression decreases during neutrophil maturation.

To further explore the regulation of VLA-4 expression during marrow neutrophil maturation, we examined marrow from mice pulse labeled with the nucleotide analog BrdU (26). This technique allows for relative determination of cell maturation state in the marrow using the intensity of BrdU nuclear staining, such that at the time point examined (24 h after BrdU pulse) three populations of Gr-1-positive cells are identifiable, as follows: 1) cells that were in the postmitotic compartment of the marrow (metamyelocytes/bands) at the time of pulse and therefore incorporate no BrdU label (BrdU negative, the most mature cell population); 2) cells that were in the last phase of the mitotic compartment (myelocytes) and incorporate BrdU just before ceasing division, and hence, have high levels of BrdU incorporation (BrdU bright, the second most mature cell population); and 3) cells still in the mitotic compartment (myeloblasts/myelocytes) that have undergone multiple divisions and thus diluted their nuclear BrdU content (BrdU dim, the least mature cell population). We find that α4 expression is highest in the least mature (dim) cells and lowest in the most mature (negative) cells (Fig. 1D), suggesting that marrow neutrophil VLA-4 expression decreases with maturation.

Neutralization of VLA-4 results in neutrophil release from marrow

To determine whether neutrophil retention in the marrow during homeostatic conditions requires VLA-4, neutralizing Ab to CD49d was i.v. infused in mice. Animals injected with anti-CD49d (α4) Ab demonstrate a marked blood neutrophilia 4 h after injection compared with isotype control (Fig. 2A), suggesting release of marrow neutrophils into the circulation.

We next sought to confirm that the peripheral neutrophilia observed following systemic α4 blockade reflected accelerated release of postmitotic marrow neutrophils and not demargination of
neutrophils already in the blood granulocyte pool. To examine this possibility, we conducted neutrophil adoptive transfer experiments in which labeled morphologically mature marrow neutrophils were infused into untreated animals and allowed to home to marrow. We have used this technique previously to examine neutrophil kinetics during inflammation and interruption of CXCR4/SDF-1 binding, and it has been found to be both sensitive and specific for marrow release of these cells (2, 27). In the current experiments, after marrow retention was achieved, blocking Ab was infused and the labeled cells released from marrow were quantified 2 h later. Neutralizing Ab infusion (but not isotype control) results in decreased numbers of labeled neutrophils found in bone marrow and increased numbers in the liver, spleen, and lung (Fig. 2B). To determine whether the effect of α4 blockade in this model was specific and not an artifact of Ab-mediated neutrophil activation or opsonization, the effect of α4 Ab binding on isolated neutrophils was examined by calcium flux, whereas the effects of blocking Abs to other neutrophil surface receptors not believed to participate in neutrophil marrow retention (L-selectin and integrin α4β1; CD62L and CD11a, respectively) were examined in marrow mobilization experiments, as described above. No neutrophil calcium flux was seen in response to α4 Ab binding (Fig. 2F), whereas L-selectin and CD62L-binding Abs failed to mobilize labeled neutrophils from the marrow (Fig. 2E). Taken together, these results suggest that VLA-4 blockade induces a specific, substantial release of neutrophils from the marrow, with subsequent localization of these cells to other tissues following circulation, as we have seen previously following CXCR4 blockade (2).

To further investigate the importance of VLA-4 in the retention of neutrophils within the marrow, we examined whether α4 blockade might block homing of infused neutrophils to the marrow. Ab directed against α4 was infused before injection of the labeled cells, and the number of labeled neutrophils sequestered in marrow was quantified at 4 h. In this model, α4 blockade attenuates homing

FIGURE 2. VLA-4 integrin blockade results in significant neutrophil release from bone marrow. A, Mice were infused with either CD49d (α4) neutralizing or isotype control Abs (30 µg), and blood neutrophil levels were measured 4 h later. B, This effect was further examined using neutrophil adoptive transfer in which 111indium-labeled marrow neutrophils were injected into naïve mice and allowed to localize to marrow for 4 h before infusion of anti-CD49d or control Ab. Thirty minutes after Ab infusion, blood and tissue 111indium-neutrophil content was determined by gamma counting. C, The role of α4 in neutrophil homing to marrow was investigated in mice injected with blocking Ab or isotype control 30 min prior to labeled cell infusion. Blood and tissue 111indium-neutrophil content was determined 4 h after cell infusion. D, To determine whether the effects of α4 blockade reflect disruption of α4β1 (VLA-4) or α4β7 (LPAM), neutralizing Ab specific for LPAM was used in similar homing experiments. E, To examine the nonspecific effects of Ab binding of neutrophil cell surface Ags, blocking Abs against CD62L (L-selectin) or CD11a (α4) were infused in separate experiments similar to those reported in B. Marrow levels of labeled neutrophils are shown. Data points are the means of three to five mice/condition (±SEM). Significantly different when compared with control-treated animals: *, p < 0.005; **, p < 0.02. F, To determine whether neutrophil might be activated by binding of the CD49d-blocking Ab, calcium flux was assayed in response to α4-blocking Ab (20 µg/ml), isotype control, or fMLP (1 µM; as a positive control).
of neutrophils to marrow (Fig. 2C), and induces similar retention in liver, spleen, and lung, as seen in the release studies.

As noted previously, α4 may be expressed in the context of two different integrin heterodimers, αβ1 (VLA-4) and αβ7 (LPAM). Although LPAM appears to be expressed at very low levels on murine neutrophils compared with VLA-4, we wished to exclude its participation in the marrow retention of these cells. We therefore tested the effect of a LPAM-specific neutralizing Ab on neutrophil marrow homing and release. As compared with isotype control Ab, there was no effect of LPAM Ab (Fig. 2D). These data suggest that LPAM is not involved in neutrophil interaction with marrow ligands under homeostatic conditions, and that the above demonstrated effects of α4 blockade reflect a critical role for α4β1 (VLA-4) in such interactions.

Marrow neutrophil sensitivity to VLA-4 neutralization increases with cell maturation

To examine the relationship between neutrophil maturation state and sensitivity to VLA-4 neutralization, in vivo BrdU pulse-labeling experiments were conducted (as described above). Animals were pulsed with BrdU and, 48 h later, were then injected with either anti-CD49d Ab or isotype control. Blood and marrow were then examined 4 h after Ab injection. Significant decreases in marrow neutrophil content were seen in anti-CD49d-treated animals relative to control, with the greatest decrease being seen in the most mature neutrophil population (BrdUnegative), followed by less mature population (BrdUbright), with relatively little change seen in immature (BrdUdim) neutrophil content (Fig. 3A). Similarly, significant increases in neutrophil levels were seen in blood following CD49d neutralization, with the largest increases seen in the more mature neutrophil populations (BrdUnegative and BrdUbright), indicating release of these cells from the marrow to the blood. This pattern of release suggests that neutrophil susceptibility to VLA-4 blockade increases with maturation, a finding that is consistent with our finding that marrow neutrophil surface levels of VLA-4 decrease with maturation (Fig. 1C), but may also suggest other binding interactions predominate in the retention of myeloid progenitors.

Marrow neutrophils adhere to VCAM in vitro through VLA-4

Given the established role of VCAM as a ligand for VLA-4 (5, 7) (9, 10), we hypothesized that neutrophil adhesion in the marrow might be mediated by VLA-4/VCAM interactions. To initially investigate this hypothesis, we examined marrow neutrophil adhesion to plates coated with varying concentrations of rVCAM. We found high levels of neutrophil adhesion at VCAM concentrations as low as 500 ng/ml, with a saturation point at ~5 μg/ml, and with little nonspecific binding (Fig. 4A). This binding is almost completely reversed by α4 blocking Ab (Fig. 4B), whereas LPAM blockade has no effect on binding, indicating that neutrophil adhesion to VCAM is mediated by VLA-4.

VCAM-1 is expressed widely in murine marrow, and VCAM neutralization induces release of neutrophils from the marrow

To examine the distribution of marrow VCAM expression in adult mice, we performed immunofluorescent staining in fixed femoral marrow plugs. VCAM expression in the marrow is widespread
(Fig. 5A), with strong staining found on both venous sinusoidal endothelium (white arrow), and large interdigitating cells (yellow arrow), morphologically consistent with marrow stromal or nurse cells (33). To determine the role of VCAM in the retention of bone marrow neutrophils, we next conducted VCAM-blocking experiments similar to those performed for VLA-4 (above). Infusion of VCAM-neutralizing Ab into mice results in marked blood neutrophilia (Fig. 6A) 4 h after injection compared with isotype control. That this finding represents release of neutrophils from the marrow was confirmed by measuring the effects of VCAM blockade in a neutrophil adoptive transfer model, as above. Ab infusion results in substantial release of cells from marrow, and subsequent localization in liver, spleen, and lung (Fig. 6B). Control experiments using blocking Ab against another marrow-expressed integrin (ICAM-1; CD54) showed no evidence of labeled neutrophil mobilization, suggesting that the effects of VCAM blockade are not due to steric or other nonspecific effects of marrow cell binding (Fig. 6D). Pretreatment of animals with VCAM neutralizing Ab was found to block marrow homing of subsequently infused labeled neutrophils (Fig. 6C) as well, confirming a role for the VLA-4/VCAM adhesion pathway in the marrow retention of neutrophils.

Neutrophil VLA-4/VCAM adhesion is modulated by SDF-1

Given our previous findings that neutrophil surface CXCR4 signaling is critical to marrow retention (2), and reports that CXCR4 signaling in hematopoietic stem cells (34) significantly increases surface VLA-4-binding affinity, we hypothesized that a similar process might modulate neutrophil VLA-4 adhesion in the marrow. We first examined the effects of SDF-1 on neutrophil adhesion in vitro using VCAM-coated plates in the presence or absence of coupled SDF-1. SDF-1 significantly augments neutrophil binding to VCAM (Fig. 7A), and this appears to be specific because...
SDF-1 does not increase binding to serum-coated (blank) wells. The effects of SDF-1 were attenuated when performing the assay at 4°C (data not shown), and were completely abrogated by preincubation of the cells with pertussis toxin (PTX), a compound that inhibits Gi protein-coupled signaling and has been shown to block CXCR4 (35). These findings indicate that the observed SDF-1-driven augmentation of VLA-4/VCAM adhesion is dependent on intracellular signaling.

SDF-1 and VCAM-1 are colocalized in murine marrow, and combined CXCR4/VCAM neutralization is synergistic in causing release of neutrophils from the marrow

Based on previous cell culture studies (36), we hypothesized that SDF-1 and VCAM-1 might be closely colocalized in the marrow stroma and examined this question using dual immunofluorescent staining of fixed femoral marrow. SDF-1 and VCAM-1 are found to be widely expressed in the marrow. Although rare cells show single expression of either SDF-1 (Fig. 8A, white arrows) or VCAM-1 (Fig. 8B, light blue arrows), expression of both is predominantly found to colocalize in the marrow (Fig. 8C, yellow arrows), particularly on the surface of what morphologically appear to be marrow stromal cells. Given this finding and the apparent modulation of VLA-4/VCAM adhesion by CXCR4 simulation (Fig. 7), we examined whether the mobilizing effects of VCAM-1 neutralization and CXCR4 signaling inhibition might interact in vivo. We performed neutrophil adoptive transfer experiments, as detailed above, in which we then administered very low doses of both CXCR4- and VCAM-1-blocking Abs (that by themselves had no mobilization effect) simultaneously. Marrow neutrophil release was determined 2 h after infusion. Under these circumstances, labeled neutrophil release was greatly augmented compared with either low-dose CXCR4 or VCAM-1 Ab infusion alone (Fig. 9).

Thus, these results suggest a synergistic effect of such blockade, and further support the role of cross-talk between neutrophil CXCR4 and VLA-4 in the regulation of marrow retention.
Discussion

In the present study, we demonstrate a role for integrin \(\alpha_4\beta_1\) (VLA-4) and its ligand VCAM-1 in the homeostatic control of neutrophil release from the bone marrow. We further implicate cross-talk between neutrophil surface CXCR4 and VLA-4 in the modulation of VCAM binding, suggesting a direct link between the SDF-1/CXCR4 chemokine axis and the adhesion events retaining neutrophils in the marrow.

Although previous work has shown VLA-4 to be critical in the marrow retention of hematopoietic stem cells and normal hematopoietic development (5, 6, 9–14), its role in subsequent marrow neutrophil retention and release has not been investigated. Although neutrophil expression of VLA-4 has been debated (17–20), particularly regarding mature neutrophils in the circulation, our data suggest that this integrin is expressed at high levels during murine neutrophil development and declines with maturation, a pattern similar to that described with human neutrophil development (21–23). The finding that VLA-4 expression is progressively lost during neutrophil maturation suggests a role for this integrin in the choreography of neutrophil release from the marrow.

In this study, we show that \(\alpha_4\) integrin-mediated adhesion events are critical to the retention of neutrophils within the bone marrow. Although \(\alpha_4\) may exist in two different heterodimers on the surface of neutrophils (\(\alpha_4\beta_7/LPAM\) and \(\alpha_4\beta_1/\beta_{LAM}\)) (32), we find very low levels of LPAM expression on marrow neutrophils, and no effect of specific blockade of this integrin on neutrophil release from the marrow. We therefore believe the effects of \(\alpha_4\) blockade are specifically attributable to interruption of VLA-4 adhesion. This finding, in conjunction with our evidence that marrow neutrophil maturation is associated with increasing sensitivity to \(\alpha_4\) blockade, is consistent with the hypothesis that maturing neutrophils are retained within the marrow under the influence of VLA-4, and that such retention wanes with cell maturation-associated down-regulation of VLA-4, leading to controlled release into the circulation.

The best-described ligands for VLA-4 are VCAM and fibronectin. Previous studies using radioautography of whole marrow (8) have suggested that VCAM is expressed widely in the marrow, and more recent work in newborn mice has shown that the advent of stromal and endothelial VCAM expression coincides with the initiation of granulopoiesis in the marrow (14). Based on these studies and our own work suggesting that postmitotic neutrophils in the marrow are located in close proximity to the venous sinuses and the dendritic processes of stromal cells (27), we hypothesized that VCAM might be a critical target for neutrophil adhesion. We show in this study that VCAM is strongly expressed on both stromal cells and the venous endothelium in murine marrow, and that neutrophil interaction with both marrow stroma and endothelium is most likely mediated by the VLA-4/VCAM pathway. It is important, however, to recognize that our studies do not rule out a concomitant role for fibronectin in this process, as has previously been suggested in the marrow retention of hematopoietic progenitors (14).

VLA-4 exists in low- and high-avidity states (37), and this is regulated in part by inside-out signaling, in which cytokine receptor activation leads to changes in the binding affinity state of the integrin, modulating cell adhesion (38). One such cytokine receptor is CXCR4, which when activated by the binding of SDF-1 has been shown to significantly increase VCAM binding by VLA-4 in hematopoietic stem cells, lymphocytes, and tumor cell lines (34, 39, 40). This process appears to be dependent on close coexpression of SDF-1 and VCAM on cell surfaces (34), a relationship that has been shown to exist on cultured bone marrow stromal cells (36), and is further suggested in vivo in our present study. As a continuation of our previous work implicating CXCR4 signaling in the retention of marrow neutrophils (2), we show in this study that the neutrophil VLA-4/VCAM adhesion pathway is significantly augmented by SDF-1. This alteration in adhesion appears to require \(\alpha_4\) protein-coupled intracellular signaling, consistent with a dependence on CXCR4 signaling in this process (35). The importance of this interaction in vivo is suggested by the synergistic effects of very low doses of neutralizing Abs against both CXCR4 and VCAM in the mobilization of labeled marrow neutrophils. Thus, the retention and release of marrow neutrophils appear to be governed by both SDF-1/CXCR4 signaling and VLA-4/VCAM adhesion events in the marrow, and these processes may be, to a degree, interdependent.

Interestingly, recent studies have suggested that the neutrophil growth factor G-CSF may act to drive the release of the marrow neutrophils, in part, through down-regulation of marrow SDF-1 (41, 42), whereas G-CSF modulation of the combined axis (SDF-1/CXCR4 and VLA-4/VCAM) has been implicated in the release of hematopoietic stem cells (15, 43, 44). In total, this suggests the possibility that maturation-related loss of both VLA-4 and CXCR4 may govern the orderly release of neutrophils during the homeostatic setting, whereas more profound alterations to this complex axis may lead to massive release, as in the case of systemic inflammation.

In summary, we find an important role for VLA-4 and VCAM, in the homeostatic retention and release of neutrophils from the bone marrow. This adhesion interaction appears to be modulated by cross-talk from neutrophil surface CXCR4, and may account, at least in part, for our previous findings that marrow neutrophil retention is dependent on the SDF-1/CXCR4 axis. The orderly release of mature cells from the marrow then may reflect a programmed down-regulation of both neutrophil CXCR4 and VLA-4, whereas the massive release of often less mature neutrophils that accompanies systemic inflammatory states may reflect direct interruption of these interactions under the influence of mediators such as G-CSF. Further work will be required to delineate these possibilities.

Disclosures

The authors have no financial conflict of interest.

References

