Two Structurally Different Rituximab-Specific CD20 Mimotope Peptides Reveal That Rituximab Recognizes Two Different CD20-Associated Epitopes

Federico Perosa, Elvira Favino, Chiara Vicenti, Andrea Guarnera, Vito Racanelli, Vito De Pinto and Franco Dammacco

J Immunol 2009; 182:416-423; doi: 10.4049/jimmunol.182.1.416

http://www.jimmunol.org/content/182/1/416

References

This article cites 41 articles, 20 of which you can access for free at:

http://www.jimmunol.org/content/182/1/416.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Peptide mimotopes of the CD20 epitope recognized by rituximab are useful tools for studying this therapeutic mAb’s functional properties. We previously identified two structurally different peptides that are both effective mimotopes: a 7-mer cyclic peptide (Rp15-C) bearing the antigenic motif a/sNPS_3 that matches $^{170,173}\text{ANPS}_3$ of the extracellular loop of CD20, and a 12-mer linear peptide (Rp5-L) containing the antigenic motif WPxWLE_4 lacking sequence homology to CD20. In this study, we investigated whether the different structures of Rp15-C and Rp5-L reflect the mimicry of the same or different CD20 epitopes recognized by rituximab. Using immunochemical methods, we found that, like Rp15-C, Rp5-L mimics the raft-associated form of CD20 (by inhibiting rituximab binding to CD20 in vitro), Rp5-L and Rp15-C elicit, in immunized mice, anti-CD20 Abs that stain CD20 within membrane rafts (7). Although the crystal structure of CD20 has not been defined, the protein is believed to be a tetraspan molecule with intracellular termini and two extracellular loops of 9 and 43 residues spanning from aa 72 to 80 and from aa 142 to 184, respectively (8, 9). The larger extracellular loop, particularly nearby or between residues A170 and S173, contains the epitope recognized by rituximab and most other anti-CD20 mAbs (10). The binding of rituximab is abolished by reduction and alkylation of CD20, indicating that the recognized epitope is conformational (11). However, despite apparently similar specificity, rituximab and other anti-CD20 mAbs have different effector functions and different efficacies (12).

Received for publication September 8, 2008. Accepted for publication October 27, 2008.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by a grant (2007–2008) from Associazione Italiana per la Ricerca sul Cancro, Milan, Italy.

2 Address correspondence and reprint requests to Dr. Federico Perosa, Department of Internal Medicine and Clinical Oncology, University of Bari Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy. E-mail address: f.perosa@dimo.uniba.it

Copyright © 2008 by The American Association of Immunologists, Inc. 0022-1767/08/S2.00

Abbreviations used in this paper: PDPL, phage-display peptide library; CTB, cholera toxin subunit B; KLIH, keyhole limpet hemocyanin.

www.jimmunol.org
loop of CD20 and a linear one lacking sequence homology to CD20—have similar mimotopic properties are not known. One possibility is that the tertiary structure of Rp5-L conformationally mimics the (ANPS) epitope; peptides with these discontinuous or conformational epitopes have already been characterized for other Ags (20–23). Alternatively, the two peptides could mimic a single epitope in different conformational states; in fact, CD20 has recently been found to associate more tightly with membrane rafts upon Ab binding, possibly due to a conformation change (24). We have already shown, using double immunofluorescence binding and ceramide synthesis assays, that Rp15-C mimics membrane raft-associated CD20 (19), but this information is not yet available for Rp5-L. A third possibility is that the peptides mimic two distinct, but spatially close CD20-associated epitopes. In this study, we investigated which of these possible molecular mechanisms most likely explains the different properties of Rp5-L and Rp15-C, with the aims of better understanding the functional characteristics of rituximab as well as the ability of peptides to mimic conformational epitopes of therapeutic importance.

Materials and Methods

Animals and cells

The animal studies were reviewed and approved by the ethical committee of the University of Bamberg Medical School. Female BALB/c mice (8–12 weeks old) were purchased from Charles River Breeding Laboratory. The human CD20+ T lymphoid cell line CEM and the human CD20+ B lymphoid cell lines Raji and Daudi, established models for exploring rituximab’s reactivity and functions (7, 25), were grown in RPMI 1640 medium supplemented with 10% FCS (HyClone) and 5 mM l-glutamine.

Reagents, Abs, and peptides

Electrophoresis reagents were purchased from Bio-Rad. Unless otherwise specified, all other chemicals were purchased from Sigma Aldrich; PE-conjugated streptavidin (PE-streptavidin) was purchased from BD Pharmingen. Purified rabbit IgG, HRP-labeled goat anti-mouse, and FITC-conjugated goat anti-human and anti-mouse IgG (Fc portion), were purchased from GE Healthcare Bio-Sciences. Purified rabbit IgG, HRP-conjugated mouse mAb to bacteriophage M13 major coat protein product of gene VIII (HRP-anti-M13 Ab) was purchased from Alexis. HRP-conjugated mouse mAb to bacteriophage M13 major coat protein product of gene VIII (HRP-anti-M13 Ab) was purchased from GE Healthcare Bio-Sciences. Purified rabbit IgG, HRP-, and FITC-conjugated goat anti-human and anti-mouse IgG (Fc portion), and FITC-conjugated goat anti-mouse IgM were purchased from Jackson ImmunoResearch Laboratories.

Cyclic and linear peptides were synthesized by Primm. Their quality was checked by analytical reverse-phase chromatography and mass spectral analysis, and their purity was >80%. Synthetic peptides included the following: the rituximab-specific 7-mer linear peptide Rp1-L (WPRWLLEN; motif amino acids are in bold), 12-mer linear peptide Rp5-L (QDKLIQWQPWKWLE), and cysteine-constrained 7-mer cyclic peptide Rp15-C (ACPYANSPLC) (13); the anti-HEA class I mAb HC-10-specific peptide Qp-1a (QEGPGYWRNNT) (27); and the CD20-derived 20-mer linear peptide RpCd20-L (YNCEPANPENPSSTQYYCY) corresponding to residues 165–184 of the extracellular loop of CD20 (13).

Rituximab binding and activation of ceramide synthesis in CD20+ cells

To test the ability of peptide mimotopes to inhibit the binding of rituximab to native CD20, rituximab (2.5 μg/ml in PBS; 60 μl) was preincubated with an equal volume of PBS containing 100 μg/ml Rp5-L, Rp15-C, Qp-1a, or no peptide, for 1 h at 4°C. Then, 100 μl of the rituximab-peptide solution was added to Raji cells (1 × 10^6/50 μl) preincubated with rabbit IgG to block Fc receptor binding sites. Following a 10-min incubation at 37°C, cells were washed once with 4 ml of PBS containing 0.5% BSA (PBS-BSA), and fixed with 2% paraformaldehyde for 15 min at 25°C. Cells were washed once with PBS-BSA, pelleted, and then incubated in 50 μl of biotinylated CTB (10 μg/ml), to reveal membrane rafts, for 30 min on ice. Cells were washed once with PBS-BSA, and incubated with PE-streptavidin (1:500) and FITC-conjugated anti-human IgG (1:100) in PBS for 30 min at 4°C. Cells were washed with PBS-BSA, mounted on glass coverslips with polyvinyl alcohol mounting medium with Dabco (Sigma-Aldrich), and examined with a Nikon confocal microscope using a ×60 Plan Apo VC objective. An argon laser at 488 nm was used to excite FITC, and a helium-neon laser was filtered at 560 nm to excite PE.

The ability of peptide mimotopes to inhibit rituximab-induced membrane ceramide synthesis in Daudi cells was tested, as described elsewhere (7, with minor modifications. Briefly, 50 μl of rituximab (10 μg/ml in PBS) was preincubated for 1 h at 4°C with an equal volume of PBS containing Rp5-L (400, 40, or 4 μg/ml), Rp15-C (400, 40, or 4 μg/ml), or no peptide. The rituximab-peptide solution (100 μl) was added to Daudi cells (1 × 10^6/50 μl), incubated for 10 min at 37°C, fixed with 2% paraformaldehyde for 15 min at 25°C, washed with PBS-BSA, and resuspended in 50 μl of rabbit IgG (50 mg/ml in PBS) for 30 min at 4°C. After an additional wash, ceramide production was revealed by sequential incubation of cells with anti-ceramide IgM (1:100) for 1 h at 4°C, followed by FITC-conjugated anti-mouse IgM (1:100). The fluorescent profiles of labeled cells were documented with a FACScan cytometer.

Antiprotein antisera generation, specificity testing, and purification

Peptides Rp5-L, Rp15-C, RpCd20-L, and Qp-1a were coupled to carrier protein keyhole limpet hemocyanin (KLH) or BSA using glutaraldehyde, as described previously (13). BALB/c mice (five mice per peptide) were immunized, as described previously (19), using 1 μg of KLH peptide for priming and for boosting on days 7, 14, 21, and 28. An additional 3 mice immunized with KLH only. Sera were harvested on day 28 and every week thereafter up to day 56, and tested for specificity in an ELISA. Briefly, 96-well polyvinyl chloride microtiter plates were coated with 50 μl of PBS containing 10 μg/ml BSA-conjugated peptide for 12 h at 4°C. Wells were washed once with PBS containing 0.05% Tween 20 (PBS-T20) and blocked with PBS-BSA. Antipeptide sera were added to the plates in 10-fold serial dilutions (starting from a 1/10 dilution) and incubated for 4 h at 25°C. Wells were washed three times with PBS-T20, and bound IgG was detected with HRP-conjugated anti-mouse IgG (Fc portion; 1:2000) and o-phenylenediamine (0.5 mg/ml); color development was stopped by adding 100 μl of 2 N H_2SO_4 and was read at 492 nm. Background binding was determined from the absorbance in wells that were not incubated with sera.

Using this ELISA, sera drawn from days 35 to 56 were found to display the highest titer to the corresponding immunogen in all animals. The sera were used for immunofluorescence staining of cells to screen for mice that had developed CD20+ cell-reacting Abs, as described (19); two mice immunized with Rp5-L, and two with Rp15-C developed CD20+ cell-reacting Abs. Sera were drawn on days 35, 42, 49, and 56 from each pair of mice were pooled for use in confocal immunofluorescence. Western blotting, and the purification of peptide-specific IgG by precipitation with caprylic acid (19, 28). These IgG preparations were cleared of anti-KLH IgG, as described (19). Their purity was shown on Coomassie-stained SDS-PAGE. Protein concentration was measured with the bicinchoninic acid assay (Pierce). Their specificities were tested and compared with that of rituximab and infliximab (negative control) by ELISA, as described in the previous paragraph, using KLH peptide as coating reagent, in assays using rituximab and infliximab, the secondary Ab was HRP-conjugated anti-human IgG.

Specificity of binding of antiprotein antisera to CD20

The binding of antipeptide antisera to CD20+ Raji and CD20+ CEM cells was tested in a confocal immunofluorescence binding assay similar to that described previously for rituximab. Briefly, 50 μl of antipeptide antisera (diluted 1/20 in PBS-BSA) or rituximab (2.5 μg/ml in PBS) was added to rabbit peptide-pretreated Raji and CEM cells (5 × 10^6 cells in 50 μl of PBS). The cells were incubated at 4°C for 30 min, washed once with ice-cold PBS-BSA, and labeled with FITC-conjugated anti-mouse or anti-human IgG (Fc portion; 1:100). Cells were washed, fixed, and mounted for confocal microscopy, as described earlier.

To test the ability of immunogenic peptides to inhibit binding, 50 μl of antipeptide antiserum (diluted 1/20 in PBS-BSA) was preincubated with an equal volume of PBS containing Rp5-L (400, 40, or 4 μg/ml). Qp-1a (400 μg/ml), or no peptide for 1 h at 4°C; background binding was determined using anti-KLH antiserum (1/20 in PBS) or just FITC secondary Ab. The Ab solution (100 μl) was added to Raji cells (5 × 10^6/50 μl), which were incubated for 30 min at 4°C, washed once with ice-cold PBS-BSA, and resuspended in 50 μl of FITC-conjugated anti-mouse IgG (Fc portion; 1:100). Immunofluorescence was measured using a FACScan cytometer.

The specificity of antipeptide antisera for denatured CD20 was characterized by Western blotting. Briefly, lysed Raji cells (1 × 10^6 cells/ml) were
immunoprecipitated with rituximab (for CD20) or infliximab (negative control), as described (10). In some cases, cell lysates were preadsorbed with rituximab by three incubations, each for at least 2 h at 4°C, with protein G-Sepharose (10 μl of packed resin) coupled to rituximab (10 μg). Immunoprecipitated proteins were eluted in SDS sample buffer, separated by SDS-PAGE under reducing conditions, and transferred to polyvinylidene fluoride membranes. Western blotting was done using anti-Rp5-L antiserum (1:50) or anti-RpCD20-L (1:50) and HRP-conjugated anti-mouse IgG as secondary Ab; bound Abs were revealed with diaminobenzidine.

Affinity selection, immunoscreening, and sequence analysis

The PDPLs expressing 7-mer cyclic (Ph.D.-CTC) and 12-mer linear (Ph.D.-12) peptides were purchased from New England Biolabs. PDPLs were panned with purified mouse anti-Rp5-L IgG, according to the manufacturer’s instructions and as described (27); mouse anti-KLH IgG was used to remove phage particles binding to isotopic and allogenic determinants. Anti-Rp5-L IgG-specific phage clones were detected with anti-M13 mAb, as described (27). Selected phage particles were amplified in Escherichia coli, and the supernatant fluids of 30 randomly selected clones were tested in ELISA for specificity to anti-Rp5-L IgG, as described (19).

Nucleotide sequences of phage clone inserts specific for anti-Rp5-L were determined according to the manufacturer’s instructions, at the Primm sequencing facility (Naples, Italy). Multiple sequence alignments were performed with MULTALIN at Pôle Bio informatique Lyonne (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=NPSA/npsa_multalin.html).

Computer modeling and docking analysis

Peptide structure was modeled using the SP4 Fold Recognition server (http://sparksinformatics.iupui.edu/SP4/). To minimize the interference of amino acids not essential for binding, Rp5-L was replaced with Rp1-L (‘WPWRLLEN’), which is the shortest rituximab-reacting peptide bearing the Rp5-L motif /W/Px/WLE/ (13). Only the model with the best Z score was considered (29).

Then, Rp1-L was docked to rituximab Fab (Brookhaven Protein Data Bank entry: 2OSL) (30) using the rigid body algorithm ZDOCK 3.0 (31). To improve the sampling accuracy, the docking site was restricted to part of the Fab region. A distance of 4 Å from the sequence170ANPS173 of the Rp5-L motif of the extracellular loop of CD20 was based on the published crystal structure (30).

Results

Rp5-L mimics raft-associated CD20

To determine whether the peptide mimotope Rp5-L mimics raft-associated (functional) CD20, as previously shown for Rp15-C (19), we performed immunofluorescence binding assays on Raji CD20+ cells doubly labeled for raft microdomains and bound rituximab (Fig. 1A). Incubation of rituximab with Raji cells in the absence of inhibitor peptide generated a punctate staining pattern indicative of binding to CD20 in raft microdomains (data not shown). Preincubation of rituximab with Rp5-L, like Rp15-C, completely abolished rituximab binding, whereas staining of raft microdomains was maintained. Preincubation of rituximab with unrelated peptide Qp-1a had no effect on binding; the yellow punctate staining of the merged double fluorescence image indicated colocalization of CD20 and raft microdomains. This mimicry by Rp5-L of a functional CD20 epitope was further assessed with a colocalization of CD20 and raft microdomains. This mimicry by peptide Qp-1a had no effect on the fluorescence intensity of the

FIGURE 1. Inhibition by peptide mimotopes Rp5-L, and Rp15-C of rituximab binding to raft-associated CD20 (A) and of rituximab-stimulated increase in membrane ceramide (B) in human CD20+B lymphoid cells. A. Both Rp5-L and Rp15-C, but not unrelated Qp-1a, inhibit binding of rituximab to CD20 associated with raft microdomains, as seen by punctate staining. Rituximab (2.5 μg/ml in PBS; 60 μl) was preincubated with an equal volume of PBS containing 100 μg/ml Rp5-L (63.6 μM), Rp15-C (96.3 μM), Qp-1a (71.7 μM), or no peptide. The rituximab-peptide solution (100 μl) was added to Raji cells (1 × 106) for 10 min at 37°C, washed, and fixed with paraformaldehyde. Cells were washed and incubated with biotinylated CTB to label raft microdomains, and then washed and labeled with FITC-conjugated anti-human IgG (to detect rituximab) and PE-conjugated streptavidin (to detect CTB). Cells were examined by confocal microscopy with excitation at 488 nm (FITC) and at 560 nm (PE). Data are representative of three independent experiments. Five micromolars of Rp5-L, Rp15-C, and Qp-1a are 3.2, 4.8, and 3.6 nmol, respectively. B. Rp5-L specifically inhibits rituximab-stimulated increase in cereamide. Rituximab (10 μg/ml in PBS; 50 μl) was preincubated with an equal volume of PBS containing 400, 40, 4, or 0.4 μg/ml Rp5-L or Qp-1a (400 μg/ml equals 254.5 μM Rp5-L and 286.9 μg/ml Qp-1a). The rituximab-peptide solution was added to Daudi cells (1 × 106/tube), which were incubated for 10 min at 37°C. Washed, fixed with paraformaldehyde, and treated with rabbit IgG (50 μg/ml) for 30 min at 4°C to block FcR binding sites. Ceramide production induced by rituximab was measured by incubating cells with anti-ceramide mAb, followed by labeling with FITC-conjugated anti-mouse IgM. Immunofluorescence was measured with a FACSscan cytometer. Background fluorescence profile of cells (without rituximab treatment) is indicated (shaded area). Data are representative of three independent experiments. Twenty micromolars of Rp5-L and Qp-1a are 12.7 and 14.4 nmol, respectively.

dependent manner. Together, these data document that Rp5-L specifically blocks CD20 binding and activation by rituximab, and suggest that, like Rp15-C, Rp5-L is an antigenic mimic of raft-associated CD20.

Fine specificities of CD20-specific anti-Rp5-L and anti-Rp15-C Abs are different

To determine whether Rp5-L and Rp15-C mimic the same or different epitopes of CD20, we investigated the fine specificities of the corresponding Abs generated in immunized mice. First, the fluorescence staining patterns of anti-Rp5-L and anti-Rp15-C antisera, compared with that of rituximab, were determined on CD20+ Raji cells and CD20+ CEM cells (Fig. 2). Immunofluorescence staining of Raji cells by antipeptide sera and by rituximab resulted in a punctate pattern, typical of the staining of raft-associated CD20. Staining of CEM cells was negative, indicating that the labeling of Raji cells was in all cases specific for CD20.

Then, the paratope specificities of the antipeptide antisera were assessed in an immunofluorescence binding assay (Fig. 3). Anti-Rp5-L antisera-stained Raji cells, causing a right shift in fluorescence compared with cells stained with anti-KLH antisera (Fig. 3A). Preincubation of the antisera with Rp15-C or unrelated peptide Qp-1a had no effect on the fluorescence intensity of the
cells, whereas preincubation with increasing concentrations of the immunogenic peptide inhibited binding in a dose-dependent manner. Similarly, anti-Rp15-C antiserum, alone or in the presence of unrelated peptides Rp5-L or Qp-1a, stained Raji cells with a right shift in fluorescence intensity; increasing concentrations of the immunogenic peptide inhibited this binding (Fig. 3B). The two antisera differed in the extent of inhibition by the corresponding peptide, as follows: 20 μg of Rp15-C (400 μg/ml, 385.3 μM) almost completely abolished the binding of anti-Rp15-C antiserum, but this same concentration of peptide Rp5-L (400 μg/ml, 254.5 μM) inhibited only ~40% of anti-Rp5-L antiserum binding. Furthermore, no cross-inhibition was observed: the highest concentration of peptide Rp5-L did not affect the reactivity of anti-Rp15-C antiserum, and vice versa.

Overall, these results indicate that anti-Rp5-L antiserum reacts specifically with CD20 in membrane raft microdomains, and that this reactivity is mediated by a specific interaction with the motif (WPxWLE). These results suggest that anti-Rp5-L and anti-Rp15-C antisera recognize different epitopes on CD20.

To further characterize the CD20 epitopes recognized by anti-Rp5-L and anti-Rp15-C antisera, we assessed their reactivity with denatured CD20 by Western blotting (Fig. 4). When CD20 was immunoprecipitated from Raji cells with rituximab, anti-Rp5-L antiserum stained a band with an apparent molecular mass of 34 kDa (Fig. 4A, lane 1). This 34-kDa band is likely to be CD20 because a similar band was detected when the rituximab immunoprecipitates were probed with anti-RpCD20-L antiserum (Fig. 4B, lane 2). The reactivity was specific, because no staining was observed when cell lysates were immunoprecipitated with infliximab (lane 3) or extensively preadsorbed with rituximab before immunoprecipitation (lane 3). This 34-kDa band is the H chain of rituximab. These results suggest that anti-Rp5-L and anti-Rp15-C antisera recognize different epitopes on CD20.

These results are representative of two different experiments.
binding avidities, their fine specificities were analyzed at the molecular level. We reasoned that if Rp5-L conformationally mimics the CD20 (ANPS) epitope, then anti-CD20 Abs elicited with the linear peptide should also recognize (ANPS). Therefore, anti-Rp5-L and anti-Rp15-C IgG were purified (Fig. 5A) and tested for specificity in an ELISA. When ELISA plates were coated with KLH-conjugated Rp5-L (Fig. 5B), both rituximab and anti-Rp5-L IgG demonstrated saturable binding, whereas anti-Rp15-C and infliximab did not. Similarly, in Rp15-C-coated plates (Fig. 5C), both rituximab and anti-Rp15-C IgG showed saturable binding, but anti-Rp5-L and infliximab did not. The binding was specific, because none of these Abs bound plates coated with KLH-Qp-1a (Fig. 5D). These results demonstrate that the IgG generated by mice immunized with the two peptides maintain their distinct specificities.

To identify the motif recognized by anti-Rp5-L IgG, phage clones were isolated by panning the 7-mer cyclic and 12-mer PDPLs with anti-Rp5-L IgG. Of the 30 randomly selected colonies from the 12-mer PDPL, 24 (80%) specifically reacted with anti-Rp5-L IgG (Table I). Alignment of the nucleotide sequences of their peptide inserts revealed that 6 (25%) contained the same motif: WWPxWLE; recognized by rituximab on the linear peptides (13). The consensus from all 24 inserts gave the immunogenic motif qWPxwL, similar to the antigenic motif. Panning of the 7-mer cyclic PDPL with anti-Rp5-L IgG did not result in the enrichment of any phage clones. This result suggests that Rp5-L does not mimic the conformational motif (ANPS), because phage clones expressing this motif were previously isolated from this library using rituximab (13) and anti-Rp15-C IgG (19).

Computer modeling of the Rp5-L motif WWPxWLE, and the CD20 (ANPS) motif bound to rituximab Fab

Considering the previously described immunological evidence that the Rp5-L motif WWPxWLE is not a conformational mimic of the CD20 (ANPS) epitope, we used computer modeling to investigate contact points between the peptide and rituximab. To simplify the analysis, Rp5-L was replaced with the shorter Rp1-L (‘WWPWL’). First, Rp1-L alone was modeled as a short α-helix (P2-E5) with the W1 and W4 indolic nuclei in parallel planes; the amino-terminal transactivation domain 2 of p53 (Brookhaven Protein Data Bank entry: 2GSO) was found as the template by SP4 algorithm. Then, Rp1-L was docked to rituximab Fab, and the pose demonstrating saturable binding, whereas anti-Rp15-C and infliximab showed saturable binding, but anti-Rp5-L and infliximab did not. The binding was specific, because none of these Abs bound plates coated with KLH-Qp-1a (Fig. 5D). These results demonstrate that the IgG generated by mice immunized with the two peptides maintain their distinct specificities.

To identify the motif recognized by anti-Rp5-L IgG, phage clones were isolated by panning the 7-mer cyclic and 12-mer PDPLs with anti-Rp5-L IgG. Of the 30 randomly selected colonies from the 12-mer PDPL, 24 (80%) specifically reacted with anti-Rp5-L IgG (Table I). Alignment of the nucleotide sequences of their peptide inserts revealed that 6 (25%) contained the same motif: WWPxWLE; recognized by rituximab on the linear peptides (13). The consensus from all 24 inserts gave the immunogenic motif qWPxwL, similar to the antigenic motif. Panning of the 7-mer cyclic PDPL with anti-Rp5-L IgG did not result in the enrichment of any phage clones. This result suggests that Rp5-L does not mimic the conformational motif (ANPS), because phage clones expressing this motif were previously isolated from this library using rituximab (13) and anti-Rp15-C IgG (19).

Computer modeling of the Rp5-L motif WWPxWLE, and the CD20 (ANPS) motif bound to rituximab Fab

Considering the previously described immunological evidence that the Rp5-L motif WWPxWLE is not a conformational mimic of the CD20 (ANPS) epitope, we used computer modeling to investigate contact points between the peptide and rituximab. To simplify the analysis, Rp5-L was replaced with the shorter Rp1-L (‘WWPWL’). First, Rp1-L alone was modeled as a short α-helix (P2-E5) with the W1 and W4 indolic nuclei in parallel planes; the amino-terminal transactivation domain 2 of p53 (Brookhaven Protein Data Bank entry: 2GSO) was found as the template by SP4 algorithm. Then, Rp1-L was docked to rituximab Fab, and the pose with the highest ZDOCK score (1121.47) was chosen. As shown in Fig. 6A, Rp1-L docks with its N terminus inside the crevice of the

Table I. Deduced amino acid sequences of the phage inserts isolated by panning with anti-Rp5-L IgG

<table>
<thead>
<tr>
<th>Immuneogenic Peptide Bearing the Motif Recognized by Rituximab</th>
<th>Phage Clones Isolated with Anti-Rp5-L Mouse IgG<sup>a</sup></th>
<th>Specificity of reactivity (A492 nm<sup>b</sup>)</th>
<th>Deduced amino acid sequence<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Sequence</td>
<td>PDPL</td>
<td>No. of positive clones (%)</td>
</tr>
<tr>
<td>Rp5-L</td>
<td>QDKLTQWPWILE</td>
<td>12-mer</td>
<td>5 (20.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (4.2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4 (16.7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 (8.3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 (45.8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 (4.2)</td>
</tr>
<tr>
<td>c7c-mer</td>
<td>Consensus</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

^aMotif amino acids are shown in bold letters.

^bPhage particles were isolated by panning, with purified anti-peptide IgG, the 12-mer linear (12-mer) and 7-mer cyclic (c7c-mer) PDPLs.

^cReactivity of phage particle supernatants with Abs, as measured by ELISA. Supernatants from phage particles expressing linear and cyclic peptides were diluted 8 and 32 times, respectively.

^dClones expressing sequences with the motif recognized by rituximab are underlined. Multiple alignments were performed with MULTALIN (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_multalin.html).

FIGURE 5. Antipeptide IgG from mice immunized with Rp5-L and Rp15-C maintain specificity for the immunogen peptide only. A, Antipeptide IgG, purified from sera of immunized BALB/c mice and cleared of anti-KLH Abs, were separated on SDS-PAGE under reducing conditions (2 µg/lane) and stained with Coomassie brilliant blue. MW: m.w. markers. B–D, Ninety-six-well microtiter plates were coated with PBS containing 10 μg/ml KLH-conjugated Rp5-L (B), Rp15-C (C), or Qp-1a (D). Plates were washed; free protein-binding sites were blocked; and wells were treated with anti-Rp5-L IgG (A), anti-Rp15-C IgG (C), rituximab (+), or infliximab (×) in 4-fold serial dilutions starting from 10 µg/ml. Following a 4-h incubation at 25°C and three washes, IgG-peptide interaction was detected by ELISA. When ELISA plates were coated with KLH-conjugated Rp5-L (Fig. 5B), both rituximab and anti-Rp5-L IgG demonstrated saturable binding, whereas anti-Rp15-C and infliximab did not. Similarly, in Rp15-C-coated plates (Fig. 5C), both rituximab and anti-Rp15-C IgG showed saturable binding, but anti-Rp5-L and infliximab did not. The binding was specific, because none of these Abs bound plates coated with KLH-Qp-1a (Fig. 5D). These results demonstrate that the IgG generated by mice immunized with the two peptides maintain their distinct specificities.

Anti-Rp5-L IgG do not recognize the motif ANPS

To exclude the possibility that the different reactivities of anti-Rp5-L and anti-Rp15 Abs with denatured CD20 reflect different
Fab pocket, whereas its C terminus (bearing the hydrophilic amino acids E6 and N7) remains outside. This position allows the following: 1) orthogonal interactions of the peptide’s W1 with rituximab’s W47VH, W90VL and of the peptide’s W4 with rituximab’s W106VH; 2) hydrogen bonding between the peptide’s C-O backbone of W1 with Y102VH; and 3) Van der Waals interactions between the peptide and rituximab involving P2 and Y102VH, L5, and Y102VH, respectively.

The amino acids of rituximab modeled to interact with were compared with those known by crystallography to interact with the CD20 motif (Table II). The amino acids W47VH, W90VL, and P95VL of the hydrophobic-aromatic area of the rituximab Fab, known as the main contact points for A170, are also the contact sites of the peptide’s W1, whereas W4 and W1 (like Rp15-C N171) interact with W106VH of rituximab. In contrast, whereas S31VH and Y102VH preferentially interact with Rp1-L (Fig. 6A), N33VH, A50VH, I51VH, T58VH, and S99VH interact only with ANPS (Fig. 6B).

Altogether, this analysis indicates that WPxWLE and ANPS share some contact sites within the rituximab Ag-combining site. Moreover, these results suggest that the two motifs have similar, yet not identical, tertiary interactions with rituximab.

Discussion

This investigation found that two structurally different rituximab-specific motifs, WPxWLE and ANPS, contained in the linear

Table II. Interactions between the motif (WPxWLE) and (ANPS) CD20 with rituximab Fab CDRs

<table>
<thead>
<tr>
<th>Fab-</th>
<th>Linear Peptide Motif Amino Acids</th>
<th>CD20 Motif Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab</td>
<td>W1 P2 X3 W4 L5 E6 A170 N171 P172 S173</td>
<td>A170 N171 P172 S173</td>
</tr>
<tr>
<td>S31-VH</td>
<td>X</td>
<td>X X X</td>
</tr>
<tr>
<td>N33-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>H35-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>W47-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>A50-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>ILE51-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y52-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>D57-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>T58-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S59-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>S99-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Y102-VH</td>
<td>X</td>
<td>X X</td>
</tr>
<tr>
<td>W106-VH</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>W90-VL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>N93-VL</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P95-VL</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* Contact is considered when the distance between any pair of heavy atoms is <4.0. Rituximab VL and VH chain amino acids with potential contact to both motif (WPxWLE) and (ANPS) are underlined.

* Amino acids of VL and VH forming H-bonding interactions are labeled with a bold cross.

FIGURE 6. Computer modeling of the interaction between rituximab Fab and the Rp5-L motif (WPxWLE) (A) and comparison with that between rituximab Fab and (ANPS) of the extracellular loop of CD20 (B). A, Docking of Rp1-L (WPRWLEN), the shortest rituximab-specific peptide containing the same WPxWLE motif as Rp5-L, to rituximab Fab. Side chains of E6 and N7 are not shown for clarity. B, Docking of (ANPS) portion of CD20 to rituximab, according to the crystal structure of the complex (30). Rituximab Fab amino acids (S31VH and Y102VH) preferentially involved in binding [WPxWLE] are labeled in yellow, whereas rituximab Fab amino acids (H35VH, W47VH, Y52VH, D57VH, S31VH, W106VH, W90VL, N93VL, and P95VL) involved in binding both [WPxWLE] and [ANPS] are labeled in white and shown with heavy lines. Rituximab Fab H and L chains are colored in blue and red, respectively.
peptide Rp5-L and the cyclic peptide Rp15-C (and in CD20 itself), respectively, are also conformationally different and are not replicas of a single CD20-associated epitope. In particular, we found that, like Rp15-C, Rp5-L mimics the fa-associated, functional form of CD20 and, in immunized mice, raises Abs that recognize this form of CD20. However, the antisera raised by the two peptides have different fine specificities for CD20, because no cross-inhibition was seen. Furthermore, anti-Rp5-L Abs recognized denatured CD20 in SDS-PAGE (anti-Rp15-C Abs and rituximab are known not to recognize denatured CD20). Finally, computer modeling of rituximab with the docked peptide indicated that some molecular contacts between rituximab and the two motifs are similar, whereas others are different.

The finding that Rp5-L is an effective mimotope of CD20 in the absence of primary sequence homology is not without precedent (13, 20, 21). In such cases, the peptide mimotope mimics a conformational or discontinuous epitope. In this study, immunochemoiexperiments and molecular modeling were used to investigate the mechanism by which the different motifs of Rp5-L and Rp15-C mimic CD20; three possibilities were considered, as follows: 1) Rp5-L conformationally mimics (ANPS); 2) Rp5-L and Rp15-C mimic different conformations of a single CD20 epitope; and 3) Rp5-L and Rp15-C mimic two distinct, but spatially close CD20 epitopes.

The first possibility is unlikely, because anti-Rp5-L Ab did not recognize the ANPS motif. In fact, binding of anti-Rp5-L antisera to CD20 cells was not inhibited by Rp5-L, and PDLP panning with anti-Rp5-L IgG did not enrich phage clones expressing ANPS-motif-containing peptides. These results indicate that the recognition of CD20 by anti-Rp5-L Abs is mediated by the specific activity with WPxWLE, which is conformationally different from ANPS.

The second possibility was based on the observation that CD20 changes conformation depending on the amount of membrane cholesterol (35) or during the transition from a weak to a strong raft-associated condition (24). Conformational changes of the CD20 epitope recognized by rituximab might be mimicked by two structurally different peptides. This possibility was excluded on the basis of their antigenic profiles, because both Rp5-L and Rp15-C inhibited the binding of rituximab to raft-associated CD20 as well as the rituximab-stimulated increase in ceramide. Furthermore, anti-Rp5-L Ab stained CD20 cells with a punctate pattern identical to that obtained with anti-Rp5-L Abs and rituximab, corresponding to the recognition of raft-associated CD20.

The third possibility is supported by the observation that, differently from anti-Rp15-C Abs that only recognize native (membrane-bound) CD20, anti-Rp5-L Abs also react with denatured CD20. This finding supports the possibility that Rp5-L and Rp15-C mimic two different epitopes of CD20.

The different specificities of the anti-peptide Abs may reflect differences between the motifs (WPxWLE) and (ANPS), in terms of the molecular interactions with rituximab, as evidenced by computer modeling of rituximab with docked peptide compared with the crystallographic structure of rituximab with bound CD20 (30). Both motifs fit reasonably well in the hydrophobic portion of the Ag-binding site of rituximab (residues W7-VH, Y102-VH, W106-VL, W106-VH, and P95-VL), with some differences. First, the indolic group interactions between the peptide’s W1 and rituximab’s W7-VH, W106-VH, and W95-VL and between the peptide’s W4 and rituximab’s W106-VH force Rp-L to be closer to this portion of the hydrophobic-aromatic pocket than CD20’s ANPS, which is more centered in the pocket, despite the fact that the side chains of A170 and N171 have hydrophobic and polar interactions with the same portion of the pocket. Second, the amino acids involved in the binding of the two motifs with rituximab are not identical: rituximab’s S17-VH and Y102-VH interact only with WPxWLE, whereas N17-VH, A90-VH, F3-VH, T56-VH, and S99-VH interact only with ANPS (17).
favor the reactivity of rituximab to additional WPxWLE-expressing molecules closely linked to CD20 in raft microdomains. The possibility that rituximab recognizes two distinct CD20 epitopes is reminiscent of recent findings by Teeling et al. (9), who investigated the fine specificity of a panel of fully human anti-CD20 mAbs generated in human Ig transgenic mice. They found that two distinct CD20-associated determinants were critical for mAb binding, as follows: the first (residues 146–173) was localized to the N-terminal side of the rituximab-specific motif \(^{170}\)ANPS\(^{173}\), whereas the second (residues 72–80) was found on the smaller extracellular loop. They proposed that this dual epitope recognition could account for the mAbs’ slow-off rate and ability to activate complement (9). It remains to be determined whether this dual epitope recognition is also responsible for the relatively low rate of cellular internalization of bound rituximab (compared with mAb 1F5 (25), which only recognizes (ANPS (13)) or for the ability of rituximab to reverse multidrug resistance (compared with mAb 1F5 (41)), or is of importance in the therapeutic efficacy of rituximab. Ongoing experimentation with 64 Rp5-L-specific mAbs that do not react with (ANPS-bearing peptides will address this issue.

Besides providing insight, at the molecular level, into the mimicry by a linear peptide of a conformational epitope, this study suggests that linear and cyclic peptides may have different biological effects in the context of a vaccination strategy. Only clinical trials will determine whether the best therapeutic effects can be obtained by either cyclic or linear peptides, or with both.

Acknowledgments
We are grateful to Dr. Daniela Dell’Orco (Modena, Italy) for helpful suggestions in developing docking model, and to Vito Iacovazzi for his excellent secretarial assistance. Valerie Materecek provided scientific editing.

Disclosures
The authors have no financial conflict of interest.

References