This information is current as of October 23, 2017.

Cytokine-Mediated Inhibition of Fibrillar Amyloid-β Peptide Degradation by Human Mononuclear Phagocytes

Masaru Yamamoto, Tomomi Kiyota, Shannon M. Walsh, Jianuo Liu, Jonathan Kipnis and Tsuneya Ikezu

*J Immunol* 2008; 181:3877-3886; doi: 10.4049/jimmunol.181.6.3877

http://www.jimmunol.org/content/181/6/3877

References

This article cites 37 articles, 15 of which you can access for free at:
http://www.jimmunol.org/content/181/6/3877.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cytokine-Mediated Inhibition of Fibrillar Amyloid-β Peptide Degradation by Human Mononuclear Phagocytes

Masaru Yamamoto, Tomomi Kiyota, Shannon M. Walsh, Jianuo Liu, Jonathan Kipnis, and Tsuneya Ikezu

Vaccination therapy of AD animal models and patients strongly suggests an active role of brain mononuclear phagocytes in immune-mediated clearance of amyloid-β peptides (Aβ) in brain. Although Aβ uptake by macrophages can be regulated by pro- and anti-inflammatory cytokines, their effects on macrophage-mediated Aβ degradation are poorly understood. To better understand this mechanism of degradation, we examined whether pro- and anti-inflammatory cytokines affect the degradation of Aβ using primary cultured human monocyte-derived macrophages (MDM) and microglia using pulse-chase analysis of fibrillar and oligomeric 125I-Aβ40 and Aβ42. Initial uptake of fibrillar Aβ40 and Aβ42 was 40% and its degradation was saturated by 120 h in both MDM and microglia, compared with an initial uptake of oligomeric Aβ less than 0.5% and saturation of degradation within 24 h. IFN-γ increased the intracellular retention of fibrillar Aβ40 and Aβ42 by inhibiting degradation, whereas IL-4, IL-10, and TGF-β1, but not IL-13 and IL-27, enhanced degradation. Fibrillar Aβ degradation in MDM is sensitive to lysosomal and insulin degrading enzyme inhibitors but insensitive to proteasomal and neprilysin inhibitors. IFN-γ and TNF-α directly reduced the expression of insulin degrading enzyme and chaperone molecules (heat shock protein 70 and heat shock cognate protein 70), which are involved in refolding of aggregated proteins. Coculture of MDM with activated, but not naive T cells, suppressed Aβ degradation in MDM, which was partially blocked by a combination of neutralizing Abs against proinflammatory cytokines. These data suggest that proinflammatory cytokines suppress Aβ degradation in MDM, whereas select anti-inflammatory and regulatory cytokines antagonize these effects. The Journal of Immunology, 2008, 181: 3877–3886.
Materials and Methods

Isolation of human monocyte-derived macrophages (MDM)

Human monocytes were recovered from PBMC of donors after leukopheresis and purified by countercurrent centrifugal elutriation (15). Monocytes were cultured in DMEM, supplemented with 10% heat-inactivated human serum, 2 mM l-glutamine, gentamicin (50 μg/ml), ciprofloxacin (10 μg/ml), and macrophage CSF (1000 U/ml, Wyeth Pharmaceutical). Monocytes were cultivated for 7 days and then referred to as MDM as described (16, 17).

Purification of T cells and transwell coculture system

PBL were obtained from leukopheresis of donors and purified by counter-current centrifugal elutriation. T cells were isolated from PBL by negative selection using a magnetic based Pan T cell isolation kit (Miltenyi Biotec). The cells were then stimulated with anti-CD3 and anti-CD28 for 24 h, and subjected to coculture with MDM (500,000 cells/well of 24-well plate, Fisher Scientific) after pulse-labeling of MDM with fibrillar 125I-Aβ and removal of unbound Aβ fraction using a Transwell insert (Fisher Scientific), where T cells were plated (5 × 10^5 cells/well) in MDM tissue culture media, for the pulse-chase study.

Isolation of human microglia

Human microglia were isolated as described (18, 19). Fetal brain tissue (gestational age, 14 to 16 wk) was obtained from the Birth Defects Laboratory, University of Washington, Seattle, in full compliance with the ethical guidelines of the National Institutes of Health and the Universities of Washington and Nebraska Medical Center. The tissue was washed with cold HBSS (Invitrogen Life Technologies) supplemented with Ca2+ and Mg2+ and then digested with 0.25% trypsin (Sigma-Aldrich) for 30 min at 37°C. Trypsin was neutralized with FBS, and the tissue was further dissociated to obtain single-cell suspensions. The cells were resuspended in DMEM supplemented with a mixture containing 10% heat-inactivated FBS, 1,000 U of penicillin, 100 μg of streptomycin per ml, 50 μg/ml, and 100 μg of neomycin per ml. The mixed culture was maintained under 5% CO2 for 7 days, and the current centrifugal elutriation. T cells were isolated from PBL by negative selection with 6E10 anti-Aβ40, oligomeric 125I-Aβ, and removal of unbound Aβ fraction using a Transwell insert (Fisher Scientific), where T cells were plated (5 × 10^5 cells/well) in MDM tissue culture media, for the pulse-chase study.

Preparation of fibrillar and oligomeric Aβ

Iodinated Aβ40 and Aβ42 were prepared using IODO-beads (Pierce), synthetic Aβ40 and Aβ42 peptide (Invitrogen Life Technologies), and iodine-125 (125I) (Amersham Bioscience) according to the manufacturer’s instructions. Aβ40s were aggregated with stirring at 37°C for 3 days, followed by centrifugation at 40,000 × g for 20 min at 4°C. The precipitated fraction was used as fibrillar Aβ, after the confirmation of its structure by atomic force microscopy (AFM), for pulse chase study. Oligomeric Aβ40 and Aβ42 were prepared as described with minor modification (20). In brief, 125I-Aβ40 or Aβ42 were incubated in PBS at 4°C for 24 h, followed by centrifugation at 14,000 × g for 10 min at 4°C. The supernatant fraction was used as oligomeric Aβ40 or Aβ42, after confirmation of the structure by AFM, for the pulse-chase study.

Atomic force microscopy

For visualization of fibrillar or oligomeric Aβ by AFM, aggregated Aβ40 or Aβ42 was deposited on a freshly split mica film, glued to a glass slide and dried under an argon gas flow. Images were taken in air, height, amplitude and phase modes using a Molecular Force Probe 3D controller (Asylum Research) as described (21, 22).

Pulse-chase analysis

The kinetics of Aβ degradation were investigated by pulse-chase analysis using fibrillar or oligomeric 125I-Aβ as described (23, 24). In brief, human MDM (500,000 cells/well) or microglia (100,000 cells/well) were pulse-labeled with fibrillar or oligomeric 125I-Aβ (200,000 cpm/well) at the final concentration of 1 μM in tissue culture media for 1 h at 37°C, washed three times with PBS, and chased with fresh tissue culture media up to 120 h in the presence or absence of T cells in the Transwell insert, with recombinant cytokines (IFN-γ, TNF-α, IL-13, IL-17, cEBioscience; IL-3, IL-10, R&D Systems; TGF-β1, PeproTech), anti-cytokine neutralizing Abs, or inhibitors. At each time point, media were collected and cells lysed in lysis buffer (1 M NaOH) for counting intracellular Aβ. In brief, 99% of this fraction was undigested Aβ as determined by TCA precipitation. The collected media were subsequently mixed with TCA (final concentration of 10%) for polypeptide precipitation, and centrifuged at 3,000 × g for 15 min at 4°C. The radioactivity level of both the TCA-soluble (degraded Aβ) and the precipitated (non-degraded Aβ) fractions were determined for calculating the fractions of intracellular Aβ, extracellular intact Aβ, and extracellular degraded Aβ.

Laser-scanning confocal microscopy

MDM were plated onto poly-D-lysine-coated round coverslips (BD Biosciences) at a density of 50,000 cells/slip and were placed on 24-well tissue culture plates (Fisher Scientific) 24 h before the study. The cells were incubated with aggregated Aβ42 (1 μM) for 3 days at 37°C, and fixed with acetone/methanol (1/1 v/v) for 20 min at −20°C. The cells were permeabilized with 0.5% Triton X-100 and blocked with 3% normal goat serum and 0.2% BSA/0.05% Tween 20 in PBS, and double stained with 6E10 anti-Aβ monoclonal (1/250 dilution, mouse monoclonal, Signet Laboratories) or anti-Aβ polyclonal (1/500 dilution, Zymed/Invitrogen Life Technologies), and a panel of markers: anti-lysosomal membrane glycoprotein 1 (LAMP1), lysosomal marker, rabbit polyclonal, 1/100 dilution, Affinity Bioreagents; anti-insulin degrading enzyme (IDase, rabbit polyclonal, 1/200 dilution, Oncogene Research Products); anti-20s α4 subunit (proteasome marker, mouse monoclonal clone HC6, 1/100 dilution, Biomol International); anti-heat shock protein 70 (HS70P, aggresome marker, mouse monoclonal clone 2A4, 1/100 dilution, Abcam); anti-mannose-6-phosphate receptor (M6P-R, late-endosome marker, mouse monoclonal clone 2G11, 2 μg/ml dilution, Abcam); anti-vimentin (interfilament marker, mouse monoclonal clone Vim 3B4, 1/200 dilution, Dako Cytomation); anti-β-coat protein (β-COP, cis-Golgi marker, rabbit polyclonal, 1/2000 dilution, Abcam), and anti-neutral shock cognate protein 70 (HSC70) (5 μg/ml, rat monoclonal, Stressgen), followed by washing with PBS/Tween 20 and labeling with corresponding Alexa 488 or 568-conjugated secondary Ab for the detection of primary Abs. The coverslips were mounted on slides with Vectashield (Vector Laboratories) and subjected to confocal imaging using a Nikon TE 2000U Sweptfield confocal system (Nikon Instruments).

ImmunobLOTS

MDM lysates (2,000,000/well) were subjected to standard immunoblotting for anti-IDE (1/6,000; rabbit polyclonal Ab, Oncogene Science), anti-HSC70 (1/3,000; rat monoclonal, Stressgen), anti-HSP70 (1/100,000; mouse monoclonal clone 2A4, Abcam), or anti-β-actin (mouse monoclonal clone AC-15, 1/5,000,000; Sigma-Aldrich) Abs. HRP-conjugated secondary Abs were employed against mouse and rabbit IgG (1/2000 dilution, Vector Laboratories), and developed using chemiluminescence. The images were digitally captured and the band intensities were quantified by Typhoon imaging system (Amersham Pharmacia Biotech). Data were presented as a ratio of target/β-actin band intensity.

Statistics

All experiments were repeated at least three times with different donors, and all data were normally distributed. In the case of multiple mean comparisons, the data were analyzed by ANOVA, followed by Newman-Keuls multiple comparison tests using statistics software (Prism 4.0, GraphPad Software). In the case of single mean comparison, data were analyzed by Student’s t test, p values <0.05, 0.01, or 0.001 were regarded as significant difference.

Results

Pulse-chase study of 125I-Aβ and 125I-AcLDL

Human MDM were incubated with fibrillar 125I-Aβ40 or 125I-Aβ42, oligomeric 125I-Aβ40 or 125I-Aβ42, or soluble 125I-AcLDL for 1 h at 37°C, followed by washing and incubation with tissue culture media for 0 to 120 h. The aggregated Aβ was specifically prepared as either fibril or oligomer form in this preparation as confirmed by atomic force microscopy (Fig. 1A). At each time point, both media and cells were collected and subjected to TCA protein precipitation as described in Materials and Methods section. The TCA soluble fraction of cell lysates did not contain a detectable amount of intact Aβ, as determined by Aβ ELISA or immunoblotting (data not shown). We also confirmed that a negligible amount of degraded 125I-labeled protein exists in the cells as examined using TCA-soluble fraction of the cell lysate. Thus,
we waived the TCA precipitation step for the analysis of intracellular retention of $^{125}$I-AH9252 and $^{125}$I-acetylated low-density lipoprotein (AcLDL) in this study. At each time point, the percentages of intracellular and extracellular TCA-soluble/insoluble fractions were calculated. AcLDL is a positive control for scavenger receptor-mediated endocytosis, and has been used previously in comparison with AH9252 (23). The degradation of AcLDL was saturated within 24 h with approximately 10% intracellular retention, 65% extracellular TCA-soluble fraction, and 25% extracellular TCA-insoluble fraction (Fig. 1B). The degradation of fibrillar Aβ40 and Aβ42 was similarly saturated around 120 h with ~50% intracellular retention, 40% extracellular TCA-soluble fraction, and 10% extracellular TCA-insoluble fraction (Fig. 1, C and D). On the other hand, oligomeric Aβ40 and Aβ42 were distinctly different from fibrillar Aβ40 and Aβ42 both in initial binding and clearance. While fibrillar Aβ40 and Aβ42 show similar initial uptake (40–41% of total input), oligomeric Aβ40 and Aβ42 uptake was almost negligible (0.22 and 0.58%, respectively) even as compared with monomeric Aβ40 and Aβ42 (Table I). Degradation of oligomeric Aβ40 and Aβ42 was quickly saturated within 24 h (Fig. 1, E and F, insets) with ~5 or 30% intracellular retention, 75 or 40% extracellular TCA-soluble fraction, and 20 or 30% extracellular TCA-insoluble fraction, respectively (Fig. 1, E and F). These data suggest that phagocytized oligomeric Aβ40 degradation is very similar to that of AcLDL, while oligomeric Aβ42 shows enhanced intracellular retention compared with oligomeric Aβ40, indicative of rapid aggregation of oligomeric Aβ42 after its phagocytosis. Because the uptake efficiency of oligomeric Aβ40 or Aβ42 is negligible as compared with those of fibrillar Aβ40 or 42, we studied the degradation of fibrillar Aβ for the rest of the study. We also tested Aβ degradation in primary cultured human microglia (Fig. 1, G and H). Fibrillar Aβ40 or Aβ42 degradation was saturated in 120 h with approximately 60 or 42% intracellular retention, 10 or 15% extracellular TCA-soluble fraction, and 30 or 43% extracellular TCA-insoluble fraction, respectively (Fig. 1, E and F). These data suggest that the fibrillar Aβ degradation is similar between Aβ40 and Aβ42, and between human MDM and microglia in this system.

Differential role of proinflammatory cytokines on Aβ degradation

Next, we tested a panel of proinflammatory cytokines on Aβ clearance in MDM. MDM were pulse-labeled by fibrillar $^{125}$I-Aβ40 or $^{125}$I-Aβ42, and incubated with a combination of cytokines during the chase period, followed by fractionation and quantification of

FIGURE 1. AcLDL and Aβ phagocytosis in monocyte-derived macrophages. A, AFM images of Aβ40 fibrils (left) and oligomers (right). Scale bar, 500 nm. B–F, MDM (500,000 cells/well of 24-well plate) were incubated with $^{125}$I-AcLDL (B), $^{125}$I-Aβ40 fibril (C), $^{125}$I-Aβ42 fibril (D), $^{125}$I-Aβ40 oligomer (E), or $^{125}$I-Aβ42 oligomer (F) for pulse labeling. After 1 h incubation, cells were chased with fresh media at 37°C for 0–120 h. At each time point, the intracellular (black square), TCA-soluble (light gray triangle; degraded form), and TCA-precipitated (dark gray inverted triangle; intact form) fraction of $^{125}$I-AcLDL, $^{125}$I-Aβ40, or $^{125}$I-Aβ42 in the media was counted and presented as percentage total count of all fractions at each time point. Insets in E and F are high-magnified areas between 0 to 8 h. G and H, human microglia (100,000 cells/well of 48-well plate) were incubated with $^{125}$I-Aβ40 fibril (G) or $^{125}$I-Aβ42 fibril (H), followed by the same procedure as MDM.
Aβ degradation (Fig. 2, A–F). IFN-γ with or without TNF-α significantly enhanced intracellular retention of fibrillar Aβ40 or Aβ42 (Fig. 2, A and D) and significantly reduced extracellular TCA-soluble fraction (Fig. 2, B and E), whereas extracellular TCA-insoluble fraction was not significantly changed (Fig. 2, C and F). These data suggest that IFN-γ suppresses both fibrillar Aβ40 and Aβ42 degradation in MDM.

We have also tested the effect of IFN-γ and TNF-α on fibrillar Aβ40 or Aβ42 degradation in human primary microglia (Fig. 2, G–L). Although the effects of IFN-γ and TNF-α were not as strong as those in MDM, IFN-γ significantly enhanced intracellular retention of fibrillar Aβ40, and reduced extracellular TCA-insoluble fraction (Fig. 2, G and I), whereas no effect was observed on the extracellular TCA-soluble fraction (Fig. 2H). Intracellular retention of fibrillar Aβ42 was also enhanced by IFN-γ (Fig. 2J), and its extracellular TCA-soluble fraction was reduced by either IFN-γ, TNF-α, or IFN-γ plus TNF-α stimulation (Fig. 2K), whereas extracellular TCA-insoluble fraction was enhanced only by TNF-α stimulation (Fig. 2L). Thus, in microglia, we observed enhanced intracellular retention of both fibrillar Aβ40 and Aβ42 by IFN-γ as compared with control MDM. However, the cytokine response was generally weaker than that in MDM, which attributes to some difference in degradation pattern between fibrillar Aβ40 and Aβ42 in this study.

### Differential role of anti-inflammatory and regulatory cytokines on Aβ degradation

We also tested a panel of anti-inflammatory and regulatory T cell-related cytokines on Aβ clearance in MDM: IL-4, IL-10, TGF-β1, IL-13, and IL-27. In our initial screen, we found that intracellular...
The effect of anti-inflammatory cytokines on Aβ degradation. A–C, MDM were pulse-labeled with fibrillar [125I]-Aβ40, and chased with fresh tissue culture media for 120 h in the presence or absence of human IL-4, IL-10, IL-13, IL-27, and TGF-β1 (all cytokines at final 10 ng/ml). D–I, MDM were pulse-labeled with aggregated [125I]-Aβ40 (D–F) or [125I]-Aβ42 (G and H), and chased with fresh tissue culture media for 120 h in the presence or absence of a combination of human IL-4, IL-10, and TGF-β1 (all cytokines at final 10 ng/ml). After chasing, the total cellular fraction of Aβ was collected and subjected to gamma-counting, which represents the intracellular [125I]-Aβ retention (A, D, G), extracellular TCA-soluble [125I]-Aβ (B, E, H) and insoluble [125I]-Aβ fractions (C, F, I) which were collected and counted by the gamma-counter. Each fraction was presented as percentage total [125I]-Aβ (a sum of each fraction for each group). *p < 0.05, **p < 0.01, and ***p < 0.001 vs control MDM group (open column) as determined by ANOVA and Newman-Keuls post hoc.

Overall, both fibrillar Aβ40 and Aβ42 degradation were enhanced by IL-4, IL-10, and TGF-β1, and combination of all three was most potent, suggesting a synergistic effect for Aβ degradation. Since the degradation patterns of fibrillar Aβ40 and Aβ42 were similar in time course and response to cytokines in MDM, we focused on the characterization of fibrillar Aβ40 on MDM for the rest of the study.

Localization of phagocytized Aβ in MDM

We have previously demonstrated that phagocytized Aβ is frequently localized in the agrinosome in primary mouse bone marrow-derived macrophages (24). Although fluorescent-labeled Aβ is located in endosomes/lysosomes in murine microglia (25), its localization has not been shown in human MDM. Thus, we investigated the intracellular localization of fibrillar Aβ40 after the initial uptake by MDM using immunofluorescence and laser-scanning confocal microscopic imaging of aggregated Aβ with a panel of intracellular markers (Fig. 4, A–U). In contrast to murine microglia, there was little colocalization of Aβ40 aggregates (Fig. 4, H and O) with lysosomal marker (LAMP1, Fig. 4, A and O, red). We observed colocalization of Aβ aggregates with insulin degrading enzyme (IDE, Fig. 4, B, I, and P), an aggresomal marker (HSP70, Fig. 3, D, K, and R), and partial colocalization with an endosomal marker (M6P-R, Fig. 4, E, L, and S). There was no colocalization with proteasomal marker (20S, Fig. 4, C, J, and Q), interfilament marker (vimentin, Fig. 4, F, M, and T), or cis-Golgi marker (COPI, Fig. 4, G, N, and U). These data suggest that processing of Aβ aggregates occurs in endosomes, aggresomes, and IDE in MDM, with a short lifespan of Aβ aggregates in lysosome.
Lysosomal and IDE inhibitors block Aβ degradation

To address which protein degradation pathway is involved in Aβ degradation in MDM, we tested a panel of inhibitors for lysosomal enzymes (chloroquine), IDE (bacitracin), proteasomal enzymes (lactacystin), and neprilysin (thiorphan) (Fig. 5, A–C). IDE inhibitor closely mimics the effect of proinflammatory cytokines on fibrillar Aβ40 degradation (increased intracellular retention, decreased TCA-soluble and insoluble extracellular fractions, Fig. 5, A–C). Lysosomal inhibitor strongly increased intracellular retention; however, the effect seems to be predominantly due to suppression of the TCA-insoluble extracellular fraction (Fig. 5C), which resulted in increased intracellular retention (Fig. 5A) without significant changes in Aβ40 digestion (TCA-soluble extracellular fraction, Fig. 5B). Other inhibitors had no effect on Aβ40 degradation in any of the fractions. Thus, IDE and lysosomal pathways are involved in Aβ40 degradation, with IDE more specific to the degradation of Aβ in human MDM.

IFN-γ and TNF-α down-regulate IDE and proteasomal enzymes

To address if proinflammatory cytokines alter the expression levels of Aβ degrading enzymes, we treated MDM with IFN-γ and TNF-α, followed by SDS-PAGE and immunoblotting analysis (Fig. 6, A–D). Costimulation of MDM with two cytokines significantly suppressed expression of IDE (45% reduction) as well as chaperone molecules (HSC70 and HSP70, 41 and 24% reduction, respectively). Costimulation with the two cytokines did not alter lysosomal cysteine proteases (cathepsin B and D, data not shown), and individual stimulation of MDM with IFN-γ or TNF-α had no effect on the expression levels of the aforementioned molecules (data not shown). These data suggest that IFN-γ and TNF-α suppress Aβ degradation via suppression of IDE activity and reduction of chaperone molecules, which may inhibit refolding and clearance of aggregated Aβ in MDM.

Cocultured activated T cells enhance intracellular retention of Aβ

To address the effect of T cells on Aβ degradation, human MDM (0.5 million cells/well) were incubated with fibrillar [125I]-Aβ40 for 1 h at 37°C, followed by washing and coculture with naive (na T) or activated T cells (ac T) in Transwell for 72 and 120 h in MDM tissue culture media (Fig. 7, A–D). Activated T cells predominantly produced more proinflammatory cytokines, such as IFN-γ, TNF-α, CD40L, IL-6, and less anti-inflammatory cytokines, such as TGF-β1, IL-4, and IL-10 as determined by multiplex ELISA (Human Cytokine Multiplex Kit, Biosource International, data not shown), which is consistent with previously reported observations of activated T cells (26). In addition, secreted pro- and anti-inflammatory cytokines from naive T cells were either undetectable or significantly lower than those from activated T cells (data not shown). There is no direct contact of T cells with MDM in this system, but the two cell populations are separated only by a millimeter-thick polycarbonate membrane, through which cytokines may diffuse. This suggests that cytokines released from activated T cells can alter Aβ metabolism in MDM adjacent to them.
experimental design, therefore, haplotype differences due to using different donor sources was not a concern. Coculture with either 0.3 or 1.0 million (0.3m or 1m) activated T cells significantly enhanced intracellular retention of aggregated A/H9252, and reduced both TCA-soluble and insoluble fractions of extracellular A/H9252 (Fig. 6 A). Naive T cells (na T) had no effect on any of the fractions at any time points. This observation is consistent at both 72 and 120 h time points (Fig. 7, B–D), demonstrating the increased intracellular retention and reduced extracellular secretion of both TCA-soluble and insoluble fractions of A/H9252, which were dependent on T cell activation. The difference in degradation kinetics between Fig. 1 and 6 on non-cocultured control is due to donor variation of primary cultured MDM from leukopheresis. Prior incubation of aggregated A/H9252 with anti-A/H9252 mAb (6E10) did not enhance A/H9252 degradation in this system (data not shown), suggesting that the postendocytic degradation pathway is indifferent to Ab dependent or independent phagocytosis. These data indicate that pan activated T cells prone to pro-inflammatory cytokine production significantly suppress degradation of aggregated Aβ. At both time points, the most constant indicator of A/H9252 degradation was the fractions of intracellular retention and extracellular TCA-soluble A/H9252 (Fig. 7, B and C).

Specific proinflammatory cytokine inhibition neutralizes T cell effect

Since it is classically known that T cells activate MDM via proinflammatory cytokine production, we tested for which cytokines are involved in the T cell effect using the Transwell coculture system. We focused on a panel of known T cell-mediated proinflammatory cytokines produced upon T cell activation and regulated after Aβ degradation in macrophage. A, Primary cultured human MDM (500,000 cells/well) were pulse-labeled with fibrillar 125I-Aβ40 (200,000 cpm/well) for 1 h, and chased with fresh tissue culture media for 120 h in the presence or absence of naive (na T) or activated T cells (ac T) at 0.3 × 10^6 (0.3m) or 1 × 10^6 cells (1m) in Transwell insert (A). After chasing, the total cell lysate was collected and subjected to γ-counting, which represents intracellular 125I-Aβ retention (open columns). The tissue culture media was subjected to 10% TCA precipitation to separate extracellular TCA-soluble 125I-Aβ retention (dashed columns) and insoluble 125I-Aβ (closed columns). Each fraction was presented as percentage total 125I-Aβ (a sum of each fraction for each group), *, #, or +, p < 0.05 vs control MDM group of the same fraction as determined by ANOVA and Newman-Keuls post hoc. B–D, time course study of Aβ degradation. 125I-Aβ40 pulse-labeled MDM were cocultured with 1 × 10^6 cells of naive or activated T cells in Transwell insert for 72 and 120 h time points. B, Intracellular retention. C, TCA-soluble extracellular fraction. D, TCA-insoluble extracellular fraction. *, p < 0.001 vs control or naive T cell cocultured MDM group at the same time point as determined by two-way ANOVA and Bonferroni post tests.
deposition in transgenic APP mouse models: IFN-γ, TNF-α, and CD40L (11, 12). We inhibited the effect of each cytokine using specific neutralizing Abs during the coculture chasing period (Fig. 8, A–C). Coculture with activated T cells enhanced intracellular retention of aggregated Ab (Fig. 8A, Column 2), which was reduced by individual treatment with anti-CD40L Ab or combination treatment against IFN-γ, TNF-α, and CD40L (Fig. 8A, Column 3–10). Anti-TNF-α Ab significantly suppressed intracellular retention of Aβ in the absence of activated T cells (Fig. 8A, Column 13) as compared with non-cocultured untreated group (Fig. 8A, Column 1) or control IgG treated group (Fig. 8A, Column 11), suggesting an inhibitory role for autocrine TNF-α on Aβ degradation.

Degradation of Aβ was inhibited by coculture with activated T cells (Fig. 8B, Column 2–10). However, combinations of neutralizing Abs against IFN-γ and TNF-α (Fig. 8B, Column 7), or IFN-γ, TNF-α, and CD40L (Fig. 8B, Column 10) significantly increased Aβ degradation as compared with T cell-cocultured group (Fig. 8B, Column 2), suggesting that these cytokines are primarily involved in the suppression of Aβ degradation. Secretion of TCA-insoluble Aβ from MDM was enhanced by inhibition of CD40L (Fig. 8C, Column 6), although the effect of activated T cells was not significant (Fig. 8C, Column 2). These data suggest that abortive secretion of undigested Aβ is the smallest portion of Aβ clearance mechanism, and may not be a good indicator of Aβ degradation, as suggested in the time course study (Fig. 7D). Neutralizing Abs against IL-12 and IFN-α had no effect in this experimental design (data not shown). Taken together, these data indicate that a combination of T cell-mediated proinflammatory cytokines synergistically suppress Aβ degradation and enhance its intracellular retention.

Discussion

The current study on Aβ degradation part shows 1) distinct differences in initial uptake and time course of degradation between oligomeric and fibrillar Aβ40 and Aβ42 in MDM, 2) similar time course and degradation pattern of fibrillar Aβ40 and Aβ42 in both MDM and primary cultured microglia, 3) suppression of Aβ degradation in MDM and microglia by proinflammatory cytokines (mainly IFN-γ), although the cytokine response was small in microglia, 4) enhanced degradation of both fibrillar Aβ40 and Aβ42 by select anti-inflammatory and regulatory cytokines (IL-4, IL-10, and TGF-β1), although cytokine response was negligible in microglia. We also showed that Aβ degradation in MDM was sensitive to inhibitors for IDE and lysosomal enzymes, although IDE, but not cathepsin, was down-regulated by IFN-γ and TNF-α co-stimulation. In addition to IDE, the expression levels of chaperone molecules (HSC70 and HSP70) were also down-regulated by proinflammatory cytokine stimulation. When MDM were cocultured with T cells using Transwell system, activated, but not naive, T cells suppress Aβ40 degradation in MDM through reduced Aβ40 digestion and increased intracellular retention after pulse-incubation with fibrillar 125I-Aβ40. This T cell effect was partially blocked by a combination of neutralizing Abs against pro-inflammatory cytokines (IFN-γ, TNF-α, and CD40L). Since inhibitors for IDE or lysosomal enzymes show very similar patterns of change in Aβ degradation in MDM compared with those induced by activated T cells, our data indicate that activation of MDM by T cells inhibits Aβ degradation.

Interestingly, anti-inflammatory and regulatory cytokines, IL-4, IL-10, and TGF-β1, exhibited positive effects on Aβ degradation in MDM. We also tested IL-13, which induces FoxP3-expressing regulatory T cells (27) and also secreted from IL-10 producing regulatory T cells (28), and IL-27, which is involved in Th2-type immune responses (29) and induction of T regulatory type 1 cells (30). We found that IL-13 had no effect on fibrillar Aβ40 degradation, and IL-27 rather suppressed Aβ degradation, suggesting that select anti-inflammatory or regulatory cytokines can enhance Aβ degradation in MDM. IL-4 was also suggested as a mediator of copolymer-1-induced Aβ clearance in a transgenic mouse model of AD in vivo (31). The effect of TGF-β1 is also consistent with the previous report that transgene-expression of TGF-β1 reduced parenchymal Aβ deposition in APP mice in vivo and TGF-β1 treated BV-2 cells in vitro (32). TGF-β1 can also enhance T cell infiltration in brain after Aβ42 immunization (33), suggesting the active role of TGF-β1 in T cell chemotaxis, which may also be involved in enhanced Aβ clearance in APP/TGF-β1 bigenic mice. Taken together, IL-4 and TGF-β1 have therapeutic potentials for Aβ clearance by peripheral macrophages. The action of IL-10 is distinct from other cytokines, since although it reduced intracellular retention of fibrillar Aβ40 or Aβ42, it also significantly enhanced secretion of TCA-insoluble Aβ40 or
Aβ42. Thus, IL-10 may not be beneficial for overall clearance of Aβ by MDM unless it is employed in combination with IL-4 and TGF-β1.

IDE was one of the first Aβ degrading enzymes to be biochemically isolated from tissue culture media of immortalized murine microglia cell line (BV-2) (34, 35). Although neprilysin is reported to degrade aggregated Aβ more efficiently than IDE (36, 37), our results indicate that IDE plays a more significant role in the degradation of aggregated Aβ in MDM. This is further supported by our data that IFN-γ and TNF-α significantly suppressed IDE expression in MDM, suggesting that IDE is one of the targets of cytokine-mediated inhibition of Aβ degradation.

Although the accumulation of aggregated Aβ in late endosomes and lysosomal compartments was previously reported in primary cultured murine microglia (23), Aβ is accumulated in HSP70-positive aggresome or IDE in MDM, which is consistent with the co-localization of Aβ aggregates in HSC70-positive aggresomes in bone marrow-derived macrophages (24). These data suggest two pathways for intracellular Aβ degradation. Internalized aggregated Aβ in phagosomes or endosomes may be subsequently transferred to lysosomes for degradation, or shuttled to aggresomes via retrograde transport machinery. In the aggresome, aggregated Aβ will be un-folded by chaperone molecule, then transferred to cytoplasm for degradation by IDE. IFN-γ and TNF-α significantly suppressed the expression levels of HSC70 and HSP70, suggesting their inhibitory role on Aβ refolding, which led to its accumulation at refolding steps and containment in aggresome. Because 99% of intracellular Aβ is TCA-insoluble form, most remain as filamentous form in MDM with a minor fraction subjected to extracellular transport machinery. Oligomeric Aβ40, on the other hand, is very efficient in degradation after phagocytosis, suggesting that oligomeric structure is more susceptible to lysosomal or IDE-mediated degradation in MDM. The mechanism of extracellular transport of undigested Aβ is not well understood, but one potential mechanism is via exosome release. Exosomes are membrane vesicles secreted by hematopoietic cells upon fusion of late multivesicular endosomes with the plasma membrane. Because aggregated Aβ is localized in late endosome, this fraction is a likely target for exosome release. Mono-nuclear cells, especially dendritic cells efficiently secrete exosomes, which are highly enriched in MHC class II and considered one of the mechanisms of transcellular Ag presentation. Overall, this is the first study to address the role of pro- and anti-inflammatory and regulatory cytokines on fibrillar and oligomeric Aβ degradation in human MDM or microglia. These findings will be relevant to understand the role of identified cytokines on T cell mediated Aβ degradation and refolding of aggregated proteins in human disease.

Acknowledgments
We thank Dr. Larisa Poluektova for critical reading of the manuscript, Lindsey Martinez and Michael Jacobsen for editorial assistance, James Buescher for radioactivity usage, Dr. Luna Sibylaktenko for AFM service, and Dr. Howard Gendelman and Li Wu for Tissue Culture Core Facility service.

Disclosures
The authors have no financial conflict of interest.

References


