Vimentin expressed on *Mycobacterium tuberculosis*-infected human monocytes is involved in binding to the NKp46 receptor

J Immunol 2008; 181:8797; doi: 10.4049/jimmunol.181.12.8797

http://www.jimmunol.org/content/181/12/8797.1
Corrections

Subsequent to publication of the above manuscript, an investigation by The University of Texas Health Science Center at Tyler found that Dr. S. Roy committed scientific misconduct pertaining to this publication. Because Dr. Roy produced the data for Fig. 3 in the paper cited above and was unable to provide the original data, the experiments were repeated and the results are shown in the new figure below. As a result of the new figure, the following changes need to be made to the published article.

In Materials and Methods, in the paragraph titled Fluorescence microscopy, the last two sentences “Slides were examined with a Zeiss LSM 510 confocal laser scanning microscope using a C-Apochromat ×63, 1.2 water immersion objective (Carl Zeiss), and the 488-nm line of the argon laser for excitation of Oregon Green. The cells were scanned and images saved at 1024 × 1024-pixel/8-bit resolution before importing into Adobe Photoshop (Adobe Systems) for compilation and direct printing.” should be replaced with the sentence “Slides were examined with a fluorescence microscope (Olympus BX50).”

In Results, in the paragraph titled Surface expression of vimentin on monocytes infected with M. tuberculosis H37Ra and Listeria, the text “Infected monocytes were stained with murine anti-vimentin primary Ab and Oregon Green 488-conjugated goat anti-mouse IgG Ab secondary Ab, and the stained cells was analyzed by fluorescence microscopy.” should read “Infected monocytes were stained with FITC anti-vimentin Ab and the stained cells were analyzed by fluorescence microscopy.” The sentence “Cells incubated with blocking buffer alone, or with isotype control mouse Abs, were used as controls” should be deleted.

All panels in Fig. 3 are retracted. The correct Fig. 3 is shown below. The conclusions of the paper remain unchanged.

![FIGURE 3](http://www.jimmunol.org/)

FIGURE 3. Surface expression of vimentin on *M. tuberculosis*-stimulated monocytes by fluorescence microscopy. Monocytes, either cultured alone (A) or with gamma-irradiated *M. tuberculosis* (B), were fixed and incubated with FITC-conjugated anti-vimentin mAb, and slides were examined with a fluorescence microscope.

The revised legend for Figure 12 should read as follows: **FIGURE 12.** Effect of human 15-LO-mediated modification on HDL3 functions. A, Characterization of r15-LO- and h15-LO-modified HDL3. B, Effect of h15-LO-modified HDL3 on TNF-α-induced adhesion molecule surface expression. HUVECs were pretreated with HDL3 or h15-LO-HDL3 (100 μg/ml) for 18 h, then incubated with 10 ng/ml TNF-α for a further 6 h. Cell surface expression of ICAM-1, VCAM-1, or E-selectin was evaluated by flow cytometry. Results are expressed as percentage of FITC-positive cells and are given as mean ± SD from three independent experiments. C and D, HDL3 modified with h15-LO increase U937 monocyte adhesion to endothelial cells. Cells were preincubated with HDL3 or h15-LO-HDL3 (100 μg/ml) for 18 h, then TNF-α (10 ng/ml) was added for a further 6 h (C); alternatively, cells were incubated with HDL3 or h15-LO-HDL3 (100 μg/ml) for 18 h (D). Fluorescently labeled monocytes were added to endothelial layers for 1 h, and the adhesion was measured by flow cytometry. Results are given as mean ± SD from four independent experiments performed in quadruplicate and expressed as percent vs control; *, p < 0.05; **, p < 0.005; ***, p < 0.0001.