Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Inhibits Proximal TCR Signaling by Targeting ZAP-70

Zhangguo Chen, Lanfen Chen, Shuo-Wang Qiao, Takashi Nagaishi and Richard S. Blumberg

J Immunol 2008; 180:6085-6093; doi: 10.4049/jimmunol.180.9.6085

http://www.jimmunol.org/content/180/9/6085

Why The JI?

- **Rapid Reviews!** 30 days* from submission to initial decision
- **No Triage!** Every submission reviewed by practicing scientists
- **Speedy Publication!** 4 weeks from acceptance to publication

*average

References

This article cites 52 articles, 22 of which you can access for free at:

http://www.jimmunol.org/content/180/9/6085.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:

http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:

http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:

http://jimmunol.org/alerts
Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 Inhibits Proximal TCR Signaling by Targeting ZAP-70

Zhangguo Chen, Lanfen Chen, Shuo-Wang Qiao, Takashi Nagaishi, and Richard S. Blumberg

The long cytoplasmic tail (CT) isoforms of carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1) are expressed on activated human T cells and possess two ITIM motifs in the CT. These isoforms of CEACAM1 are inhibitory for T cell responses initiated by the TCR/CD3 complex with the inhibition dependent upon the ITIMs of CEACAM1 and Src homology 2 domain-containing phosphatase 1 (SHP-1). However, the mechanism by which this inhibition occurs in T cells is unknown. We demonstrate here that the Src family kinase, Lck, and the ability of CEACAM1 to bind homophilically are required for the ITIM phosphorylation of CEACAM1 that is a prerequisite for CEACAM1 association with SHP-1. We further show that CEACAM1 associates with and recruits SHP-1 to the TCR/CD3 complex leading to decreased phosphorylation of CD3-ζ and ZAP-70 and consequently decreased activation of the elements downstream of ZAP-70. This is physiologically relevant because extinction of SHP-1 expression or blockade of homophilic binding by CEACAM1 using a Fab that specifically recognizes the homophilic binding region of human CEACAM1 increases the cytolytic function initiated by the TCR/CD3 complex signaling. These studies show that long CT isoforms of CEACAM1 orchestrate an inhibitory program that abrogates extremely proximal events downstream of the TCR/CD3 complex by focusing on the activation of ZAP-70.
supplemented with 100 U/ml rh-IL-2 (BD Pharmingen) and 2 μg/ml PHA. Clonally expanded hCD8+ and hCD4+ T cell lines were kindly provided by Dr. Bana Jabri (University of Chicago, Chicago, IL) and cultured as described previously (25). Jurkat T cells stably transfected with hCEACAM1–4L, hCEACAM1–4S were kindly provided by Dr. John Shively (Beckman Research Institute of the City of Hope, Duarte, CA). Human leukemia CD8+ T cell line TALL 104 (TALL) and J.cam1.6 T cells were purchased from American Type Culture Collection.

Abs and reagents

The mouse anti-hCEACAM1 mAbs 5F4 and 34B1 (IgG1) were generated as previously described (26). Biotinylated 5F4 was made with EZ-Link sulfo-NHS-Biotin reagent according to instruction of the manufacturer Pierce. 5F4 Fab were prepared as per the manufacturer’s instructions (Pierce). Mouse anti-hCD3, isotype control IgG, PE-conjugated mouse anti-hLamp1 (CD107a), and rh-IL-2 were purchased from BD Pharmingen. Anti-phosphotyrosine mAb 4G10 and active ZAP-70 recombinant protein were purchased from Upstate Biotechnology. Mouse anti-ERK, phospho-p-ERK, anti-hCD3-PE, isotype control IgG, PE-conjugated mouse anti-CD3, and reagents for cell culture and reagents were purchased from Santa Cruz Biotechnology. Rabbit anti-ZAP70, p-CD3-PE, and rabbit anti-TCR-α were from Santa Cruz Biotechnology. Rabbit anti-ZAP70, p-ZAP70, p- linker for activation of T cells (LAT), and SLP-76 were from Cell Signaling Technology. Rabbit anti-SHP-1 mAb was from Epitomics, p-ZAP70, p-linker for activation of T cells (LAT), and SLP-76 were from Cell Signaling Technology. Rabbit anti-EPSP-1 mAb was from Epitomics, and anti-p-p56 Lck was from Calbiochem.

Plasmids, short interfering RNA (siRNA), and transfection

The hCEACAM1–3L and -3S, as well as CEACAM1–3L-FF mutant constructs, were previously generated (5). Jurkat and Lck-deficient Jurkat (J.cam1.6) T cells were transfected with nucleofector kit V according to the manufacturer’s instructions. Mouse anti-ERK, phospho(p)-ERK, anti-hCD3-PE, isotype control IgG, PE-conjugated mouse anti-CD3, and reagents for cell culture and reagents were purchased from Santa Cruz Biotechnology. The siRNA was transfected into TALL cells with a siRNA test kit and nucleofector kit V according to the manufacturer’s instructions.

RT-PCR

The primers to determine CEACAM1 isoforms were 5’-GCTCTACCA CAAGAAAATGG-3′ (forward) and 5’-CATTGGAGTGTCCCTGAG-3′ (reverse). They amplified the L isoform cDNA to produce a 197 bp fragment and the S isoform to produce a 143 bp fragment.

Immunoprecipitation (IP) and Western blotting

IP and Western blotting were performed as previously described (5) by using specific Abs as indicated in results and legends.

Confocal microscopy

TALL cells were incubated with FITC-anti-CD3 on ice for 1 h. The cells were transferred to 37°C for 5 min for surface cap staining or 30 min for internalized vesicle staining. Staining with indicated Abs in legends was performed as described previously (27). The slides were analyzed on a workstation of a Nikon TE2000-E inverted microscope coupled to a PerkinElmer spinning disk confocal unit and an Orca AG cooled CCD camera (Hamamatsu) with a plexiglass chamber enclosing the stage for control of the sample environment (temperature and humidity).

Flow cytometry assay

For CEACAM1 expression analysis, cells were incubated with 5F4 for 20 min followed by FITC-conjugated rat anti-mouse IgG1. For Lamp1 surface translocation, cells were seeded in a 96-well plate coated with Abs as indicated, incubated in 5% CO2, 37°C incubator for 4 h, and stained with PE-conjugated anti-Lamp1. Stained cells were analyzed on a FACscan (BD Biosciences).

Serine esterase release and cytotoxicity assay

Serine esterase assay and calculation of released esterase percentage was performed following standard protocol with modification (28). Ab redirected Ab-dependent cell mediated cytotoxicity and calculation of specific 31Cr release was performed as previously described (25, 26).

Statistics

The student’s t test was used to determine significance. A value of p < 0.05 was considered as significant.

Results

Stimulation of T cells induces expression of L and S CT containing isoforms of CEACAM1

The specific isoforms of CEACAM1 expressed by human T cells is controversial, with some studies showing that human T cells only express L CT isoforms (15). Therefore, to define which isoforms of CEACAM1 are expressed in human T cells, we established primers which amplify a 143 bp fragment from all S isoform cDNAs and a 197 bp fragment from all L isoform cDNAs (data not shown). Using this unique set of primers, we analyzed freshly isolated peripheral blood T (PBT) cells, clonally expanded intestinal intraepithelial lymphocyte (IEL) CD4+ T cells, IEL CD8+ T cell lines, and the CD8+ T cell leukemia TALL 104 (TALL) cell line. The results in Fig. 1 show that all continuously cultured T cells lines expressed high levels of CEACAM1 L isoforms and low levels of CEACAM1 S isoforms. In contrast, unstimulated primary PBT cells expressed negligible levels of both isoforms of CEACAM1. However, after 4 days of culture with IL-2 and PHA, the CEACAM1 mRNA levels in PBT cells reached those of the
clonally expanded IEL T cell lines and TALL cells constantly maintained in IL-2 media with predominant expression of long-CT isoforms of CEACAM1. These results show that increased CEACAM1 transcripts are induced in primary human T cells by activation with IL-2 and PHA, and that the predominant isoforms expressed are those containing a LC T.

To determine whether the CEACAM1 mRNAs that are induced by IL-2 or IL-2 plus PHA result in increased CEACAM1 protein expression, we immunoprecipitated and immunoblotted (IB) CEACAM1 from various T cell lysates using the monoclonal anti-human CEACAM1 Ab (5F4) (26). Fig. 1A shows that CEACAM1 was immunoprecipitated, p-Tyr of CEACAM1 was detected, and total CEACAM1 was verified by 4G10. The membrane was re-blotted with anti-Flag to assess total CEACAM1. E, Src kinase is required for CEACAM1 ITIM phosphorylation. 3L-WT was transiently transfected into Jurkat T cells. Cells were treated or not by 2 μM of indicated inhibitors for 24 h. CEACAM1 was immunoprecipitated, p-Tyr of CEACAM1 was detected, and total CEACAM1 was verified by 4G10. The membrane was re-blotted with anti-Flag to assess total CEACAM1. F, Lck is required for CEACAM1 ITIM phosphorylation. 3L-WT was transiently transfected into Lck-deficient Jurkat T cells (J.cam1.6) and WT Jurkat T cells. CEACAM1 was immunoprecipitated, p-Tyr of CEACAM1 was detected, and total CEACAM1 was verified by 4G10. The membrane was re-blotted with anti-Flag to assess total CEACAM1.
IL-2 and do not spontaneously produce IL-2 in culture, it was interesting to observe that CEACAM1 3L-WT was phosphorylated in Jurkat T cells without stimulation (Fig. 2B). In contrast, neither CEACAM1 3S-WT, nor 3L-FF, which are otherwise identical except for the CT, were not phosphorylated. The latter studies confirm that phosphorylation of CEACAM1 3L-WT occurs on the ITIM tyrosines.

These studies suggested that homophilic interactions are sufficient to induce CEACAM1-L tyrosine phosphorylation. To provide further confirmation, we prepared N-terminal Flag-tagged WT CEACAM1–3L and mutated CEACAM1–3L in which the homophilic binding site was deleted by replacing CEACAM1–3L 43 arginine (R) with glycine (G) and 44 glutamine (Q) with leucine (L) (R43G Q44L) as previously described (30). Such mutations of human CEACAM1 abrogate homophilic binding and heterophilic binding of CEACAM1 to the mouse anti-human CEACAM1 Ab 5F4 (30). Although CEACAM1–3LR43G Q44L was able to reach the cell surface at the mouse anti-human CEACAM1 Ab 5F4 (30). Although phosphorylation of CEACAM1 3L-WT occurs on the ITIM tyrosines.

To demonstrate an interaction between human CEACAM1 and Lck, we created a GST fusion protein containing the CT of the L isoform CEACAM1 (GST-CT). These studies showed that GST-CT, but not GST, could coimmunoprecipitate Lck from Jurkat T cell lysates (Fig. 2G). Furthermore, when primary PBT cell lysates were immunoprecipitated by an anti-CEACAM1 Ab and the immune-complexes analyzed by immunoblot with an anti-Lck Ab, we observed an association between endogenous CEACAM1 and Lck (Fig. 2H). Similar results were obtained using clonally expanded IEL and TALL cells (data not shown). Interestingly, the association between CEACAM1 and Lck was observed to decrease shortly after TCR engagement with anti-CD3 (Fig. 2H), suggesting that CEACAM1 association with Lck was mainly due to an association with nonphosphorylated CEACAM1 (see Fig. 2G) or that Lck was displaced by an association with SHP-1 (see following results).

CEACAM1 recruits SHP-1 to deactivate ZAP-70

To define the immediate elements that are influenced by the interaction of the ITIMs of CEACAM1 and SHP-1, we evaluated the effect of CEACAM1 ligation on CD3-ζ and ZAP-70 tyrosine phosphorylation. TALL cells were treated with anti-CD3-ε with or without an anti-CEACAM1 Ab that binds to the homophilic binding site (5, 26, 30, 33) followed by crosslinking with a F(ab')2 goat anti-mouse IgG for 2 min. Phosphorylation of CD3-ζ and ZAP-70 was then assessed by IB with corresponding phosphospecific Abs. The results in Fig. 3A show that coligation of CEACAM1 caused a profound decrease in TCR stimulation-induced CD3-ζ and ZAP-70 phosphorylation. However, the total CD3-ζ and ZAP-70 were not changed (shown herein is only ZAP-70). Similar results were obtained with clonally expanded IEL cells (data not shown).

To interrogate the mechanism by which CEACAM1 recruits SHP-1 to TCR signalosome, we performed coimmunoprecipitation assays and confocal microscopy. As shown in Fig. 3B, Abs against CEACAM1, CD3-ε-chain, and the TCR-β-chain coprecipitated CEACAM1 from TALL cell lysates, showing that CEACAM1 interacts with the endogenous TCR/CD3 complex. Interestingly, an Ab specific for the TCR-α-chain did not coimmunoprecipitate CEACAM1, suggesting that CEACAM1 is mainly associated with the TCR-β but not TCR-α-chain or that the TCR-α Ab used induced dissociation of CEACAM1. Fig. 3C shows that CEACAM1 and the TCR/CD3 localize on cell surface and exhibit significant colocalization. Upon stimulation of the TCR/CD3 complex, the colocalization was markedly increased especially intracellularly, indicating stimulation of the TCR/CD3 complex caused significant cointernalization with CEACAM1. When T cells were stimulated with an anti-CEACAM1 Ab, we also observed an intensive colocalization of CEACAM1 and the TCR/CD3 complex intracellularly. These studies indicate a physiological association of CEACAM1 and TCR/CD3 complex.

To determine whether CEACAM1 recruits SHP-1 to the TCR signalosome upon TCR stimulation, Jurkat T cells either stably expressing CEACAM1-4L or CEACAM1-4S were stimulated with FITC-conjugated anti-CD3 for 5 min, fixed, and stained for CEACAM1 and SHP-1. The results shown in Fig. 3D indicate that under these conditions the TCR/CD3 complex, CEACAM1, and SHP-1 colocalize in punctate structures at the plasma membrane in CEACAM1–4L transfected cells. In contrast, in CEACAM1–4S transfected cells colocalization was observed only between the TCR/CD3 complex and CEACAM1 as revealed by confocal microscopy. In addition, Jurkat T cells stably expressing CEACAM1–4L, but not CEACAM1–4S, was observed to associate with SHP-1 within 2 min of anti-CD3 stimulation (Fig. 3E). Taken together with the microscopy studies (Fig. 3D), these studies indicate that the ITIMs of CEACAM1 recruit SHP-1 that in turn mobilizes SHP-1 to the TCR signalosome.

The kinetics of CEACAM1 association with SHP-1 (Fig. 3E) was reciprocal to that observed for Lck association (Fig. 2H) suggesting that CEACAM1 interacts sequentially with Lck and SHP-1 and may account for the dephosphorylation of ZAP-70. Thus, to demonstrate that the SHP-1, which is associated with CEACAM1, can dephosphorylate elements within the TCR signalosome, we incubated T cell lysates with anti-SHP-1 or isotype control IgG coupled to protein-G Sepharose beads twice to deplete SHP-1 and then isolated CEACAM1 by IP with 5F4. The CEACAM1 isolated in this manner that was depleted or not depleted of coassociated SHP-1 was then tested for its ability to dephosphorylate ZAP-70. As expected, when SHP-1 was depleted from lysates using a SHP-1 specific Ab (Fig. 3F), but not an IgG control, CEACAM1 lost the ability to dephosphorylate active ZAP-70. These studies indicate that a CEACAM1/SHP-1

CEACAM1 INHIBITS TCR-INDUCED ZAP-70 ACTIVATION
complex in the TCR signalosome is able to dephosphorylate
ZAP-70 and/or CD3-ζ.

CEACAM1 engagement prevents activation of ZAP-70-related signaling pathways

Based on the results presented above, we predicted that coengagement of CEACAM1 would inhibit activation of other signaling elements downstream of ZAP-70 that are induced by TCR/CD3 complex stimulation. To confirm this prediction, TALL cells were treated with anti-CD3 with or without the anti-CEACAM1 mAb 5F4 or an isotype control IgG followed by crosslinking with F(ab’)_2 goat anti-mouse IgG for 2 min. Activation of LAT, PLCγ1, and ERK was evaluated by immunoblot of whole cell lysates with the corresponding anti-phospho-specific Abs. SLP-76 activation was assessed by IP of SLP-76 followed by immunoblot with an anti-p-Tyr Ab. Coengagement of the TCR/CD3 complex and CEACAM1 decreased the phosphorylation and thus the activation of LAT, SLP-76, PLCγ1, and ERK compared with that induced by TCR/CD3 stimulation alone (Fig. 4).
CEACAM1 engagement inhibits TCR-mediated cytotoxicity by blocking granule exocytosis

Previous studies have shown that CEACAM1 engagement of stimulated CD8^+ IELs (26) and tumor infiltrating CD8^+ T cells (9) inhibits cytolytic function. ZAP-70 signaling is involved in TCR cytotoxic function (34, 35). We therefore confirmed that CEACAM1 engagement inhibited anti-CD3 redirected target cell lysis of P815 cells (Fig. 5, A–C) in clonally expanded IEL CD8^+ T cells and the TALL T cell line. We next investigated the mechanism for CEACAM1-mediated inhibition of TCR cytotoxic function. As seen in Fig. 5D, anti-CEACAM1, but not mouse IgG, inhibited the anti-CD3-induced release of serine esterases. Neither the CEACAM1-specific Ab 5F4 nor control IgG alone induced release of serine esterases from T cell granules. These results indicate that CEACAM1 engagement blocks TCR-induced granule exocytosis. To confirm this, granule movement from the cytoplasm to the surface membrane was assessed by Lamp1 staining of the cell surface after CD3 stimulation in the presence or absence of increasing concentrations of the CEACAM1-specific mAb 5F4 or control mouse IgG1. As shown in Fig. 5E, the 5F4 mAb, but not an isotype control, caused a significant reduction of Lamp1 accumulation on the surface. These studies show that coengagement of CEACAM1 with the TCR/CD3 complex results in inhibition of granule exocytosis and consequently diminished cytotoxicity, functions that are downstream of ZAP-70.

Silencing of SHP-1 and blockade of the CEACAM1 N-domain reverses CEACAM1-mediated inhibition

To determine whether CEACAM1-mediated inhibition of TCR signaling is physiologically affected by SHP-1-mediated dephosphorylation of ZAP-70, we silenced SHP-1 expression in T cells by transfection of TALL cells with SHP-1-specific siRNA. As shown in Fig. 6A, treatment of TALL cells with SHP-1 siRNA resulted in decreased SHP-1 protein expression in comparison to that observed in cells treated with a mock siRNA. In comparison, treatment of TALL cells with SHP-1 siRNA did not affect expression of ZAP-70 (Fig. 6A). We next evaluated the effects of SHP-1 silencing on ZAP-70 phosphorylation induced by ligation with anti-CD3 or anti-CD3 in the presence of CEACAM1 ligation. Whereas ZAP-70 phosphorylation induced by anti-CD3 ligation was inhibited in control cells treated with anti-CEACAM1 in the presence of mock siRNA, CEACAM1-mediated inhibition of anti-CD3-induced ZAP-70 phosphorylation was reversed in cells treated with SHP-1 siRNA (Fig. 6A). We next investigated the effects of SHP-1 silencing on Lamp1 surface accumulation upon TCR/CD3 complex engagement in the presence or absence of CEACAM1 ligation. As shown in Fig. 6B, redistribution of Lamp1 to the cell surface induced by anti-CD3 was inhibited by coengagement of CEACAM1 with the 5F4 mAb. This inhibition of Lamp1 redistribution to the cell surface by coligation of CD3 and CEACAM1 was not affected by mock siRNA. In comparison, ligation of CEACAM1 by the 5F4 was unable to effect suppression...
Expression of Lamp1 on the cell surface when SHP-1 expression was silenced by treatment with specific siRNA (Fig. 6B). These results are consistent with previous studies showing that SHP-1 siRNA can reverse suppression of TCR-induced NFAT activation by CEACAM1 (5), and that CEACAM1–4L overexpression in normal T cells, but not in SHP-1 deficient T cells, can inhibit T cell transfer colitis (7).

Finally, to confirm that homophilic ligation is involved in CEACAM1-mediated inhibition and to identify an antagonist that can specifically block CEACAM1 homophilic binding, we generated Fab fragments (data not shown) of the human CEACAM1-specific mAb, 5F4, that binds to the homophilic binding motif of CEACAM1 (30, 33). Fig. 6C confirms previously published work of Markel and colleagues (30) that the 5F4 Ab interacts with the homophilic binding site of the CEACAM1 N-domain as staining of T cells expressing the CEACAM1–3L R43G Q44L mutant is lost in comparison to staining of the WT CEACAM1–3L isoform. In comparison, the mouse anti-human CEACAM1 mAb 34B1 (26), which binds outside of the homophilic binding site (33), stains both the WT and mutant CEACAM1–3L isoforms (Fig. 6C). The IgG control Ab bound neither WT nor mutated CEACAM1 (data not shown). Fab of the 5F4 mAb were therefore tested for their ability to regulate the T cell function. Anti-CD3 treatment of TALL cells induced an increase in Lamp1 accumulation on cell surface as seen in Fig. 6D (solid histograms; middle and right panels) relative to that observed in untreated cells (solid histogram; left panel). Pretreatment of TALL cells with the Fab of 5F4 significantly increased the accumulation of Lamp1 on the cell surface beyond that induced by anti-CD3 stimulation alone (Fig. 6D; open histograms). Importantly, the Fab alone did not induce Lamp1 accumulation on the cell surface in the absence of TCR stimulation (Fig. 6D, left panel). These studies confirm CEACAM1 as a coinhibitory receptor and indicate that CEACAM1-mediated inhibition occurs by homophilic engagement.

Discussion

The inhibitory function of CEACAM1 is dependent on the ITIM domains within the CT of CEACAM1 and SHP-1 because deletion of either abrogates CEACAM1-mediated inhibition. The tyrosine phosphorylation of the ITIMs of CEACAM1 is a prerequisite for CEACAM1 association with SHP-1 in mouse T cells (14) and SHP-1 as well as SHP-2 in epithelia cells (36, 37). However, there exists three fundamental unanswered questions by which CEACAM1 functions in T cells that are what initiates CEACAM1 ITIM phosphorylation, which tyrosine kinase phosphorylates CEACAM1 ITIMs, and how does SHP-1 association with CEACAM1 functions in T cells that are what initiates CEACAM1 ITIM phosphorylation, which tyrosine kinase phosphorylates CEACAM1 ITIMs, and how does SHP-1 association with CEACAM1? In Lck-deficient T cells, CEACAM1 cannot be phosphorylated at tyrosine residues and consequently CEACAM1 lacks the ability to associate with SHP-1. This is consistent with previous observations that the tyrosines within the ITIMs of CEACAM1 can be phosphorylated by c-Src kinase in epithelial cells (29, 32), Btk kinase in B cells (24), Lyn in neutrophils (38, 39), and insulin receptor tyrosine kinase as well as epidermal growth factor receptor tyrosine kinase (40, 41). Specific dependence on Lck for CEACAM1 tyrosine phosphorylation in T cells is consistent with a similar role for Lck in mediating tyrosine phosphorylation of FcyRIIB in NK cells (42). We further show that Lck likely directly phosphorylates the CEACAM1 ITIM tyrosines because endogenous CEACAM1 constitutively associates with Lck. In addition, a GST fusion protein containing the CEACAM1 CT can associate with Lck. However, it is still possible that tyrosine phosphorylation of CEACAM1 is mediated by another tyrosine kinase that requires Lck in T cells. Taken together, these studies suggest that the cell surface of CEACAM1 may induce association of itself with Lck, which is further enhanced by TCR/CD3 complex activation.

The interaction between CEACAM1 ITIMs and SHP-1 suppresses multiple different functions initiated by TCR/CD3 complex signaling including proliferation, cytokine secretion, and cytotoxicity (5, 8–10, 26). However, the final common pathway by which this occurs has been unknown. In this study, we show that coligation of CEACAM1 decreases phosphorylation of CD3-ζ and ZAP-70 induced by stimulation of the TCR/CD3 complex. CD3-ζ is a direct adaptor of the TCR and recruits ZAP-70 to immune synapses upon TCR stimulation. In the immune synapse, ZAP-70 is activated (43) and subsequently functions as a central organizer.
of several downstream signaling events (44, 45). The current study shows that CD3-ζ and/or ZAP-70 are the proximal elements that are influenced by the interaction of CEACAM1 and SHP-1. Consistent with this, we now show that CEACAM1 inhibits cytotoxicity by reducing degranulation; a process that is downstream of ZAP-70 (35). Although SHP-1 has been shown to inhibit TCR signaling through dephosphorylation of CD3-ζ and ZAP-70 (46, 47), SHP-1 is normally excluded from membrane lipid rafts (48, 49) where the TCR/CD3 complex localizes (50). Therefore, the mechanism by which SHP-1 accesses the TCR signalosome has been an open question. SHP-1 has been shown to associate with co-inhibitory receptors, including killer inhibitory receptors (42), CTLA-4 (4, 51), and PD-1 (47). Nevertheless, it is not known whether these co-inhibitory receptors can recruit SHP-1 to the TCR signalosome. Our study demonstrates that CEACAM1, which is able to shuttle between lipid rafts and nonlipid raft membranes, can associate with the TCR/CD3 complex. Furthermore, this association is increased by TCR/CD3 complex engagement and is relevant to TCR/CD3 complex function as we observed colocalization and cointernalization of the TCR/CD3 complex.

In addition, previous studies have demonstrated that both the anti-human CEACAM1 monoclonal body 5F4 that recognizes the homophilic binding site within the C-C’ loop of the human CEACAM1 N-domain and the 34B1 mAb that recognizes the N-domain outside of the C-C’ loop can induce CEACAM1 to transduce inhibitory signals in human T and/or NK cells (5, 26, 30, 33). This indicates that CEACAM1 may be able to bind multiple ligands that can trigger inhibitory signaling, which is consistent with CEACAM1-mediated inhibition induced by the murine hepatitis virus spike glycoprotein (6). CEACAM1 containing mutations in the Arg43 and Gln45 residues (R43Q/G45L) loses the ability to bind to CEACAM1 itself as well as CEACAM5 and the 5F4, but not the 34B1 mAb, and loses the ability to inhibit NK cell-mediated cytotoxicity (30). These studies indicate, in particular, that the 5F4 mAb binds within the homophilic binding site. Moreover, in line with these previous studies, masking the homophilic binding site of CEACAM1 with a Fab of the 5F4 mAb enhances the cytolytic function of T cells (Fig. 5D). Taken together, these studies now show that the 5F4 mAb binds within the homophilic binding site and is agonistic.

In summary, we show that expression of LCT containing isoforms of CEACAM1 in T cells is induced by activation and, furthermore, the activity of CEACAM1 is dependent upon homophilic binding. This ability to interact homophilically allows for association of CEACAM1 with and phosphorylation by the Src kinase, Lck, which is sequentially replaced by an association between CEACAM1 and SHP-1 which is brought into the vicinity of the TCR/CD3 complex where it dephosphorylates the most proximal signaling elements and associated adaptors of the TCR/CD3 complex, namely CD3-ζ and ZAP-70. These studies thus explain how CEACAM1 expression on T cells has such a profound impact on diverse cellular functions (6, 8, 9, 26, 52) making CEACAM1 of significant importance to a variety of immune responses as potentially diverse as inflammation, autoimmunity, and tumor immunity.

Acknowledgments
We owe thanks to Dr. John E. Shively for kindly providing the human CEACAM1–4L and -4S Jurkat T cell lines and to Dr. Bana Jabri for generously providing clonally expanded human CD4+ and CD8+ T cell clones. We thank Dr. Lewis Lanier for useful discussions and volunteer student Yiling Chen for assistance in completion of the GST-CT fusion protein. We also appreciate Dr. Nicolas Kupershaver for help in preparing the figures.

Disclosures
The authors have no financial conflict of interest.

References
onic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 22: 941–950.

