CRTH2 Plays an Essential Role in the Pathophysiology of Cry j 1-Induced Pollinosis in Mice

Rie Nomiya, Mitsuhiro Okano, Tazuko Fujiwara, Megumi Maeda, Yoshinobu Kimura, Kosuke Kino, Minehiko Yokoyama, Hiroyuki Hirai, Kinya Nagata, Toshifumi Hara, Kazunori Nishizaki and Masataka Nakamura

J Immunol 2008; 180:5680-5688; doi: 10.4049/jimmunol.180.8.5680

http://www.jimmunol.org/content/180/8/5680

References

This article cites 48 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/180/8/5680.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
CRTH2 Plays an Essential Role in the Pathophysiology of Cry j 1-Induced Pollinosis in Mice

Rie Nomiya, Mitsuhiro Okano, Tazuko Fujiwara, Megumi Maeda, Yoshinobu Kimura, Kosuke Kino, Minehiko Yokoyama, Hiroyuki Hirai, Kinya Nagata, Toshifumi Harai, Kazunori Nishizaki, and Masataka Nakamura

PGD₂ is the major prostanoid produced during the acute phase of allergic reactions. Two PGD₂ receptors have been isolated, DP and CRTH2 (chemoattractant receptor-homologous molecule expressed on Th2 cells), but whether they participate in the pathophysiology of allergic diseases remains unclear. We investigated the role of CRTH2 in the initiation of allergic rhinitis in mice. First, we developed a novel murine model of pollinosis, a type of seasonal allergic rhinitis. Additionally, pathophysiological differences in the pollinosis were compared between wild-type and CRTH2 gene-deficient mice. An effect of treatment with ramatroban, a CRTH2/T-prostanoid receptor dual antagonist, was also determined. Repeated intranasal sensitization with Cry j 1, the major allergen of Cryptomeria japonica pollen, in the absence of adjuvants significantly exacerbated nasal hyperresponsive symptoms, Cry j 1-specific IgE and IgG1 production, nasal eosinophilia, and Cry j 1-induced in vitro production of IL-4 and IL-5 by submandibular lymph node cells. Additionally, CRTH2 mRNA in nasal mucosa was significantly elevated in Cry j 1-sensitized mice. Following repeated intranasal sensitization with Cry j 1, CRTH2 gene-deficient mice had significantly weaker Cry j 1-specific IgE/IgG1 production, nasal eosinophilia, and IL-4 production by submandibular lymph node cells than did wild-type mice. Similar results were found in mice treated with ramatroban. These results suggest that the PGD₂-CRTH2 interaction is elevated following sensitization and plays a proinflammatory role in the pathophysiology of allergic rhinitis, especially pollinosis in mice. The Journal of Immunology, 2008, 180: 5680–5688.
To determine whether the effect of CRTH2 deficiency is at the level of antigen presentation, whole mucosa from the nasal septum was prepared for flow cytometry. CD3+ lymphocytes were analyzed on the flow cytometer for expression of CD4 and CD8. The frequencies of CD4+ and CD8+ T cells in the nasal mucosa were similar between CRTH2−/− and wild-type mice.

5.6. Histological examination

Histological examination was performed as previously described (24). Coronal nasal sections were stained with H&E and Luna solution to detect eosinophils. A blind test was conducted to determine the numbers of infiltrating cells in the posterior part of the nasal septum using a high-power (10×40) microscopic field.

To determine the infiltration of T cells into nasal mucosa, immunohistochemistry for CD3+ cells was examined. Paraffin-embedded nasal tissues were sectioned into 5-μm slices, deparaffinized, rehydrated and retrieved with microwave. Endogenous peroxidase activity was quenched with 3% H2O2, and nonspecific protein binding was blocked with normal rabbit serum (Biocare Medical). RAMATOBAN was obtained from Bayer Yakuhin. Protein concentrations were determined using a bicinchoninic acid assay (Pierce) according to the manufacturer’s instructions.

5.7. Statistical analysis

Statistical significance was determined by nonparametric Mann-Whitney U tests. p values of <0.05 were considered to indicate statistical significance. Values are shown as means ± SEM.
Results

Induction of nasal symptoms in Cry j 1-sensitized mice

We first attempted to generate a mouse model mimicking human allergic rhinitis, especially pollinosis, which causes symptoms of nasal symptoms, including sneezing and nasal rubbing, by intranasal administration of Cry j 1. We found a significant and dose-dependent increase in the frequency of sneezing in BALB/c mice sensitized with Cry j 1. Mice that were treated with PBS alone sneezed 1.8+/−0.3 (mean+/−SEM) times in the 10 min following the final Ag administration, whereas they sneezed 5.8+/−1.2 times and 15.7+/−2.7 times when treated with low and high doses of Ag, respectively (Fig. 2A). Similarly, immediately after the final Ag challenge, nasal rubbing was observed more frequently in mice sensitized with a high dose of Cry j 1 than in control mice (37.3+/−5.8 vs 11.2+/−2.7 times in 10 min). At a low dose of Cry j 1, there was no significant increase in the frequency of nasal rubbing (Fig. 2B).

Development of Th2-type immune responses in Cry j 1-sensitized mice

To further characterize the pathogenesis of immune responses caused by Cry j 1, we monitored several parameters associated with pollinosis. Nasal challenge with a low or high dose of Cry j 1 caused a considerable increase in the concentration of Cry j 1-specific IgE in sera when measured 1 day after the final challenge (Fig. 2C). There was also a significant elevation in the concentration of Cry j 1-specific IgG1 (Fig. 2D). The concentration of Cry j 1-specific IgE and IgG1 was not appreciably different at the low and high doses of Cry j 1. Cry j 1, however, had little effect on the level of Cry j 1-specific IgG2a (Fig. 2E).

Eosinophil infiltration into nasal mucosa, another characteristic of pollinosis, is rarely seen in the nasal mucosa in control mice (Fig. 3A). On the contrary, there was a marked accumulation of eosinophils not only in the lamina propria but also in the epithelial layer in mice 1 day after the final challenge (Fig. 3, B and C). Eosinophil numbers per field following intranasal Cry j 1 sensitization/challenge at both low and high doses were significantly higher than in control mice (Fig. 3D). The nasal mucosa of Cry j 1-sensitized mice also showed severe infiltration by mononuclear cells. The nasal septum of mice treated with low and high doses of Cry j 1 contained more mononuclear cells per field (59.8+/−9.0 (p=0.055) and 80.2+/−9.1 (p=0.016), respectively) than did control mice (39.8+/−4.7).

We next examined the in vitro production of cytokines in culture by cells isolated from submandibular lymph nodes from mice treated in vivo with or without Cry j 1. The amounts of IL-4 and IL-5 specific IgE, IgG1, and IgG2a were determined by ELISA. Mean OD values+/−SEM are shown. Results are representative of two independent experiments.

Table I. Primary sequences used for real-time PCR amplifications

<table>
<thead>
<tr>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>Amplification Size (bp)</th>
<th>Genbank Accession No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4</td>
<td>CTCTCAACACAAAGAAGAACA</td>
<td>CTGCAGCTCCATGAGACAC</td>
<td>133</td>
</tr>
<tr>
<td>IL-5</td>
<td>TCACGTTGCTTCGGCCCAACT</td>
<td>TTATAGGAGGACAGAGGTCCTA</td>
<td>133</td>
</tr>
<tr>
<td>IL-13</td>
<td>CGGTGCTGACTCCTTACCC</td>
<td>GGAGCCCATCCTCCTACCC</td>
<td>151</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>ACCTGCCTGAATCAGCCTCG</td>
<td>ACCTGGGCTGTTCGGACCTC</td>
<td>103</td>
</tr>
<tr>
<td>IL-1β</td>
<td>TAGAAGAGGACACAGTTG</td>
<td>GAGGCTGACCCACAGGTTA</td>
<td>105</td>
</tr>
<tr>
<td>IL-6</td>
<td>GGAGGCTGACCCACAGGTTA</td>
<td>GGAGGGCTGTTCGGACCTC</td>
<td>112</td>
</tr>
<tr>
<td>TNF-α</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>305</td>
</tr>
<tr>
<td>RANTES</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>170</td>
</tr>
<tr>
<td>Eotaxin</td>
<td>CGAGGGGAGGAGGAGGAGG</td>
<td>CGAGGGGAGGAGGAGGAGG</td>
<td>96</td>
</tr>
<tr>
<td>CRTH2</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>AGAGAGAGAGGAGGAGGAG</td>
<td>173</td>
</tr>
<tr>
<td>GAPDH</td>
<td>ACCACGGTCCATGCTGCTAC</td>
<td>ACCACGGTCCATGCTGCTAC</td>
<td>452</td>
</tr>
</tbody>
</table>

FIGURE 2. Nasal hyperresponsive symptoms and Ab production in mice following intranasal sensitization and challenge with Cry j 1. Mice were sensitized and challenged by intranasal administration of Cry j 1. Nasal allergic symptoms, including the frequency of sneezing (A) and rubbing (B), were determined for the 10 min immediately following the final nasal challenge (day 28). Mean frequencies+/−SEM are shown. Serum samples were obtained 16 h after the final intranasal challenge. Cry j 1-specific IgE (C), IgG1 (D), and IgG2a (E) levels were determined by ELISA. Mean OD values+/−SEM are shown. Results are representative of two independent experiments.
IL-5 produced by the cells were in proportion to the doses used for in vivo sensitization (Fig. 3, E and F). IFN-γ production was slightly enhanced in lymph node cells from mice treated with a high dose of Cry j 1 compared with control mice, but the increase was not statistically significant (Fig. 3 G).

CRTH2 mRNA expression in nasal mucosa of Cry j 1-sensitized mice

We next measured the expression of CRTH2 at sites of nasal inflammation. Control mice treated with PBS expressed a low level of CRTH2 mRNA in the mucosal tissue of the nasal septum. In mice treated with Cry j 1, the level of CRTH2 mRNA was significantly increased (Fig. 4). Thus, we further investigated whether CRTH2 is positively or negatively involved in the pathophysiology of pollinosis using CRTH2−/− mice.

Impaired pathophysiology of pollinosis in Cry j 1-sensitized CRTH2−/− mice

A high dose of Cry j 1 was administered to both wild-type (WT) and CRTH2−/− mice, and the nasal hyperresponsive symptoms were examined immediately after the final nasal challenge. Notably, the number of sneezes in 10 min by the Cry j 1-sensitized mutant mice was significantly lower than by the WT mice (Fig. 5A). Nasal rubbing was also significantly lower in the CRTH2−/− mice than in the WT mice (Fig. 5B).

The level of Cry j 1-specific IgE in serum samples collected on the day following the final Ag challenge was significantly lower for mutant mice than for WT mice (Fig. 5C). Production of Cry j 1-specific IgG1 was similarly reduced in CRTH2−/− mice compared with WT mice (Fig. 5D). In contrast, serum levels of Cry j 1-specific IgG2a were the same in the two mouse strains (Fig. 5E). The number of eosinophils infiltrating into the nasal septum following administration of Cry j 1 was also significantly lower in the CRTH2−/− mice than in the WT mice (Fig. 6A–C). Although the number of mononuclear cells infiltrating the nasal septum was not significantly different in the mutant and WT mice (Fig. 6D), the number of infiltrating CD3+ cells was significantly reduced in CRTH2−/− mice as compared with WT mice (Fig. 6E). These

FIGURE 3. Nasal eosinophilia and cytokine production by submandibular lymph node cells following intranasal sensitization and challenge with Cry j 1. Mice were sensitized and challenged by intranasal administration of PBS (A), low-dose Cry j 1 (B), or high-dose Cry j 1 (C) according to the schedule shown in Fig. 1. Sixteen hours after the final challenge, nasal sections were collected, fixed, and decalcified, and eosinophils in the nasal mucosa were detected by Luna stain. D, The numbers of eosinophils in the posterior portion of the nasal septum were determined per high-power (10 × 40) microscopic field. Mean numbers of infiltrating cells per field ± SEM are shown. Sixteen hours after the final challenge, submandibular lymph node cells were isolated and cultured in the absence or presence of Cry j 1 for 72 h. IL-4 (E), IL-5 (F), and IFN-γ (G) were measured by ELISA. Mean concentrations ± SEM are shown. Results are representative of two independent experiments.
results suggest that CRTH2 deficiency affects infiltration of not only eosinophils but also T cells.

To clarify the link between CRTH2 deficiency and the relief of allergic symptoms, we further investigated cytokine production in vitro by cells from submandibular lymph nodes obtained the day after the final Ag challenge. The amount of IL-4 was 5-fold lower in CRTH2−/− mice than in WT mice (Fig. 6F). Additionally, there was a slight reduction in the amount of IL-5 (Fig. 6G) and a slight increase in the amount of INF-γ (Fig. 6I) in the cells from CRTH2−/− mice, but the differences were not significant. On the contrary, the levels of IL-13 were significantly higher in CRTH2−/− mice as compared with WT mice (Fig. 6H).

Additionally, mRNA levels of Th2 cytokines (IL-4, IL-5, and IL-13), Th1 cytokine (IFN-γ), proinflammatory cytokines (IL-1, IL-6 and TNF-α), and eosinophil-chemotactic chemokines (RANTES and eotaxin) in nasal mucosa were determined. The
levels of IL-4 and IL-5 mRNA were significantly lower in CRTH2−/− mice as compared with WT mice, whereas the levels of other cytokines/chemokines were similar between CRTH2−/− and WT mice (Fig. 7). These results suggest that reduced nasal eosinophilia in CRTH2 deficiency is associated with reduced levels of IL-5 but not RANTES or eotaxin in this model. Additionally,

FIGURE 7. Relative amounts of cytokines/chemokines mRNA in nasal mucosa following nasal challenge with Cry j 1 in WT and CRTH2−/− mice. Sixteen hours after the final nasal challenge with Cry j 1, mucosal tissues were removed from nasal septum. Relative amounts of IL-4 (A), IL-5 (B), IL-13 (C), IFN-γ (D), IL-1β (E), IL-6 (F), TNF-α (G), RANTES (H), and eotaxin (I) mRNA were compared between WT and CRTH2−/− mice. Results are the mean amounts of mRNA ± SEM.

FIGURE 8. Effects of ramatroban on murine JCP. Ramatroban (30 mg/kg body weight), suspended in 5% methyl cellulose, was given orally once a day from 1 day before the first sensitization to the final challenge (day 0 to day 28). Control mice were given 5% methyl cellulose alone. After the final intranasal challenge, the frequencies of sneezing (A) and rubbing (B) were counted, and serum levels of Cry j 1-specific IgE (C), IgG1 (D), IgG2a (E), and nasal eosinophil count (F), as well as Cry j 1-induced IL-4 (G), IL-5 (H) and IFN-γ (I) were determined as described in Materials and Methods. Results are expressed as means ± SEM.
it is suggested that CRTH2-mediated pathway may induce pathology without regulating local production of these proinflammatory cytokines.

Outcomes of pollinosis were compared between sensitized/challenged CRTH2 \(^{−/−}\) mice and nonsensitized/single-challenged CRTH2 \(^{+/−}\) mice. The levels of Cry j 1-specific IgE (0.159 \(±\) 0.044 vs 0 \(±\) 0 OD at 450 nm: \(p = 0.003\)), Cry j 1-specific IgG1 (0.638 \(±\) 0.163 vs 0 \(±\) 0 OD at 450 nm: \(p = 0.004\)), nasal eosinophilia (66.4 \(±\) 8.2 vs 6.6 \(±\) 1.1 cells/field: \(p = 0.005\)), and IL-4 production by submandibular lymph node cell (72.8 \(±\) 31.1 vs 6.7 \(±\) 3.8 pg/ml: \(p = 0.004\)) were significantly higher in sensitized and subsequently challenged CRTH2 \(^{−/−}\) mice as compared with nonsensitized and single-challenged CRTH2 \(^{+/−}\) mice. However, the frequencies of sneezing (1.7 \(±\) 0.5 vs 0.6 \(±\) 0.2 times in 10 min: \(p = 0.088\)) and rubbing (12.3 \(±\) 2.6 vs 10.2 \(±\) 3.1 times in 10 min: \(p = 0.516\)) were similar between two groups, suggesting that CRTH2 is particularly essential for the development of nasal symptoms.

Effect of ramatroban on Cry j 1-induced pollinosis

As seen in CRTH2-deficient mice, treatment with ramatroban significantly reduced several indicators of pollinosis including sneezing, Cry j 1-specific IgE production, nasal eosinophilia, and Cry j 1-induced IL-4 production by submandibular lymph node cells as compared with the control treatment (Fig. 8, A, D, and G). Although the differences did not reach to the statistical level, other parameters such as nasal rubbing, Cry j 1-specific IgE production, nasal eosinophilia, and Cry j 1-induced IL-5 production were also reduced by the treatment with ramatroban (Fig. 8, B, C, F, and H).

Discussion

In the present study, we analyzed the pathophysiological effects of nasal exposure to Cry j 1 in BALB/c mice. Mice sensitized with Cry j 1 without adjuvants showed not only allergic symptoms such as sneezing and rubbing but also produced Cry j 1-specific IgE and IgG1 and displayed nasal eosinophilia. Additionally, submandibular lymph node cells isolated from these mice produced IL-4 and IL-5 in recall response to Cry j 1. These results suggest that intranasal sensitization with Cry j 1 induces pollinosis in BALB/c mice.

To investigate the initiation of allergic rhinitis in vivo, administration of Ags via the natural route (i.e., through the nostril) is desirable. In fact, it is known that administration of Ags through different routes results in different degrees of IgE production (27, 28). Also, murine models of allergic rhinitis have been generated by intranasal or aerosol-mediated sensitization (8, 29), but these models generally employ adjuvants such as cholera toxin, which have immunoregulatory effects that may distort the physical sensitivity (30, 31). Therefore, we and others have established murine models of allergic rhinitis by intranasal sensitization with Ags including *Schistosoma mansoni* egg Ag, phospholipase A2 from honeybee venom, extracts of *Aspergillus fumigatus*, OVA, and tri-mellitic anhydride in the absence of adjuvants (5–7, 9, 32). We think that our current model is the first in which murine pollinosis was induced by intranasal sensitization with pollen allergen in the absence of an adjuvant. This model may be useful not only for understanding the pathophysiology of pollinosis but also for developing and/or testing new therapies for allergic rhinitis, especially JCP.

BALB/c mice sensitized with Cry j 1 showed an increase in the expression of CRTH2 mRNA in the nasal septum compared with control mice. This agrees with our recent report demonstrating that the amount of CRTH2 mRNA in nasal mucosa is significantly higher in patients with allergic rhinitis than in control subjects not showing hypertrophy of inferior turbinates (12). These results suggest that the expression of CRTH2 may play a role in the pathogenesis of allergic rhinitis both in humans and in mice. In fact, it is known that the expression of CRTH2 in eosinophils and CD4\(^{+}\) T cells is elevated in atopic patients (33–35). CRTH2 is expressed by eosinophils and a subset of CD3\(^{+}\) T cells in nasal mucosa, especially in patients with allergic rhinitis (23). Because a mAb against murine CRTH2 that can be used for immunohistochemistry is not currently available, we could not investigate the phenotype of cells expressing CRTH2 in mice.

The pathophysiology of allergic rhinitis was clearly impaired in CRTH2 \(^{−/−}\) mice. Following repeated intranasal sensitization and nasal challenge with Cry j 1, CRTH2 \(^{−/−}\) mice displayed reduced nasal symptoms, production of Cry j 1-specific IgE and IgG1, and nasal eosinophilia compared with WT mice. Additionally, submandibular lymph node cells from Cry j 1-sensitized CRTH2 \(^{−/−}\) mice produced significantly less IL-4 and IL-5 in response to Cry j 1 than those from WT mice. We think that the present results are the first demonstration of the in vivo role of CRTH2 in the initiation of Th2 responses in the upper airway.

We also found that Cry j 1-specific IgE and IgG1 but not IgG2a production was impaired in CRTH2 \(^{−/−}\) mice. Ag-specific IgE/ IgG1 and IgG2a production is known to be positively regulated by Th2 and Th1 responses, respectively, in mice (36). Thus, our results indicate that signals mediated by CRTH2 selectively enhance Th2-type Ab production. The decreased production of IL-4 by submandibular lymph node cells from CRTH2 \(^{−/−}\) mice in response to Cry j 1 restimulation supports this result because IL-4 plays a critical role in IgE synthesis in vivo (37). Although whether CRTH2 activation directly leads to IL-4 production in mice remains unclear, recent investigations have demonstrated that PGD\(_{2}\) causes the preferential induction of IL-4 production by Th2 cells in humans by binding to CRTH2 (38, 39). Additionally, our recent report showing that CRTH2 signals up-regulate CD40L in resting human Th2 cells supports our conclusions because the engagement of CD40 by CD40L is also essential for IgE isotype switching (39, 40).

After intranasal sensitization with Cry j 1, CRTH2 \(^{−/−}\) mice developed a weaker eosinophilia than did WT BALB/c mice. This suggests that CRTH2 mediates local eosinophil recruitment in this model, which agrees with reports showing that CRTH2 activation leads to changes in eosinophil shape, chemotaxis, and degranulation in vitro (16, 18, 41). Additionally, recent investigations have revealed that CRTH2 plays a proinflammatory role in eosinophil chemotaxis into inflamed tissue in vivo (11, 12, 21, 24, 42). On the other hand, submandibular lymph node cells from WT and CRTH2 \(^{−/−}\) mice produced similar amount of IL-5 after intranasal sensitization with Cry j 1. It is well known that IL-5 plays a critical role in eosinophilic inflammation, especially in mice (43). Although little is known about whether CRTH2 activation enhances IL-5 production in mice, CRTH2 activation on Th2 cells is known to induce IL-5 production in humans (38, 39). One explanation of why nasal eosinophilia was reduced in CRTH2 \(^{−/−}\) mice irrespective of IL-5 production is that cognate interaction between PGD\(_{2}\) and CRTH2 on eosinophils may have an additive effect on local eosinophil recruitment, primarily due to the action of IL-5. In fact, in a mouse model of asthma, nebulized DK-PGD\(_{2}\), a CRTH2 agonist, exacerbates eosinophilic lung inflammation without changes in IL-5 content in lung (21).

CRTH2 \(^{−/−}\) mice displayed a significantly lower frequency of both sneezing and nasal rubbing after the nasal challenge compared with the WT mice. Several molecules, including IL-5, CD80/CD86, H1, and CD39, have been shown to contribute to these symptoms via different mechanisms (38, 44–46). The present result suggests that activation of CRTH2 is also involved.
in the symptoms of nasal hyperreactivity. In humans, nasal challenge with PGD2 induces a sustained nasal obstruction but not sneezing or rhinorrhea (47). Whether mucin mast cells express CCRTH2 is not well known, and further investigations are needed to determine whether the effect of CCRTH2 on nasal hyperreactivity is due to the control of Th2 responses or to a direct effect on mast cells.

Treatment with ramatroban, a CCRTH2/TP dual antagonist, induced a reduction in several indicators of JCP such as sneezing, Cry j 1-specific IgE1 production, and Cry j 1-induced IL-4 production. It is known that ramatroban suppresses allergic responses including nasal signs both in vivo and in vitro (11, 24, 46, 48). For example, ramatroban significantly inhibited sneezing and nasal rubbing induced by Ag in actively sensitized C57BL/6 mice and guinea pigs (46, 48). Our present results are consistent with these reports and support the findings seen in CCRTH2−/− mice that suggest a proinflammatory role of CCRTH2 in allergic rhinitis. On the other hand, treatment with ramatroban was less effective than CCRTH2 deficiency in all parameters of investigation. One of the possible reasons is that ramatroban antagonizes not only CCRTH2 but also TP. Since it is not fully elucidated whether signals through TP, especially in mice, are proinflammatory or antiinflammatory in allergic rhinitis, simultaneous blockage with TP may affect changes of the outcomes induced by CCRTH2 antagonism.

In conclusion, we developed a novel model of murine allergic rhinitis that mimics pollinosis. Additionally, we found that CCRTH2 plays an essential role in the initiation of allergic rhinitis in mice. These results suggest that this murine model will be useful for elucidating the pathophysiology of allergic rhinitis, especially JCP. These observations may provide a basis for developing therapeutic approaches for managing allergic rhinitis, specifically by inhibiting PGD2-CCRTH2 interactions in the nose of individuals with allergic rhinitis.

Acknowledgments
The authors thank Yuko Okano for her editorial assistance, and Ryohi Oya and Fumika Uno for their technical assistance in immunohistochemistry.

Disclosures
The authors have no financial conflicts of interest.

References

