Nonhuman Primate IgA: Genetic Heterogeneity and Interactions with CD89

Kenneth A. Rogers, Lakshmi Jayashankar, Franco Scinicariello and Roberta Attanasio

J Immunol 2008; 180:4816-4824; doi: 10.4049/jimmunol.180.7.4816

http://www.jimmunol.org/content/180/7/4816

References
This article cites 56 articles, 21 of which you can access for free at:
http://www.jimmunol.org/content/180/7/4816.full#ref-list-1

Subscription
Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Nonhuman Primate IgA: Genetic Heterogeneity and Interactions with CD891,2

Kenneth A. Rogers,* Lakshmi Jayashankar,* Franco Scinicariello,† and Roberta Attanasio3*

Nonhuman primates are extremely valuable animal models for a variety of human diseases. However, it is now becoming evident that these models, although widely used, are still uncharacterized. The major role that nonhuman primate species play in AIDS research as well as in the testing of Ab-based therapeutics requires the full characterization of structure and function of their Ab molecules. IgA is the Ab class most involved in protection at mucosal surfaces. By binding to its specific Fc receptor CD89, IgA plays additional and poorly understood roles in immunity. Therefore, Ig heavy α (IGHA) constant (C) genes were cloned and sequenced in four different species (rhesus macaques, pig-tailed macaques, baboons, and sooty mangabeys). Sequence analysis confirmed the high degree of intraspecies polymorphism present in nonhuman primates. Individual animals were either homozygous or heterozygous for IGHα genes. Highly variable hinge regions were shared by animals of different geographic origins and were present in different combinations in heterozygous animals. Therefore, it appears that although highly heterogeneous, hinge sequences are present only in limited numbers in various nonhuman primate populations. A macaque recombinant IgA molecule was generated and used to assess its interaction with a recombinant macaque CD89. Macaque CD89 was able to bind its native ligand as well as human IgA1 and IgA2. Presence of Ag enhanced macaque IgA binding and blocking of macaque CD89 N-glycosylation reduced CD89 expression. Together, our results suggest that, despite the presence of IgA polymorphism, nonhuman primates appear suitable for studies that involve the IgA/CD89 system. The Journal of Immunology, 2008, 180: 4816–4824.
also polymorphic. The high levels of polymorphism found in the sus macaques have not been described in humans, although it appears that IgA may be polymorphic in mice, pigs, and other primates (22, 23, 27, 28).

We recently demonstrated that the IgG/CD16 system differs between NHPs and humans. Recombinant NHP CD16 binds to human IgG subclasses different from those bound by human CD16, despite a nearly complete conservation of residues known to be involved in ligand binding (8). Because of its major role in mucosal and systemic immunity, and because of the possible therapeutic potential in modulating the IgA/CD89 interactions (29), IgA is an Ab class that requires full characterization in NHP species. Humanized IgA-based therapeutics should be tested in these species only if their ability to interact with NHP CD89 is ascertained.

In this study, we report the cloning and complete sequence characterization of IGHA genes from either Asian or African NHP species, i.e., rhesus macaques (Macaca mulatta) of Chinese origin, pig-tailed macaques (Macaca nemestrina), baboons (Papio hamadryas anubis), and sooty mangabeys (Cercocebus torquatus atys). IGHA genes from Indian rhesus macaques as well as two IGHA genes from sooty mangabeys have been previously described (25, 26). Because it is logical to speculate that this high sequence variability may result in different functional properties, we have developed a system for the generation of macaque recombinant IgA molecules and used a macaque recombinant IgA molecule to assess the IgA/CD89 interaction in this NHP species.

Materials and Methods

Blood samples and RNA Extraction

Blood samples from rhesus macaques of Chinese origin, pig-tailed macaques, baboons, and sooty mangabeys were obtained from the Yerkes National Primate Research Center (Emory University, Atlanta, GA) and the Southwest Foundation for Biomedical Research (San Antonio, TX). Total RNA was extracted from whole blood using the QiAmp RNA blood mini kit (Qiagen). The animals were designated according to the standardized abbreviation rules of IMGT (the international ImMunoGeneTics) information system (30) as Papycana (baboons), Macmul (rhesus macaques), Macen (pig-tailed macaques), and Cerortay (sooty mangabeys). Animal blood was collected under approval of the appropriate institutional review committees.

Amplification of IGHA constant region from total RNA

After reverse transcription of total RNA into cDNA using oligo(dT) primers followed by primer extension with the AMV reverse transcriptase (Roche Diagnostic Corp), the full length IGHA cDNA was amplified by PCR using the forward primer IgA10 (5′-ATGGATCCATGGGCATCCTGCTGTTAACCGTTAGGGT-3′) and PcSa (5′-ACTTTGTCGACGCTCAGCGGCCTGCTGTTAACCGTTAGGGT-3′) corresponding to CH3 codons 132 to 148 and stop solution. Absorbance was measured at 405 nm using an automated microplate reader (Bio-Rad).

Cloning of amplified sequences

Cloning, screening, sequencing, and sequence analysis of amplified gene sequences was performed as previously described (32), except that DNA sequences were determined using an ABI model 3100 automated sequencer (PerkinElmer). All sequences were obtained two times from two independent RT-PCR. IGHA sequences were aligned with the published human and Indian rhesus macaques IGHA genes using the CLUSTAL function of the Megalign part of the Lasergene software package (DNASTAR Inc). The IMGT standardized nomenclature and numbering have been used to show and discuss IGHA data (31).

Production of recombinant IgA with a rhesus IGHA

Recombinant IgA was generated by transfection of an Ig IgH expression vector containing a variable heavy domain with affinity for hapten 5-hydroxy-3-nitrophenacyl (VHNIP) and IGHA cDNA of a rhesus macaque of Chinese origin (GEDI accession number AY294614). The Ig H chain expression vector was engineered from pLNOH2 (provided by Drs. Lars Norderhaug and Inger Sandlie, University of Oslo and Ab Design AS, Nesoddtangen, Norway) in a system for the generation of macaque recombinant IgA molecules from sooty mangabeys have been previously developed (33).

To construct the IgA H chain expression vector, both VHNIP and human IGHA genes were removed from pLNOH2 by digestion at BamHI and BanH restriction sites and replaced by ligation with a similarly digested cassette containing the VHNIP cDNA and IGHA cDNA. Production of the cassette was done by separate PCR amplification of the VHNIP and IGHA cDNAs followed by the joining of the two overlapping products by a third PCR amplification. The VHNIP gene was amplified from pLNOH2 using primer VHNIPHHF (5′-GACCTTGCGGGGCTGGGAGGAGCTGAGCTGAGCTGAA-3′) and VHNIPHHR (5′-GACCTTGGGGCGGAGCTGAGCTGAGCTGAA-3′). Primers FVH3RW and FCAF correspond to 6 codons of the J-REGION and to CH1 codons 1.4 to 1.1, 1 to 4. Primer FVH3RW corresponds to CH3 codons 132 to 148 and stop codon. The final cassette was produced in a PCR containing the VHNIP and IGHA fragments using primers FVH5FW and FVH5FR. PCR conditions for all the reactions were the same as described above except that the annealing temperature was 56°C.

The complete expression vector was introduced into Escherichia coli. After verifying the vector sequence, a clone was expanded and vector prepared with an EndoFree plasmid maxi kit (Qiagen).

J558L cells (a gift from Dr. S. L. Morrison, UCLA) do not produce a mouse Ig as a result of a spontaneous loss of the Ig H chain from their parental cell line J558 (34), but continue to secrete an Ig A 1 chain, which when combined with V H chain forms Abs with affinity for 5-hydroxy-3-nitrophenacyl (NIP). Twenty micrograms of expression vector DNA was electroporated into 1 × 107 J558L cells resuspended in ice-cold PBS by pulsing once with 300 V using an Electroporator II (Invitrogen) with its settings at 1000 μF and infinite resistance. Following 10 min of incubation on ice, cells were grown in IMDM with penicillin (100 IU/ml), streptomycin (100 μg/ml), and 10% FCS at 37°C with 5% CO2. At 72 h post-transfection, G418 (Invitrogen) was added to the growth medium at 400 μg/ml for selection of stable transfectants. Transfection with pLNOH2 was used as a positive control for Ab production.

Detection of Ig λ (IGL) and complete recombinant IgA from J558L cell supernatants

Production of Ig λ (IGL) L chain and complete recombinant IgA from J558L cell supernatants was determined by capture ELISAs. Microtiter plates were coated with goat anti-mouse Ig λ Ab (Invitrogen) at 4 and 8 μg/ml or with NIP-BSA at 15 μg/ml in 1× coating buffer (KPL). After incubation at 4°C overnight, the plate was blocked with 5% FCS diluted in PBS at 37°C for 30 min. After washing, samples were added. For Ig λ assays, tissue culture supernatant from untransfected J558L cells, purified mouse myeloma IgG1 with a λ-chain (Sigma-Aldrich) (positive control), or 5% FCS in either culture media, or PBS (negative control) was added and incubated at 37°C for 1 h. For the IgA assays, supernatants from the transfections of untransfected J558L cells or the supernatants from J558L cells transfected with the expression vector were used. After washing, HRP-labeled secondary Abs were added. Anti-mouse Ig λ (Invitrogen) was used to detect Ig λ and IgA. In addition, for IgA assays, anti-human Ig α was added (KPL). Plates were incubated for 1 h at 37°C washed and developed by addition of ABTS/H2O2 followed by addition of stop solution. Absorbance was measured at 405 nm using an automated Benchmark microplate reader (Bio-Rad).

Generation of HeLa cell clones expressing recombinant rhesus macaque CD89

Clones of HeLa cells expressing rhesus macaque CD89 were generated. First, rhesus macaque CD89 cDNA was inserted into pcDNA3.1 (Invitrogen) by methods previously described (35). From the resulting vector a product containing the CDNA of rhesus macaque CD89, a cytokemoglobin promoter and a bovine growth hormone polyadenylation signal was amplified using PCR primers PpHp (5′-CTCTGTGTTAAACCTTAGGTTAGCCTGTTTTGCG-3′) and PpSt (5′-ACTTTTGCGGCGCTTACGCCG-3′) by methods previously described (35). After digestion with HpaI and Sall, the resulting fragment was ligated into HpaI and XhoI digested pLXSN (Clontech Laboratories) to create an expression vector.
with long-terminal repeats that allow for stable integration into host chromosomes. Twenty micrograms of vector was electroporated into 250 μl of HeLa cells suspended in DMEM at 14 × 10⁶ cells/ml by the methods described above. Cells were culled serially into 96-well microtiter plates and grown in 100 μl of DMEM (containing 10% FCS and consisting of 50% fresh medium and 50% 0.2 μm filtered HeLa cell-conditioned media) with 400 μg/ml G418. Wells with single cells were identified by microscopy and the clones subsequently expanded. Flow cytometric analysis was used to identify clones expressing CD89. In brief, adherent cells were removed from flasks with 0.25% trypsin/EDTA. Aliquots of 0.5 × 10⁶ cells were stained with 5 μl of anti-human CD89 PE (clone A59) or a mouse isotype control (BD Biosciences) for 30 min at 4°C, washed three times with PBS to remove unbound Ab, and suspended in 1% paraformaldehyde. Fluorescent cells were counted on a FACS Calibur machine and analyzed with CellQuest software (BD Biosciences).

Determination of recombinant IgA binding to CD89

Binding of recombinant IgA to CD89 was assessed by flow cytometry using Abs that were heat aggregated at 63°C for 1 h. IgA1, IgA2, IgG, and IgM (human myeloma proteins; Binding Site Ltd.) with Igκ light chains were added to 0.5 × 10⁶ cells at 20 μg/ml and incubated for 1 h at 4°C. PBS washed cells were then stained with 5 μl of either FITC-conjugated mouse anti-human Igκ (Invitrogen), FITC-conjugated mouse anti-human IgG (KPL, Inc.) or FITC-conjugated mouse isotype control (BD Biosciences) for 30 min at 4°C. For some experiments, mouse anti-human CD89 PE was also added. Cells were washed and analyzed by flow cytometry as described above. For N-glycosylation blocking experiments, tunicamycin was added to half of the cell cultures at 1 μg/ml 30 min before harvesting cells. Experiments to determine binding of recombinant rhesus macaque IgA were performed as variations of the above protocol. Supernatants from H9262 cells were first mixed with NIP (5) BSA (15 μg/ml final concentration) and incubated for 2 h at 37°C. Supernatants were then incubated with cells as described above. Finally, cells were washed with PBS, stained with 20 μl of goat anti-mouse Igκ FITC and 5 μl of anti-human CD89 PE for 20 min at 4°C, washed three times with PBS, and fixed with 1% paraformaldehyde.

Results

Sequencing of NHP IGHA

IGHA sequences were obtained from three pig-tailed macaques, four baboons, and three sooty mangabeys. The alignment of these sequences with the three human IgA sequences, as well as previously described NHP sequences (25, 26) are shown in Fig. 1. Animals were presumed homozygous for IGHA when all ten or more clones were determined to have the same sequence. Four unique IGHA gene sequences were identified in the pig-tailed macaques, with one monkey homozygous and two heterozygous. The sequence from the homozygous pig-tailed macaque was also found in one of the heterozygous pig-tailed macaques. Four sequences were present within the four baboons. Two baboons were homozygous and two heterozygous, each having one unique sequence and one in common with a homozygous baboon. Five different gene sequences were present in the three sooty mangabeys. One of these sequences was identical with the one previously reported by us (26).

The baboon IGHA allelic sequences exhibit 83% amino acid identity to the corresponding human IGHA1 sequence (18). They share 91.2–94.8% identity with the corresponding rhesus macaque IGHA alleles, 91.8–96.0% with the corresponding pig-tailed macaques IGHA alleles and 90.6–95.4% with the mangabey counterparts. Among the rhesus macaque species, IGHA alleles exhibit 81.2–83.7% amino acid identity to human IGHA1. They share 91.0–98.8% sequence identity with the corresponding pig-tailed macaque IGHA alleles and 90–96% sequence identity with the mangabey counterparts. An 81.8–84.4% sequence identity exists between pig-tailed macaque IGHA alleles when compared with the human IGHA1 and they share 90.3–96.4% sequence identity with the mangabey IGHA alleles. Sequence identity between mangabey IGHA alleles and the human counterparts is 82.3–83.9%.

The human (Homsap) CH1 exon of IGHA1 is composed of 306 nucleotides, encoding 102 aa (18). In the baboons, the IGHA alleles have a deletion of glycine at position 17 resulting in a CH1 domain of 101 amino acids. A similar deletion at position 17 is present in rhesus macaques (Macmul) of both Chinese and Indian origin. In addition, animal Macmul B had a deletion at position 124, resulting in a domain of 100 aa. The mangabey (Certoraty) CH1 domain encodes 101 aa with deletion at either position 17 or 124, whereas the pig-tailed macaque (Macnem) CH1 exon encodes either 101 or 100 aa depending on the presence of deletions at either one or two positions (17 and 124).

In humans, the second exon of the IGHA genes encode hinge regions that differ in length (19 aa for IGHA1 and 6 aa for IGHA2), and a CH2 domain of 101 aa. In the NHPs analyzed in this study, the hinge regions consist of 8–13 aa, whereas the CH2 domains exhibit highly conserved sequences and are all 101 aa long. Fig. 2 shows the IGHA hinge amino acid sequences from the various NHPs included in this study. Clearly, a high degree of heterogeneity characterizes the hinge region of these Ab molecules. Two different IGHA hinge sequences were identified in several animals, whereas some others exhibited only one hinge sequence. Interestingly, hinge region sequences present in some NHPs were also present in others, although in combination with different alleles. Hinge sequences from 3 baboon IGHA alleles (Papcyzanu A.I, C.II, and D.I) were also observed in two mangabey IGHA alleles (Certoraty B.II and C.II). Similarly, Chinese and Indian rhesus macaque sequence shares some hinge sequences with each other and also with pig-tailed macaques. In humans, IgA1 proteases cleave proline-serine and proline-threonine bonds in the hinge region, but not at all positions (36). Only two or three of these bonds can be identified in the NHP hinge sequences, specifically one in a sequence from a rhesus macaque and potentially two in a sequence from a pig-tailed macaque (Fig. 2). Similar bonds are present in two other hinge sequences (that shared by a mangabey and a baboon as well as that shared by a rhesus macaque and a pig-tailed macaque). These bonds align with a similar bond found in human IgA1, which is not cut. The arginine-glycine (RG) bond found in the hinge sequence shared between a baboon and a mangabey is another possible cleavage site. This corresponds to a proline-valine bond found in humans and cut by a Clostridium ramosum IgA protease. The same substitutions (RG) are also present in IgA1 from chimpanzee, which is cut (36). Possibly the position itself could be important, but a human IgA2m (2) is also cut here despite a truncated hinge (37). IgA cleavage sites must be presented to bacterial proteases in the context of the larger IgA molecule for efficient digestion. No cleavage is observed when the human IgA1 hinge is replaced by that of IgG2. By contrast, cleavage is observed when the IgA1 has its hinge replaced with that of IgA2 (37). Therefore, the various NHP IgA molecules should be individually examined for resistance/susceptibility to bacterial proteases.

In humans, conserved cysteines are located in IgA CH2 at positions 1.2 and 1.1 in the IMGT unique numbering for C-DOMAIN (31). At least one of these cysteines is conserved at the same position in all the NHP hinge regions, although in more than half of the sequence, one of these is substituted. Specifically, the cysteines were replaced with serine at position 1.2 in three mangabey alleles (Certoraty A.II, B.II, and C.I) and by aspartate at position 1.1 in baboons (Papcyzanu B.I and C.II), rhesus macaques (Macmul A.I, A.II, B.II, C.II, D.I, D.II, F.I, and G.I), pig-tailed macaques (Macnem A.I and C.II) and mangabeys (Certoraty A.I, B.I, C.II, and D.I).

The human CH3 domain consists of 131 aa. Very high similarities exist between human, baboon, rhesus macaques, pig-tailed...
macaques, and mangabey CH3 exons (Fig. 1). The length of the NHP CH3 domain was not confirmed by our sequences, which lack the last ten amino acid residues. However, through analysis of the rhesus macaque genome, a full-length \textit{IGHA} gene was identified within a contig (accession number NW0011220011). The encoded gene product (Fig. 1, Macmul F.I) has a CH3 domain consisting of 131 aa.

Sequence analysis of all the NHP \textit{IGHA} allelic variants shows that the residues in the CH2 and CH3 domains involved in Fcα/FcαRI interactions (15) are conserved with the exception of a serine at position 46 and a glutamate at position 48 (positions 45 and 45.2 in the IMGT unique numbering, respectively) in CH3, which are substituted by threonine and glutamine, respectively.

FIGURE 1. Alignment of human (Homsap), rhesus macaque (Macmul), pig-tailed macaque (Macnem), sooty mangabey (Ceroraty), and baboon (Papcyanu) IGHA-derived amino acid sequences. GEDI Accession numbers are given in parentheses. Homsap IGHA1, \textit{Homo sapiens} IGHA1; Homsap IGHA1 A2m1 and Homsap IGHA2 A2m2, \textit{Homo sapiens} IGHA2 coding the A2m1 and A2m2 allotypes, respectively (18, 56, 57). Macmul A-G represent sequences from individual rhesus macaques designated as A-G (GEDI accession numbers AY039245-AY03952, AY294614-AY2946615). Similar alphabetical designations are given for individual animals from other NHP species. I and II refer to distinct alleles within a single animal. Macmul G.I is derived from a reported contig of the rhesus macaque genome project. Rhesus macaques E and F are of Chinese origin; all others are of Indian origin. Some alleles within individual animals are identical with those found in others of the same species at the amino acid level (Macmul A.II and D.I; Macmul C.II and D.II; Macnem A.I and C.I; Macnem B.I and C.I; Certoraty A1*2 and B.II; Papcyanu A.I and D.I; Papcyanu B.I and C.II). The remaining GEDI accession numbers are as follows: human (J00220, J00221, M60192), pig-tailed macaque (DQ868438-DQ868441), sooty mangabey (AY544580-AY544581, DQ868431-DQ868433, and DQ868442-DQ868443), and baboon (DQ868434-DQ868437). Absent amino acids are indicated by dots and residues matching Homsap IGHA1 are indicated by dashes.
Generation of recombinant IgA with a rhesus macaque Fc region

To evaluate expression and function of NHP IgA, a chimeric Ab with specificity for the hapten NIP and with rhesus macaque IGH A region was generated. This was done by constructing a vector for expression of a rhesus macaque IgA chain with a murine NIP-specific variable domain. Transfection of this vector into J558L cells, which produce a murine NIP-specific IgA L chain, resulted in the production of IgA. Expression of the fully formed chimeric IgA molecules was determined from cell supernatants by ELISA using NIP coupled to BSA-coated microtiter plates and either anti-rhesus IgA or anti-murine IgA secondary Ab (Fig. 3).

Rhesus macaque IgA binds to recombinant rhesus CD89 expressed on HeLa cells

In humans, IgA/Ag complexes can initiate a variety of cellular immune responses by binding and cross-linking CD89 expressed on cells of the myeloid lineage. We have previously identified CD89 in cynomolgus and rhesus macaques (34). To assess rhesus macaque IgA interactions with CD89, stable HeLa cell clones expressing high levels of recombinant rhesus macaque CD89 were generated. CD89 presence on these clones was verified by positive staining with anti-human CD89 (data not shown). Expression was specific, because neither clones incubated with an isotype control nor untransfected HeLa cells incubated with anti-human CD89 stained positive. When recombinant rhesus macaque IgA binding was tested in the presence of the Ag NIP (5) BSA, cells expressing CD89 stained positive for bound IgA with an intensity similar to that of human CD89 (data not shown). This required the Ag for the interaction of rhesus macaque IgA with CD89 was assessed using a similar assay in which the supernatant was pre-incubated with different concentration of Ag. Rhesus macaque IgA was able to bind CD89 in the absence of Ag.
(27.6 MFI versus control supernatant 22.4 ± 1.8), although this binding was enhanced by the presence of Ag (31.6 and 31.3 MFI for Ag at 1.88 and 7.5 µg/ml, respectively, it was reduced in the presence of excess Ag (26.6 MFI for 15 µg/ml Ag). Macaque CD89 was also capable of binding to heat-aggregated human IgA1 and IgA2, but not to human IgM (Fig. 5) of IgG. As shown for rhesus macaque IgA, human IgA bound in proportion to the amount of CD89 expressed on cells.

Fc receptor glycans have been shown to be important for receptor expression and Ig Fc binding (38). The effects of blocking N-glycosylation with tunicamycin on rhesus CD89 expression and binding properties were examined, because rhesus macaque CD89 has N-glycosylation motifs conserved with sites in human CD89 occupied by N-glycans (Fig. 5). Expression of CD89 was dramatically reduced in cells treated with tunicamycin (57–73% reduction) with a disproportionately greater decrease in ability to bind to human IgA1 and IgA2 (84–95%).

Discussion

Despite the wide use of NHP species as animal models for a variety of human diseases as well as for vaccine development and Ab-based therapeutics, NHP Ab molecules and corresponding receptors are still uncharacterized. NHP species are especially used in AIDS research, which includes studies that require the assessment of IgA responses because of the role that the mucosal immune system plays in HIV entry and establishment of infection and because of the potential development of HIV mucosal vaccines (39). Exceptionally high levels of IGHA hinge region polymorphism are known to be present in many NHP species. Previously, we have demonstrated that, in addition to the hinge region, the entire IGHA genes of rhesus macaques of Indian origin are highly polymorphic. Therefore, we expanded our previous studies to include all exons from IGHA genes from two Asian species.

FIGURE 4. Rhesus IgA binds to rhesus macaque CD89. HeLa cells expressing recombinant rhesus macaque CD89 were incubated with supernatant of J588L cells expressing recombinant rhesus IgA (containing a mouse Ig λ) or control supernatant and stained with anti-mouse Ig A FITC and anti-human CD89 PE. A, Histogram plot of HeLa cells expressing CD89 incubated with rhesus macaque IgA (filled), or control supernatant (dashed line), and untransfected control HeLa cells incubated with IgA (thick line). Two-color dot plots (C) HeLa cells with IgA supernatant, (D) and (D) HeLa cells expressing CD89 with control supernatant and IgA supernatant, respectively.

FIGURE 5. Recombinant rhesus macaque CD89 binds to heat-aggregated human myeloma IgA1 and IgA2; however, blocking N-glycosylation reduces expression of recombinant rhesus macaque CD89 and decreases in binding of human IgA1 and IgA2. Cells were stained with anti-human CD89 PE and anti-human Ig α FITC. Some HeLa cells were treated with tunicamycin to inhibit the N-glycosylation pathway; 10,000 cells were counted for each assay. Transfected with gene for rhesus CD89 HeLa cells; transfected HeLa cells with N-glycosylation blocked; control untransfected HeLa cells.
pressed on systemic myeloid lineage cells and subsequent release by causing immune activation through cross-linking of CD89 ex- or alternatively, following breaching of the gut barrier, IgA-opsonels of intact IgA. Intact IgA can potentially control gut microbes, different susceptibility to the action of proteases and different lev- NHP species could result in presence of different cleavage sites, minimize immune activation. The high extent of hinge variability in molecules to proteolysis, NHP and human IgAs may differ with sequences are responsible for the differential susceptibility of Ab alleles may provide different degrees of protection against different pathogens.

As mentioned, many effector functions mediated by IgA mole- cules are triggered by interaction of their Fc region with Fc α receptors (FcoR1). Fc α is a two-fold symmetric dimer of CH2 and CH3 of IgA H chains (37). Critical IgA residues in FcoR1 (CD89) interactions, although located in CH2 and CH3 domains, lie close enough for the FcoR1 domain to readily interact with both (15). In human IgA the binding remains relatively unaffected by amino acid substitutions of the hinge region (15), probably because CD89 binds to the CH2/CH3 interface. Sequence analysis of all the NHP IGHA allelic variants showed that the residues involved in the IgA/CD89 interactions are conserved with the exception of serine at position 45 and glutamate at position 45.2 in CH3 in the IMGT unique numbering (31). Specifically, S45 and E45.2 in all the NHPs studied were substituted by threonine and glutamine, respectively. Although these amino acid changes result in no major change in the hydrophilic/hydro- phobic profile, the charge nature of the residue at position 45.2 is changed. The human IgA/CD89 interface is composed of a central hydrophobic core flanked by charged residues, one being gluta- mate at position 45.2 (48). Interestingly, mutational studies involv- ing removal of the charged nature of glutamate at position 12 and aspartate at position 13 in CH2 (adjacent to the AB/helix loop) and glutamate at position 109 in CH3 (in the FG loop) appear to have little effect on the ability of the Abs to interact with CD89 (49). Similarly, the substitution of charged glutamate to neutral gluta- mine at position 45.2 in NHPs does not appear to disrupt this
interaction, because recombinant macaque CD89 binds to macaque IgA as well as to both human IgA isotypes.

Previously we have shown that macaque CD89 is highly homologous to its human counterpart, and that macaque and human CD89 share a common expression pattern on different cell types (35). Here, we show that macaque CD89 is able to bind to its native ligand as well as to both human IgA1 and IgA2. Furthermore, we show that macaque IgA binding is enhanced in the presence of the Ag (NIP (5) BSA). Interestingly, blocking of macaque CD89 N-glycosylation reduced CD89 expression and possibly the ability of the residual CD89 to bind IgA. It will be interesting to determine whether or not similar effects characterize the IgA/CD89 interaction in humans. Indeed, NHPs might represent the only valid model to study this interaction, as mice, the preferred immunological model, lack CD89 (50). In addition, studies focusing on modeling the role of CD89 in IgA nephropathy, including those using mice transgenic for human CD89, have given conflicting results (51–53).

Clearly, to select a specific NHP model for each experimental protocol, it is necessary to confirm and fully understand the extent of the variations existing between them. Selecting or breeding animals that are well characterized and as homogenous as possible in order to minimize these variations will improve these models. Indeed, rhesus animals that are well characterized and as homogenous as possible in the variations existing between them. Selecting or breeding animals that are well characterized and as homogenous as possible in order to minimize these variations will improve these models. Indeed, rhesus animals that are well characterized and as homogenous as possible in order to minimize these variations will improve these models. Indeed, rhesus animals that are well characterized and as homogenous as possible in order to minimize these variations will improve these models.
39. Letvin, N. L. 2006. Progress and obstacles in the development of an AIDS vac-

40. Joag, S. V., R. J. Adams, L. Foresman, D. Galbreath, M. C. Zink, D. M. Pinson,
and Indian rhesus macaques: effects of splenectomy on virus burden. Virology
200: 436–446.

41. Ling, B., R. S. Veezey, A. Luckay, C. Penedo, K. Xu, J. D. Lifson, and
P. A. Marx. 2002. SIV(mac) pathogenesis in rhesus macaques: effects of

variation in SIV disease progression between Chinese and Indian subspecies of

Titration of a SIVmac251 stock by vaginal inoculation of Indian and Chinese
origin rhesus macaques: transmission efficiency, viral loads, and antibody re-

Z. Kazaz, E. Bornstein, O. Lambotte, D. Altman, B. R. Blazar, B. Rodriguez,
L. Teixeira-Lojohston-A, L. Landay, J. N. Martin, F. M. Hecht, L. A. Picker,
M. M. Loderman, S. G. Deeks, and D. C. Douek. 2006. Microbial translocation is
12: 1365–1371.

immune responses from the crystal structures of human FcαRI and its com-

charge matching in the interaction of human immunoglobulin A with the immu-
noglobulin A Fc receptor (FcαRI) CD89. Immunology 109: 331–335.

48. Villinger, F., T. M. Folks, S. Lauro, J. D. Powell, J. B. Sundstrom, A. Mayne, and
A. A. Ansari. 1996. Immunological and virological studies of natural SIV infec-

MHC class I alleles influence set-point viral load and survival time in simian

gene allotype determination by restriction fragment length polymorphism. Nu-
cleic Acids Res. 12: 1303–1311.

of the CH1 and hinge-CH2 exons of the human immunoglobulin IGHA2 A2m(2)
allele: comparison with the nonallelic and allelic IGHA genes. Cytogenet. Cell
Genet. 56: 128.