Cutting Edge: Programmed Death-1 Expression Is Increased on Immunocytes in Chronic Hepatitis C Virus and Predicts Failure of Response to Antiviral Therapy: Race-Dependent Differences

Lucy Golden-Mason, Jared Klarquist, Abdus S. Wahed and Hugo R. Rosen

J Immunol 2008; 180:3637-3641; doi: 10.4049/jimmunol.180.6.3637

http://www.jimmunol.org/content/180/6/3637

References
This article cites 24 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/180/6/3637.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Up-regulation of programmed death-1 (PD-1) identifies exhausted T cells in various mouse and human viral models including chronic hepatitis C virus (HCV) infection, which is characterized by impaired CTL function. A large proportion of patients fail to eradicate HCV with current IFN-based antiviral therapy; in particular, African Americans are less likely to respond, but the mechanisms for these differences are not fully elucidated. In this study, in 72 treatment-naive patients with persistent HCV we found that PD-1 was significantly up-regulated on CD4+ and CD8+ T cells, HCV-specific CTLs, and NK cells. Increased PD-1 on HCV-specific CTLs was significantly associated with failed early and sustained virologic response to therapy in African American but not Caucasian American patients. Patients with sustained virologic response showed decreases in PD-1 on total CD4+ and CD8+ T cells, HCV-specific CTLs, and the CD56bright NK subset after therapy completion. Collectively, these data indicate that PD-1 is critical in persistent HCV and successful therapy results in global down-regulation of its expression. The Journal of Immunology, 2008, 180: 3637–3641.

Most individuals exposed to hepatitis C virus (HCV) develop viral persistence. HCV subverts the host immune response at multiple levels (1, 2), including impairment of the proliferative, cytokine-secreting, and cytotoxic effector functions of HCV-specific T cells. Recent evidence (3-6) from other viral infections in humans and mice indicates a critical role for programmed death-1 (PD-1), a CD28 homologue and costimulatory molecule (7, 8) that inhibits T cell functions by recruiting intracellular Src homology region 2 domain-containing phosphatase (SHP)-1 and SHP-2, deactivating downstream signal transducers (9). In these models, PD-1 demarcates functionally exhausted CTLs. Accordingly, chronic HCV infection is characterized by the marked up-regulation of PD-1 on HCV-specific CTLs. Accordingly, chronic HCV infection is characterized by the marked up-regulation of PD-1 on HCV-specific CTLs. Consequently, the interaction of PD-1 with its ligand(s) significantly enhances the effector function of HCV-specific CTLs, even in those individuals lacking CD4+ T cell help (10).

Based on early experimental evidence (14) and mathematical models (15) suggesting a central role for cytotoxic lymphocytes in mediating viral clearance, we hypothesized that the pretreatment PD-1 expression might be associated with the virologic response to combination therapy. Moreover, based on our findings in patients with spontaneous HCV recovery (10), we hypothesized that successful therapy would down-regulate the expression of PD-1. A subset of 72 treatment-naive patients was selected from the Viral Resistance to Antiviral Therapy in Hepatitis C (Virahep-C) study cohort of 401 patients with chronic HCV genotype 1 infection based on their expression of relevant HLA alleles. We used multiparametric flow cytometry to characterize PD-1 on T and NK cells before and after therapy with combination pegylated interferon (peginterferon) and ribavirin.

Materials and Methods

Subjects

The average age of the 72 patients was 46.8 years, 63.9% were male, 30 were African Americans (AA), 42 were Caucasian Americans (CA), and 43.1%

1 This work is supported by RO1 DK071560 (to H.R.R.). This study was funded as a cooperative agreement by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the Intramural Research Program of the National Cancer Institute (NCI) with further support under a Cooperative Research and Development Agreement (CRADA) with Roche Laboratories Inc. A complete listing of participants in the Virahep-C study is given in Ref. 16. Grant numbers are U01 DK60329, U01 DK60340, U01 DK60346, U01 DK60349, and U01 DK60341.

2 This work was done on behalf of the Virahep-C Study Group.

3 Address correspondence and reprint requests to Dr. Hugo R. Rosen, Division of GI/Hepatology B-158, Academic Office Building 1, 12631 East 17th Avenue, Room 7614, P.O. Box 6511, Aurora, CO 80045. E-mail address: Hugo.Rosen@UCHSC.edu

4 Abbreviations used in this paper: HCV, hepatitis C virus; AA, African American; CA, Caucasian American; CI, confidence interval; NT, natural T cell; PD-1, programmed death-1; RR, risk ratio; SHP, Src homology region 2 domain-containing phosphatase; SVR, sustained virologic response (defined by lack of detectable serum HCV RNA at least 6 mo after cessation of antiviral therapy); Virahep-C, viral resistance to antiviral therapy in hepatitis C.
expressed sustained virologic response (SVR). The Virahep-C study design, including treatment course and response definitions, has been detailed previously (16).

Results and Discussion

Comparison of total CD4\(^+\) and CD8\(^+\) T cell subsets revealed that PD-1 expression was >2-fold higher on CD8\(^+\) than on CD4\(^+\) T cells. Moreover, HCV-infected subjects had significantly higher PD-1 expression on both T cell subsets compared with normal subjects (Fig. 1). Because only a minority of T cells are HCV specific, these data indicate that chronic HCV infection has a global effect on PD-1 expression. In contrast to the restricted expression of other CD28 family members to T cells, PD-1 is up-regulated on NK, NT, CD4, CD8, and HCV-specific CTLs and according to HCV infection. PD-1 is up-regulated on total CD4\(^+\) and CD8\(^+\) T cells in patients with chronic infection compared with normal subjects. Each dot represents the percentage of PD-1 expression for an individual subject (except for HCV-specific responses where the subjects had multiple pentamer responses assessed). Seventy-two patients with chronic HCV genotype 1 infection and 17 or 22 healthy controls (depending on cell type) were studied. Relative to CD4\(^+\) T cells, CD8\(^+\) T cells expressed significantly higher levels of PD-1. PD-1 expression (percentage of total) in chronic HCV infection varies significantly according to lymphocyte type. Among healthy subjects, PD-1 expression is statistically equivalent between CD56\(^{bright}\) and CD56\(^{dim}\) NKs. However, in patients with chronic HCV infection, CD56\(^{bright}\) NK cells express higher levels of PD-1 (p < 0.0001), consistent with their greater functional incompetence. The highest level of PD-1 expression was noted on HCV-specific CTLs (median 73%; mean 72%; SD 14.5%). Horizontal lines represent medians. Wilcoxon’s paired signed rank sum test was used for comparison between cells from HCV patients, Wilcoxon’s paired signed rank sum test with \(p \) values from a permutation test was used for HCV vs controls, and a generalized estimating equations method was used for comparison of HCV-specific CTLs and total CD8\(^+\) T cells.

These data demonstrate that PD-1 is typically expressed at only low levels in most immune cell types in normal individuals but is up-regulated in the presence of hepatitis C viremia. These results are congruent with the concept that HCV may induce global immune suppression (23) as supported by the recent demonstration that patients with HCV had a significantly higher prevalence of other blood-borne virus infections, including HIV, hepatitis B, and CMV, as well as cryptococcus, tuberculosis, and sexually transmitted diseases (24).

There are major racial differences in the natural history of chronic hepatitis C and treatment responses to anti-HCV therapy (16). We compared the relative PD-1 expression in 42 CA and 30 AA patients with chronic hepatitis C who were enrolled in the Virahep-C trial in preparation for antiviral therapy with peginterferon and ribavirin. There were no statistically significant differences in PD-1 expression on total CD4, CD8, and NK cells between AA and CA patients. However, PD-1 expression was significantly higher on HCV-pentamer\(^+\) CTLs in CA compared with AA patients \((p = 0.0058)\). Pretreatment viral level, previously shown to be associated with the likelihood of an individual patient experiencing SVR (25), did not correlate with the levels of PD-1 on immunocytes. However, pretreatment PD-1 on HCV-specific CTLs among AAs was statistically higher among those who ultimately failed to develop an SVR to combination therapy compared with those who did (Fig. 2B). PD-1 expression as a predictor of SVR was further examined for each cell type by using relative risks in a Poisson regression analysis with adjustment for race. Among AAs with chronic HCV, PD-1 expression on HCV-specific CTLs before treatment was...
negatively associated with SVR ($p < 0.0001$). This relationship did not hold among CA patients. The plots of the proportion of SVR vs PD-1 expression on HCV-specific CTLs in the two racial groups (Fig. 2C) indicated that the higher the mean pretreatment PD-1 on HCV-specific CTLs in AAs, the lower the likelihood of developing SVR.

The association between pretreatment PD-1 expression and early viral kinetics was assessed by racial group. Previous studies (15) have postulated that the host immune response (specifically viral-specific CTLs) plays a major role in early kinetics and clearance of virus-infected cells; however, support for this concept is limited (26). In the Virahep-C study, all patients underwent careful study of viral response during the first 28 days of therapy and were categorized as having a poor, intermediate, or marked viral kinetics response. The poor response was defined by a $1.4 \log_{10}$ drop in HCV RNA levels between baseline and day 28, the intermediate response as a $1.4 - 3.5 \log_{10}$ drop, and the marked response as a $>3.5 \log_{10}$ drop (or decrease to undetectable). AA patients with poor early viral kinetics demonstrated significantly higher pretreatment PD-1 on HCV-specific CTLs than AAs with an intermediate or marked viral decline ($p = 0.0005$). Remarkably, PD-1 expression on HCV-specific CTLs was, on average, 15% higher among AA poor responders compared with the other kinetics groups. AA patients with poor early viral kinetics demonstrated significantly higher pretreatment PD-1 on HCV-specific CTLs than AAs with an intermediate or marked viral decline ($p = 0.0005$). Remarkably, PD-1 expression on HCV-specific CTLs was, on average, 15% higher among AA poor responders compared with the other kinetics groups.

FIGURE 2. Race, pretreatment PD-1 expression, and virologic response. A. Representative flow plots showing HCV-specific CTLs A1–1436 and expression of PD-1 on Ag-specific (pentamer-positive) cells relative to the negative control stain are shown in the histograms. B, Among AAs who failed to experience SVR, PD-1 was higher on HCV-specific CTLs before the initiation of treatment. PD-1 expression as a predictor of SVR was examined for each cell type using Poisson regression analysis. C, Smoothing plot demonstrating the relationship between baseline (pretreatment) PD-1 expression on HCV-specific CTLs and the proportion with SVR by race is shown. Higher mean PD-1 percentage of expression of multiple pentamers in AAs was associated with statistically significant lower likelihood of long-term virologic response. D, Median percentage of PD-1 expression on HCV-specific CTLs according to race and early viral kinetics. Horizontal lines represent medians.

FIGURE 3. Effect of successful antiviral therapy on PD-1 expression before treatment (S002, screening visit 2) and 24 wk after cessation of treatment (FU24). A, In patients experiencing SVR, there was a statistically significant decrease in PD-1 expression on total CD4$^+$ T cells. B, In total, NKs PD-1 expression increases in those who failed to respond to therapy. C, Successful antiviral therapy also led to sustained down-regulation of PD-1 on the CD56bright NK cell subset. D, The largest decrease in PD-1 expression occurred in the HCV-specific CTLs of responders to therapy.
whereas a similar decrease in PD-1 expression was not observed for the total CD8+ T cell population. When adjusted for racial effect, each 10% increase in the probability of SVR was associated with a 1% decrease in PD-1 expression on total CD4+ T cells (risk ratio (RR), 1.10; 95% confidence interval (CI), 1.01–1.20; \(p = 0.030 \)), whereas there was no significant change among those who failed to respond.

In treatment nonresponders, levels of PD-1 were significantly higher in the total NK population following treatment (median increase \(= 2.1\% \); \(p = 0.02 \)) (Fig. 3B). When adjusted for race, the decline in PD-1 expressions on total NK cells was significantly associated with SVR only in AAs (RR per 1% decrease, 1.14; 95% CI, 1.00–1.30; \(p = 0.043 \)). Successful antiviral therapy was associated with sustained down-regulation of PD-1 on the CD56bright subset of NK cells (Fig. 3C). Decrease in PD-1 levels on HCV-specific CTLs was significantly associated with successful antiviral therapy, but this effect was not noted in patients who failed to experience a SVR (Fig. 3D). Notably, for both races each 10% decrease in mean PD-1 expression on HCV-specific CTLs was associated with an increase in the probability of SVR by 20% (RR per 1% decline, 1.02; 95% CI, 1.00–1.04; \(p = 0.019 \)). The significant association between pretreatment PD-1 and SVR was retained in a multivariable model with inclusion of other known predictors (16) (e.g., race, gender, Ishak fibrosis score, viral level, proportion of dose taken, and interaction of race with viral level).

Detailed longitudinal analyses of PD-1 expression on HCV-specific CTLs and hepatitis C viral kinetics during antiviral therapy are shown for seven patients who experienced SVR (Fig. 4). Four of the seven patients demonstrated a substantial decline in PD-1 expression (>50% from pretreatment) by 8 wk of antiviral therapy. However, for the other patients (nos. 2, 5, and 7) the time required for a decline in PD-1 was longer despite HCV RNA becoming undetectable (<50 IU/ml) by 8 wk. For example, in patient 5 antiviral therapy resulted in serum HCV RNA negativity within the first month, but the significant decrease was only noted at 72 wk (24 wk after cessation of therapy). Moreover, PD-1 levels were lower during than after antiviral therapy in several patients (nos. 1, 3, and 7), indicating that PD-1 expression may be affected by IFN treatment and not strictly related to HCV RNA elimination. Work is ongoing to examine the expression of PD-1 ligand(s) on dendritic cells and other APCs during antiviral therapy.

In summary, our data demonstrate that PD-1 is differentially up-regulated on immunocytes in patients with chronic HCV infection naive to antiviral therapy, being highest in HCV-specific CTLs. Although it has been known for some time that AAs as a group demonstrate lower rates of response to antiviral therapy, potential mechanisms have remained enigmatic; we found that the pretreatment level of PD-1 expression on HCV-specific CTLs was highly predictive of both early and sustained virologic responses. Thus, our data are consistent with the notion that PD-1 demarcates functionally exhausted cells and that baseline immunity is important in determining a response to antiviral therapy. Antiviral therapy that led to sustained elimination of circulating HCV RNA was associated with down-regulation of PD-1 on a wide range of cells, including CD4+ T cells, HCV-specific CTLs, and NK cells. Knowledge of the basic immune mechanisms governing the outcome of antiviral treatment will hopefully lead to improved therapeutic strategies.

Acknowledgments
We thank the members of Viral Hepatitis Group for contributing to the study, the patients for their willingness to participate, Nicole Castellbone for technical assistance, and Jia Li for statistical analysis. We thank Jay Hoofnagle, MD for insightful suggestions and recommendations into drafts of the manuscript.

Disclosures
The authors have no financial conflict of interest.

References

