Structural Determinants of Herpesvirus Entry Mediator Recognition by Murine B and T Lymphocyte Attenuator

Christopher A. Nelson, Marcel D. Fremont, John R. Sedy, Paula S. Norris, Carl F. Ware, Kenneth M. Murphy and Daved H. Fremont

J Immunol 2008; 180:940-947; doi: 10.4049/jimmunol.180.2.940
http://www.jimmunol.org/content/180/2/940

References
This article cites 49 articles, 19 of which you can access for free at:
http://www.jimmunol.org/content/180/2/940.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Structural Determinants of Herpesvirus Entry Mediator Recognition by Murine B and T Lymphocyte Attenuator

Christopher A. Nelson,* Marcel D. Fremont,* John R. Sedy,‡ Paula S. Norris,‡ Carl F. Ware,‡ Kenneth M. Murphy,* and Daved H. Fremont2*†

The B and T lymphocyte attenuator (BTLA) appears to act as a negative regulator of T cell activation and growth. BTLA specifically interacts with herpesvirus entry mediator (HVEM), a member of the TNFR family. Herein, we have undertaken surface plasmon resonance studies to quantitatively assess BTLA and HVEM ectodomain interactions. We find that soluble BALB/cJ BTLA engages HVEM with an equilibrium affinity of 0.97 ± 0.19 μM while the C57BL/6 BTLA binds slightly better with an equilibrium affinity of 0.42 ± 0.06 μM. Despite its lower affinity for HVEM, the kinetic half-life of BALB/cJ BTLA complexes are twice as long as observed for C57BL/6 BTLA (4 vs 2 s). To further explore these interactions, we solved the crystal structure of a murine BTLA (BALB/cJ) ectodomain at 1.8-Å resolution, revealing a β sandwich fold with strong similarity to I-set members of the Ig superfamily. Using a structure-based mutagenesis strategy, we then examined the individual contributions of 26 BTLA surface-exposed residues toward HVEM binding. Four single-site substitutions were identified that decrease HVEM binding below detectable levels and two that decrease binding by more than half. All six of these cluster at the edge of the β sandwich in a membrane distal patch formed primarily from the A and G strands. This patch falls within the contacting surface recently revealed in the crystal structure of the human BTLA-HVEM cocomplex. The critical binding residues identified here are highly conserved across species, suggesting that BTLA employs a conserved binding mode for HVEM recognition. The Journal of Immunology, 2008, 180: 940–947.

The B and T lymphocyte attenuator is a type I transmembrane glycoprotein expressed at high levels on activated T cells and resting B cells and at lower levels on naive T cells, NK cells, bone marrow-derived dendritic cells, and splenic macrophages (1, 2). The primary endogenous binding partner for B and T lymphocyte attenuator (BTLA)3 is herpesvirus entry mediator (HVEM), also called TNFRSF-14 (3, 4), a member of the TNFR family. HVEM is known for its ability to provide costimulatory signals to T cells in response to the TNF-related cytokine LIGHT (5, 6). Clustering of HVEM by LIGHT initiates signaling through TNFR-associated factor adaptors resulting in the activation of NF-κB, JNK, and adapter protein 1 signaling pathways (7, 8).

Recent evidence suggests that BTLA-HVEM interactions serve to regulate T cell development and activation events (4, 9). These interactions remain unique as the only example of signaling cross-talk between the Ig and TNFR families of surface receptors. The cytoplasmic tail of murine BTLA contains a potential growth factor receptor-bound protein 2 binding site as well as an ITIM and an immunoreceptor tyrosine-based switch motif (10). These tyrosine-based motifs undergo phosphorylation upon colligation of BTLA with the TCR (11) and are conserved in BTLA orthologs from zebra fish to humans (12), implying a conserved biological role. In vitro studies document the ability of BTLA to act as a negative regulator, although the cytosolic factors responsible remain unclear (13–15). Ab cross-linking of BTLA inhibits IL-2 production by T cell hybridomas in response to anti-CD3 stimulation (11). Likewise, coimmobilized anti-BTLA Ab or HVEM-Fc fusion protein has been shown to reduce the proliferation and cytokine production by purified T cells in response to anti-CD3 treatment (1, 3, 16–19). These results are consistent with the proposal that BTLA acts as a coinhibitory receptor, exerting its effect when clustered in proximity with the TCR. Indeed, genetic loss of BTLA leads to an increase in T cell responsiveness, providing in vivo support for an inhibitory role. Ab blockade of BTLA or HVEM promotes the rapid rejection of partially MHC class I- or class II-mismatched allografts (20). In addition, BTLA−/− mice show increased severity and duration of disease when challenged with experimentally induced autoimmune encephalomyelitis (11), and they exhibit prolonged airway inflammation when challenged with inhaled Ag (21). However, the phenotype of heightened immune responsiveness in these animals may not be a direct result of the loss of coinhibitory signal from the T cells themselves, but instead, may be due to an increase in the abundance of CD8+ memory T cells which has been reported to occur in both BTLA−/− and HVEM−/− mice (9).

The extracellular portion of HVEM consists of four cysteine-rich domains (CRDs) (22) or pseudo repeats, each ~40 residues in length that are characteristic of the TNFR superfamily (22–24). HVEM binds LIGHT, a TNF-related trimeric cytokine. By...
analogy with related systems (e.g., TNFR1/TNFβ (25)) and from mutagenesis studies (26), it is predicted that LIGHT will contact HVEM primarily through an elongated surface spanning the CRD2 and CRD3 domains. BTLA binds HVEM on the opposite side of the receptor, in the CRD1 domain (4, 27), in a region that has come to be called the “DARC” site of HVEM (16) because it contains the attachment site for the envelope glycoprotein D of HSV-1 (22, 28). In turn, the binding site for HVEM on BTLA is targeted by UL144, a TNFR-like decoy encoded by human CMV (16). UL144 binds BTLA, but not LIGHT, and inhibits T cell proliferation, presumably by exploiting the inhibitory co-signaling function of BTLA.

A crystal structure revealing specific details of the interaction between human BTLA and HVEM was recently reported (29). BTLA recognizes, as its principal binding target, an extended β-strand located in the membrane-distal region of the HVEM CRD1 domain, specifically HVEM β-strand residues 35–39 (TVCEP). These residues form an intramolecular anti-parallel β-sheet with residues 122–128 (NLIESHS) of human BTLA. When alainescanning mutagenesis was used to evaluate the binding contributions of 15 individual HVEM side chains, the three most disruptive substitutions were residues involved in the formation of the β-strand, confirming the intramolecular β-sheet as a central feature of the binding interface. These results suggest BTLA uses a unique binding surface, distinct from that used by coinhibitory receptors of the related CD28 family. In this study, we demonstrate that the human BTLA-HVEM results are relevant to the mouse BTLA-HVEM system. There existed some reason for caution, since the binding specificities of the two TNFR are known to differ. Human HVEM binds the TNF-related human cytokine lymphotixin α in addition to human LIGHT. In contrast, mouse HVEM does not bind mouse lymphotixin α and binds only weakly to mouse LIGHT (30). From sequence comparisons, only 11 of 17 human BTLA amino acids that bury at least 25% of their surface accessible area upon HVEM binding are identically conserved in mouse BTLA (29). Similarly, only 12 of 20 HVEM residues that bury solvent accessible surface upon BTLA binding are identically conserved in mouse HVEM (29). No crystal structure yet exists for mouse HVEM; therefore, it is difficult to predict the exact configuration of the mouse BTLA-HVEM binding interface. However, we have obtained a crystal structure of the extracellular region of murine BTLA (BALB/cJ allele) and used that information to design a series of singly substituted BTLA proteins for affinity studies by Scatchard analysis. In addition

Materials and Methods

Cloning, expression, and protein refolding

A cDNA fragment encoding the mature N-terminal ectodomain of BTLA was inserted between the Ncol and Xhol sites of the bacterial expression vector pET-21a (EMD Biosciences) (aa 30 through 121, as numbered in accession no. AAP44002). This plasmid was introduced into BL21(DE3)-RIL coli (E. coli) (Stratagene) for expression. Recombinant protein was recovered as an insoluble inclusion body pellet, solubilized in guanidine hydrochloride, and then renatured by rapid dilution in solution chromatography at (GE Health Sciences). The resulting native protein eluted from size exclusion chromatography at ~14 kDa, the position predicted for the BTLA monomer. The final recombinant fragment contained no extraneous tags. Its identity was confirmed by electrospray mass spectrometry (ESMS), the observed mass being consistent with two disulfide bonds in each molecule. Fractions containing mono-disperse protein were pooled and kept at 4°C in sizing buffer (25 mM HEPES (pH 7.5) and 150 mM sodium chloride with 0.01% sodium azide). Mutagenesis of the pET-21-BTLA plasmid was performed using a QuickChange site-directed mutagenesis kit (Stratagene).

To prepare a sample for ESMS, 10 μg of protein was diluted to 100 μl in water and mixed with 100 μl of 20% trichloroacetic acid. This mixture was held on ice for 30 min. The sample was spun in a microfuge at 16,000 g at 4°C for 20 min. The precipitate was washed with 300 μl of cold acetone and spun again at 16,000 g at 4°C for 5 min. The protein pellet was air dried and resuspended in 20 μl of 60% acetonitrile with 0.1% formic acid for analysis. ESMS of the protein used for the crystallization trials (BALB/cJ) yielded an observed Mf 14,428 Da. The sequence (M)

Crystallography

Crystallization conditions

The crystals were grown at 293°K in hanging drops by mixing an equal volume of BTLA protein at 9.6 mg/ml in 20 mM HEPES (pH 7.4) with well solution containing 10 mM cadmium chloride, 100 mM citric acid/sodium hydroxide (pH 5.8), 220 mM ammonium acetate, 25% polyethylene glycol 4000, and 10 mM trimethylamine-HCl.

Data collection and processing

Diffraction data were collected at the Advanced Light Source (ALS) synchrotron (beamline 4.2.2) using a charge-coupled device detector (N9ir-1). Because cadmium ions were required for crystal growth, we attempted to derive experimental phase from their anomalous and dispersive scattering differences. Two datasets were collected from a single crystal. A quick pass (to minimize the effects of radiation damage in the single-wavelength anomalous dispersion phasing) was collected at 2.06637 Å wavelength to a resolution of 2.25 Å and a slow pass (for model refinement) was collected at 1.54978 Å wavelength to a resolution of 1.8 Å. Although both occur on the high-energy side of the absorption edge (En = 3.0857 Å), a solution was feasible because of the relatively large f and small f inherent in the 2.06637 Å dataset. Data processing with d*Trek (31) revealed that the crystal belonged to orthorhombic space group P2 1 2 1 2 1 (a = 36.67 Å, b = 37.54 Å, and c = 90.15 Å). The asymmetric unit of the crystal contained a single BTLA monomer. The total solvent content was ~44% with a Matthews coefficient of 2.20 Å (3/Da).

Model building and refinement

An analysis of the anomalous differences in the 2.06637 Å dataset, using the heavy atom search program from the crystallography and NMR system software suite (32), revealed two relatively strong cadmium peaks per molecule. The initial phases were calculated from these positions using both datasets. Phases were further improved in SHARP (33) by solvent flattening and histogram matching. The map calculated from the improved phases (40.0-2.25 Å) was sufficient to trace the backbone structure of the protein. A partial model was generated by the autobuild feature of ARP/wARP (34) spanning 95 of 122 residues in three chains with a connectivity index of 0.92. This model was inspected in the program O (35). Only minor corrections were required before refinement in the crystallography and NMR system software suite. Both Fo-Fc and Fo-Fe maps were used between refinement cycles to manually build and to locate solvent molecules. All reflections (40.0-1.8 Å) from the 1.54978 Å dataset were included throughout the refinement calculations, except those set aside for free R factor cross-validation (5%). The final model yielded an Rmerge of 20.6% and Rwork of 26.9%; additional refinement statistics are summarized in Table 1. The first 10, and last 7, residues of the 121 aa BTLA ectodomain are disordered in the crystal structure. Removal of the first 10 residues had no significant effect on HVEM binding. The quality of the model was checked with PROCHECK (36). Solvent accessibility were calculated with NACCESS (probe radius, 1.4 Å) (37). Molecular diagrams were drawn using the programs GRASP (38) and Pymol (39).

Atomic coordinates and structure factors

The atomic coordinates and structure factors (accession code 1XAU) have been deposited, in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics (Rutgers University, New Brunswick, NJ).
The N-terminal domain of murine BTLA (BALB/cJ) was expressed in E. coli for oxidative refolding by rapid dilution (see Materials and Methods). Crystals were obtained in hanging drops of buffered polyethylene glycol 4000. The x-ray diffraction data were collected at the Advance Light Source Synchrotron Radiation Facility (Molecular Biology Consortium Collaborative Access Team, beamline 4.2.2), and extend to a resolution of 1.80 Å. Duration of buffered polyethylene glycol 4000. The x-ray diffraction data were collected at the Advance Light Source Synchrotron Radiation Facility (Molecular Biology Consortium Collaborative Access Team, beamline 4.2.2), and extend to a resolution of 1.80 Å. Duration of buffered polyethylene glycol 4000.

Results

Structure determination of murine BTLA

The N-terminal domain of murine BTLA (BALB/cJ) was expressed in E. coli for oxidative refolding by rapid dilution (see Materials and Methods). Crystals were obtained in hanging drops of buffered polyethylene glycol 4000. The x-ray diffraction data were collected at the Advance Light Source Synchrotron Radiation Facility (Molecular Biology Consortium Collaborative Access Team, beamline 4.2.2), and extend to a resolution of 1.80 Å. During the crystallization trials, we observed that cadmium ions were required for crystal growth. Indeed, analysis of the anomalous differences in the diffraction data indicated that at least two cadmium ions were associated with each BTLA monomer in the crystal. These ions were sufficient to phase the data by single-wavelength anomalous dispersion methods (41). Data collection and refinement statistics are given in Table I. No density was observed in the model for the first 10 residues of the mature protein, suggesting the region is disordered. Neither was density observed for the last seven residues, likely to form part of a connecting stalk tethering the protein to the cell membrane.

In the BTLA structure, 10 β-strands are arranged in two sheets to form a compact β sandwich of dimensions 44 × 36 × 31 Å (Ref. 3 and Fig. 1A). The individual sheets consist of the ABED and AβG0GFCCβ-strands, respectively (Fig. 1B). This folding arrangement places BTLA within the Ig L-set family (12). Like all L-set domains, the A strand of BTLA starts out antiparallel with B and crosses between the two sheets to finish in parallel with the G strand. The C’ strand is not the equivalent of the C’ strand found in V and V-like Ig domains but instead cuts across the edge of the β sandwich in what has come to be called a CD transversal strand (12, 42). BTLA contains a disulfide bond linking the B and F strands (connecting the ABED and AβG0GFCCβ-strands), which is a feature common in Ig domains. A second disulfide, unique to BTLA, functions to pin the beginning of the A strand to the end of the B strand. The sequence alignment also suggests that most alleles of BTLA contain a third disulfide, linking the strands at the base of the C-C’ loop (Fig. 1C). In this murine BTLA structure (BALB/cJ strain), one half of the disulfide has been replaced by a tryptophan (residue W56 for C56). The hydrophobic tryptophan side chain is completely buried packing against the cysteine residue at position 49. Although a C-C’ disulfide linkage is uncommon among Ig domains, similar linkages have been observed in the surface receptors of the NKp44 family (43).

Characterization of BTLA binding to HVEM by SPR

We set out to determine the binding affinity and kinetic rate constants for the interaction between murine BTLA (BALB/cJ and C57BL/6 strains) and HVEM by SPR analysis. Soluble recombinant BTLA proteins were injected over HVEM-Fc (CRDs 1 through 3) immobilized on a BIAcore sensor chip (Fig. 2A). The

Table I. Data collection, phasing, and refinement statistics for BTLA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P2₁2₁2₁</td>
</tr>
<tr>
<td>Unit cell dimensions (Å)</td>
<td>a = 36.67, b = 37.54, c = 90.15</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.549784</td>
</tr>
<tr>
<td>X-ray source</td>
<td>ALS 4.2.2*</td>
</tr>
<tr>
<td>Resolution (Å) (outer shell)</td>
<td>40.0-1.83 (1.92-1.83)</td>
</tr>
<tr>
<td>Observations/unique</td>
<td>66,974/11,536</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>95.5 (75.2)</td>
</tr>
<tr>
<td>Rmerge (%)</td>
<td>5.6 (25.7)</td>
</tr>
<tr>
<td>I/σ average</td>
<td>11.7 (4.2)</td>
</tr>
<tr>
<td>Phasing statistics</td>
<td>2</td>
</tr>
<tr>
<td>Cd²⁺ ion sites</td>
<td>0.64</td>
</tr>
<tr>
<td>Phasing power acentric</td>
<td>1.850</td>
</tr>
<tr>
<td>Figure of merit acentric/centric</td>
<td>0.460.19</td>
</tr>
<tr>
<td>Refinement summary</td>
<td>40.0-1.83 (1.92-1.83)</td>
</tr>
<tr>
<td>Reflections Rwork/Rfree</td>
<td>20.6/26.9</td>
</tr>
<tr>
<td>Protein atoms/solvent</td>
<td>846/225</td>
</tr>
<tr>
<td>Rwork overall (outer shell) (%)</td>
<td>35.6</td>
</tr>
<tr>
<td>Rwork overall (outer shell) (%)</td>
<td>44.6</td>
</tr>
<tr>
<td>Rsym (%)</td>
<td>5.6 (25.7)</td>
</tr>
<tr>
<td>Ramachandran plot</td>
<td>91.48/7</td>
</tr>
<tr>
<td>Estimated coordinate error (Å)</td>
<td>0.26</td>
</tr>
</tbody>
</table>

* Values as defined in d*TREK (31).
* ALS, beamline 4.2.2.
* Value as defined in SHARP (33).
* Value as defined in CNS (32).
* From cross-validated Luzzati plot.
BALB/cJ and C57BL/6 BTLA proteins differ by 11 of 108 ectodomain residues. The majority of these polymorphisms (6 of 11) occur on the same face of the molecule falling within the A-A' and B strands (Fig. 1C). When the respective equilibrium dissociation constants were measured at steady state, BALB/cJ BTLA yielded a value of $K_D = 0.97 \pm 0.19 \mu M$ ($n = 4$) whereas the C57BL/6
BTLA bound slightly better, yielding a value of $K_D = 0.42 \pm 0.06 \mu M$ ($n = 3$; Fig. 2B). Both values are slightly higher than that reported for the binding of soluble gD to human HVEM ($K_D = 3.2 \mu M$) (44). Although the BALB/cJ BTLA protein binds with slightly lower equilibrium affinity, this is primarily attributable to a decreased on-rate because the half-life of the BALB/cJ BTLA complex is $\sim 4 \text{ s}$ compared with 2 s for C57BL/6 BTLA. It is important to note that these experiments were done with C57BL/6 HVEM. Although the sequences currently available indicate that polymorphism of murine HVEM is very limited, the sequence of BALB/cJ HVEM has not been reported and therefore it is not known whether the BALB/cJ and C57BL/6 HVEM proteins are identical at the BTLA interaction site.

Structure-based mutational analysis of murine BTLA

From these initial studies, we judged that single amino acid substitutions might be sufficient to disrupt these low-affinity interactions. In selecting residues for analysis, we began with a comparison of the available BTLA sequences from different species. Assuming these proteins make similar contacts with HVEM, then the binding surface should be detectable as a patch of conserved residues. Conservation scores for the BTLA sequence alignment (Fig. 1C) were calculated and mapped onto the surface of the BTLA structure to identify contiguous patches (Fig. 1D). In addition, BTLA is known to be glycosylated in vivo and potential binding sites were selected to avoid steric interference by carbohydrate. We were also aided by the software program QUILT which identifies hydrophobic patches on protein surfaces (45), such patches have proven useful in predicting protein-protein interaction sites.

A series of singly substituted BALB/cJ BTLA mutants were constructed and the resulting proteins were analyzed for HVEM binding. Fourteen alanine substitutions (Q14>A, N16>A, K18>A, S21>A, K22>A, H23>A, S24>A, K38>A, Y39>A, S74>A, V113>A, F99>A, V113>A, and R114>A), five bulky additions (L15>H, S68>H, N98>F, S101>H, and S108>H), and seven charge substitutions (R19>D, A25>E, H42>D, T47>R, E71>R, V75>E, and H107>D) were tested. The identity of each mutant was confirmed by electrospray mass spectrometry. Each refolded easily, migrated as a monomorphic protein on size exclusion chromatography, and ran as a single band on native SDS-PAGE. Two other mutants failed to refold by these criteria and were omitted from the analysis (R73>A and R43>D).

The majority of substitutions tested had little effect (shown in gold, Fig. 2C). However, four substitutions (shown in dark magenta, P36>A, L15>H, R19>D, and H107>D) resulted in a greatly diminished affinity of BTLA for HVEM, failing to display detectable binding at concentrations exceeding 10 mM. Two other substitutions (shown in light magenta, Q14>A and S108>H) yielded proteins displaying a greater than 2-fold drop in affinity. These six affected residues cluster close together on BTLA (shown in magenta, Fig. 3, A and B). These six are invariantly conserved in the sequences of available mammalian species (Fig. 1C). Three residues, Q14, L15, and R19, fall within the A strand and the A-A bulge. Residue R19 is a prominent feature, forming a positively

FIGURE 2. Steady-state binding of monomeric BTLA to HVEM-Fc. The binding was studied by means of SPR analysis. Native BTLA protein was injected over immobilized HVEM-Fc at the specified concentrations. Approximately 1000 resonance units of the HVEM-Fc were immobilized on the sensor chip. The specific binding was measured as the difference between the response in a sensor chip module coated with HVEM and the response in a module coated with RANK, a related TNFR protein. A: Representative binding curves for BALB/cJ and C57BL/6 at the specified concentrations. B: Saturation curve of the BALB/cJ- and C57BL/6-specific binding observed at equilibrium under different BTLA concentrations from A. Only a small level of nonspecific binding was detected at the protein concentrations used in this study. A Scatchard plot of the binding is shown as an inset. In this trial, a K_D value of 0.94 μM was obtained from the slope of the plot. C: Summary of equilibrium-binding data for the various BTLA proteins tested. The variant proteins were named using single-letter amino acid abbreviations to indicate the introduced mutation. For example, the protein where glutamine at position 14 was changed to alanine is named Q14 > A. BALB/cJ was taken as wild type because the mutants represent single amino acid substitutions of the BALB/cJ protein. No N-term refers to a form of BTLA with the first 10 disordered residues removed. Shown in dark magenta are the substitutions that abolished binding. In light magenta are the substitutions that lowered binding by more than 2-fold. The substitutions with little or no effect are shown in gold. The average K_D value with SD is given on each bar.
charged projection that juts out from the protein surface. Residue P36 is located close to one side of these three residues on the B strand with its ring also pointing outward. The final two residues P36 is located close to one side of these three residues on the B charged projection that juts out from the protein surface. Residue P36 is located close to one side of these three residues on the B

Discussion

We determined a crystal structure for the extracellular domain of murine BTLA (BALB/c) to reveal a β sandwich fold with similarity to I-set members of the Ig superfamily. The BTLA structure bears a resemblance to members of the CD28 family. Like BTLA, the extracellular domains of CD28, CTLA-4, ICOS, and programmed death receptor 1 (PD-1) each consist of a single Ig fold, and each carries a cytoplasmic domain containing tyrosine-dependent signaling motifs. However, significant structural differences exist. First, BTLA is missing the C' strand found to lie antiparallel to the D strand in all CD28 family members. CD28, CTLA-4, and ICOS assemble into covalently linked homodimers through an unpaired cysteine within their connecting stalks (PD-1 probably also forms a dimer even though it lacks the analogous cysteine residue). BTLA lacks an unpaired cysteine residue in its connecting stalk and our analysis suggests that the presence of N-glycosylation at position N90 is likely to prohibit the formation of a CD28-like or CTLA-4-like dimer in vivo. The primary binding element used by CD28 family members is contained in the F-G loop. For CTLA-4 and CD28, the ligand-binding surface contains the core hydrophobic residues (MYPPPY), while PD-1 uses ILSHPKA (46) and ICOS uses FDPFF (47). The main chain in this region adopts a characteristic cis-trans-cis-conformation induced by the cis-proline residues. BTLA has a relatively short F-G loop and does not adopt a structurally equivalent conformation. We tested three substitutions within the F-G loop N98>F, F99>A, and S101>H and observed almost no effect on HVEM binding. These results confirm that the BTLA-binding surface is distinct from that used by CD28 family members.

Sequence alignments suggest that most BTLA domains contain an additional disulfide bridge, connecting residues C49 and C56. This disulfide bond is found in members of the Nkp44 family where it stabilizes a β hairpin built from the C and C' strands and the intervening loop. In some Nkp44 family members, a surface groove is formed between the two β hairpin loops (C-C' and F-G), which extend out from the face of the molecule. In the case of Nkp44, this groove has been shown to bind influenza virus hemagglutinin in the presence of sialic acid (43). In BTLA, the additional disulfide serves to stabilize the C-C' loop which forms one side of the HVEM binding site.

We used the murine BTLA structure to design a mutagenesis study aimed at characterizing the HVEM-binding surface. Solution affinity measurements were obtained between 26 soluble variants of murine BTLA and immobilized HVEM. While this work was in progress, a crystal structure between human BTLA and HVEM was reported (29) (accession no. 2AW2). We have modeled the murine BTLA-HVEM complex based on these results. This could be done with some confidence because the human and mouse HVEM sequences are 62% identical (50 of 80 residues) throughout their CRD1 and CRD2 domains. Still, such analysis can yield only an approximation, although murine HVEM binds human BTLA, human HVEM does not bind murine BTLA (16). Nonetheless, superposition of murine BTLA over the human BTLA coordinates predicts 20 αa within 4.5 Å of HVEM. The majority of these residues can be placed in three groups: seven within the A strand and first part of the following β bulge (E12, Q14, L15, N16, I17, K18, and R19), four at the end of the C-C' loop (H51, G53, T54, and W56), and eight centered on the G0 strand (S101, Q102, V103, I104, N105, S106, H107, and S108). Five of the six residues implicated by our mutagenesis study (Q14, L15, R19, H107, and S108) fall within this contact region. The sixth residue, P36, falls just outside; even so, it supports the contact region by propping up the A strand.

The proteins encoded by the two most commonly studied murine BTLA alleles (BALB/c and C57BL/6) were found to bind murine HVEM with slightly differing affinities (0.94 and 0.42 mM, respectively), with the lower affinity BALB/c interactions exhibiting both slower on-rates and off-rates. Theses differences may be related to the polymorphic tissue distribution of BTLA expression on lymphoid cells in these mice. For example, BTLA in C57BL/6 mice is expressed on T cells, B cells, macrophages, NK cells, and dendritic cells (2). In contrast, BALB/c do not express detectable levels of BTLA on macrophage or NK cells. The basis of this expression polymorphism is still unclear. It may represent genetic differences in the regulatory elements controlling BTLA expression or alternately differences in the basal level of lymphoid cell activation. Only 2 of the 11 polymorphic differences between these strains are predicted to fall within the HVEM binding site. Neither could account for the slightly lower affinity of BALB/c when examined by alanine substitution (N16>A, K18>A). The small but reproducible difference is probably due to either long-range electrostatic effects or an indirect structural effect on the binding interface. For example, the allelic variation of W56 for C56 may subtly alter the position of the C-C' loop and therefore the HVEM contact interface.

Existing biophysical data indicate that the ectodomains of both BTLA and HVEM are monomeric and that they engage one another with a 1:1 stoichiometry (29). In contrast to previous investigations, we set out to quantitate the monotypic interactions of BTLA with HVEM. For example, Gonzalez et al. (3) used radio-labeled human HVEM-Fc or BTLA-Fc to bind human BTLA- on HVEM-expressing AD-293 cells, obtaining apparent affinities of 5.5 and 15 nM, respectively. Similar studies of bivalent human HVEM-Fc binding to human BTLA expressed on 293T cells gave an apparent affinity of 112 nM, while human HVEM-Fc failed to bind murine BTLA, although murine HVEM-Fc did bind both human (27 nM) and murine (24 nM) BTLA (16). We note that the
low equilibrium affinity of the direct monotypic BTLA-HVEM interaction that we have measured here ($K_D \sim 1 \mu M$) is more commonly observed for cell surface proteins that are involved in cell surface multimerization or clustering (48), issues that may well be important in BTLA/HVEM signaling.

The response of immune cells, particularly T, B, and NK cells is determined by a constant integration of the activating and inhibitory signals received from their surface receptors. The ability of an Ig-like surface protein to interact with a TNFR superfamily member greatly complicates our understanding of these systems. Until recently, BTLA has been considered strictly an inhibitory receptor, with the exception of the inhibitory signals received from their surface receptors. The ability of BTLA and HVEM to interact with additional BTLA interacting partners is a critical step in the investigation of additional BTLA functions in GVHD as well as other experimental models.

Acknowledgments
We thank Dr. Jay Nix, Beamline Scientist, and the Molecular Biology Consortium Collaborative Access Team at ALS for assistance in crystallographic data collection.

Disclosures
The authors have no financial conflict of interest.

References

CITATION OF BTLA RESIDUES TO HVEM BINDING

7. Bossen, C., K. Ingold, A. Tardivel, J. L. Bodmer, O. Gaide, S. Hertig, C. Ambrose, J. Tschopp, and P. Schneider. 2006. Interactions of herpesvirus-encoded proteins with herpesvirus virus entry mediat...
42. Garapati, V. P., and M. P. Lefranc. 2007. IMGT Colliers de Perles and IgSF domain standardization for T cell costimulatory activatory (CD28, ICOS) and inhibitory (CTLA4, PDCD1 and BTLA) receptors. Dev. Comp. Immunol. 31: 1050–1072.