Hepatocyte Growth Factor Significantly Suppresses Collagen-Induced Arthritis in Mice

Katsuhide Okunishi, Makoto Dohi, Keishi Fujio, Kazuyuki Seki, Yasuhiro Tabata, Takahiro Okasora, Makoto Seki, Mihoko Shibuya, Mitsuru Imamura, Hiroaki Harada, Ryoichi Tanaka and Kazuhiko Yamamoto

J Immunol 2007; 179:5504-5513; doi: 10.4049/jimmunol.179.8.5504
http://www.jimmunol.org/content/179/8/5504

References
This article cites 64 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/179/8/5504.full#ref-list-1

Subscription
Information about subscribing to _The Journal of Immunology_ is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

Print ISSN: 0022-1767 Online ISSN: 1550-6606.

The American Association of Immunologists All rights reserved.
Copyright © 2007 by The American Association of Immunologists
1451 Rockville Pike, Suite 650, Rockville, MD 20852
The Journal of Immunology is published twice each month by The American Association of Immunologists.
Hepatocyte growth factor (HGF) plays an important role in angiogenesis, cell proliferation, antifibrosis, and antiapoptosis. Moreover, recent studies have highlighted the immunosuppressive effect of HGF in animal models of allogeneic heart transplantation and autoimmune myocarditis and in studies in vitro as well. We also reported that HGF significantly suppresses dendritic cell function, thus down-regulating Ag-induced Th1-type and Th2-type immune responses in allergic airway inflammation. However, the immunosuppressive effect of HGF in many other situations has not been fully clarified. In the present study, using a mouse model of collagen-induced arthritis (CIA) and experiments in vitro, we examined the effect of HGF on autoimmune arthritis and then elucidated the mechanisms of action of HGF. To achieve sufficient delivery of HGF, we used biodegradable gelatin hydrogels as a carrier. HGF suppressed Ag-induced T cell priming by regulating the functions of dendritic cells in the Ag-sensitization phase with down-regulation of IL-10. In contrast, under continuous Ag stimulation HGF induced IL-10-producing immunocytes both in vivo and in vitro. Moreover, HGF potently inhibited the development of CIA with enhancing the Th2-type immune response. We also confirmed that HGF significantly suppressed the production of IL-17 by immunocytes. These results indicate that HGF suppresses the development of CIA through different ways at different phases. They also suggest that HGF could be an attractive tool for treating patients with rheumatoid arthritis. The Journal of Immunology, 2007, 179: 5504–5513.
causes such as osteoarthritis (34–36). Moreover, RA synovial fluids induced a greater scattering of cells than did osteoarthritis synovial fluids (34). These reports indicate that HGF may play some role in RA. Because HGF is an angiogenesis factor, it might promote joint inflammation. In contrast, considering its immunosuppressive effect, HGF might suppress the development of Ag-induced arthritis. To date, it has not been studied whether HGF would suppress immune-mediated arthritis.

To determine the effect of HGF on autoimmune arthritis, we delivered HGF to mice and examined the effect on collagen-induced arthritis (CIA). We immunized mice with type II collagen (CII) and induced experimental arthritis. HGF was applied s.c. and delivered by gelatin-coupled controlled release to achieve a sustained and effective delivery. The T cell response to CII was analyzed in vitro, and arthritis was examined in vivo. HGF suppressed CII-induced T cell priming in the spleen and diminished the severity and incidence of arthritis with up-regulation of IL-10 and suppression of IL-17.

Materials and Methods

Mice

Male BALB/c mice (aged 6 wk) and DBA/1 mice (aged 7 wk) were obtained from Charles River Laboratories Japan. They were maintained under conventional animal housing conditions in a specific pathogen-free setting. All of the animal experiments conducted in this study were approved by the Animal Research Ethics Board of the Department of Allergy and Rheumatology, University of Tokyo, Tokyo, Japan.

ELISA

Concentrations of mouse IL-4, IL-10, IL-12p70, IFN-γ (BD Pharmingen), IL-23 (eBioscience), and CII-specific IgG (Chondrex) were measured using an ELISA kit following the manufacturer’s protocol. Concentrations of human HGF in the sera were measured using an IMMUNIS HGF enzyme immunoassay kit (Institute of Immunology, Tokyo, Japan). CII-specific IgG2a was measured with ELISA grade type II collagen (Chondrex) for capture and HRP-conjugated anti-mouse IgG2a Ab (BD Pharmingen) for detection. The average concentration of the sera from the control mice on day 40 was defined as 1000 ELISA unit (EU). Mouse IL-17 was measured by ELISA using purified rat anti-mouse IL-17 mAb for capture and biotinylated rat anti-mouse IL-17 mAb for detection (BD Pharmingen). The titers of samples for IL-17 were calculated by comparison with internal standards. On day 10 after sensitization, lymph node (LN) cells were obtained from mice sensitized with CII/CFA and restimulated in vitro with CII (10 μg/ml) for 4 days. The average concentration in the supernatants was defined as 1000 EU. Cell proliferation was measured by BrdU incorporation using a BrdU cell proliferation ELISA kit (Roche). The data were analyzed with Microplate Manager III, version 1.45 (Bio-Rad).

Preparation of gelatin microspheres incorporating HGF

Acidic gelatin hydrogel microspheres were prepared from gelatin with an isoelectric point of 5.0 (Nitta Gelatin) as reported previously (37, 38). The solution (5 mg/ml) of recombinant human HGF (rhHGF) (1, 2) was dropped onto 2 mg of gelatin microspheres and left at 37°C for 1 h so that the HGF could impregnate the microspheres. In a previous study, we confirmed that when this gelatin/rhHGF complex was s.c. injected into mice a controlled release of HGF was achieved based on hydrogel degradation and that the degradation occurred over 10 days (37). In the present study, gelatin or gelatin/rHGF were diluted in 100 μl of PBS and then injected into mice.

Conditions for cell culture

Throughout the present study complete DMEM was used as the medium for cell incubation as we previously reported (24, 39). Cells were incubated in a 96-well, flat-bottom, microtiter assay plate in an incubator (37°C with 5% CO2 and 90% humidity) for given periods.

Preparation of single cell suspensions of spleen and lymph node cells

Single cell suspensions of spleens and femoral lymph nodes were prepared as in previous reports (39).

Purification of mouse splenic CD4+ T cells and DCs

Mouse splenic CD4+ T cells were negatively selected using an anti-mouse CD4+ T cell isolation kit (Miltenyi Biotec). Mouse splenic DCs were positively selected using anti-mouse CD11c colloid superparamagnetic microbeads (Miltenyi Biotec) as reported previously (24, 39–41). The purity of CD4+ and CD11c+ cells, confirmed by flow cytometry, was >95% and >85%, respectively.

Protocol for OVA/alum-induced immune responses

BALB/c mice were sensitized with 2 μg of OVA (Sigma-Aldrich) in 2 mg of alum (Serva) on day 0 as reported previously (24, 39). Then, a few hours after the OVA/alum injection mice received a single s.c. injection of gelatin (2 mg) or a gelatin/rHGF complex (2 mg and 100 μg, respectively) in the dorsal skin. On day 10, spleen cells from each group of mice were collected and then restimulated in vitro with OVA. After 3 days of incubation with OVA at several concentrations, spleen cell proliferation was measured based on BrdU incorporation. After 4 days of incubation with OVA (100 μg/ml), cytokine concentrations in the supernatants were measured. CD4+ T cells (1 × 10⁶ cells/ml) were also negatively selected and then stimulated with PMA (1 ng/ml; Sigma-Aldrich) and ionomycin (0.1 μg/ml). After 2 days of incubation, IL-10 concentrations in the supernatants were measured.

Induction of CIA

CIA was induced as reported previously (42). In brief, CII (2 mg/ml in 0.05 M acetic acid) was emulsified with an equal volume of CFA (4 mg/ml; Chondrex). Mice were injected s.c. with 1–2 cm from the base of the tail with 100 μl of the emulsion on day 0. On day 21, the mice received a booster injection of the CII/JFA emulsion s.c. around the base of the tail. Mice also received s.c. injections of gelatin (2 mg) or gelatin/rHGF (100 μg) complex diluted in 100 μl of PBS on day 0 and every 10 days thereafter. The development of arthritis was assessed by inspection on day 25 and then every 2 to 3 days. The clinical severity of arthritis in each paw was quantified and analysed using a validated grading scale from 0 to 4 as follows: 0, no swelling; 1, swelling in one digit or mild edema; 2, moderate swelling affecting several digits; 3, severe swelling affecting most digits; and 4, the most severe swelling and/or ankylosis (42). A mean arthritis score was determined by summing the scores of all joints of all mice and dividing the result by the total number of mice in the group.

Histologic examination and ex vivo examination

Mice were killed on day 40 and the joints of the more severely swollen hind paw were obtained. Histologic examination of the joints was performed as reported previously (42). The pathologic condition was scored by two blinded examiners from the Sapporo General Pathology Institute (Sapporo, Japan) in four categories: cartilage, cellularity, pannus, and bone erosion. Each category was graded from 0 to 4 as follows: 0, normal; 1, minimal; 2, mild; 3, moderate; and 4, marked.

Protocol for ex vivo experiments in the CIA-induced immune responses

CIA was induced as described above. To examine the effect of HGF on immunocytes, a single cell suspension of spleen or femoral LN was prepared and cell responses (5 × 10⁶ cells/ml) in vitro CII restimulation (10 μg/ml) were examined on days 10, 20, and 40. To examine the effect of HGF on DCs, splenic DCs were also positively selected from each group of mice on days 10, 20, and 40, and the production of cytokines by DCs (1 × 10⁶ cells/ml) after LPS (1 μg/ml) stimulation for 2 days was examined. To examine the effect of DCs on CD4+ T cells, in some experiments, DCs were cocultured with CD4+ T cells in the medium. For analysis of the Ag-presenting capacity of DCs after mitomycin C treatment (10 μg/ml) for 35 min at 37°C to inhibit cell proliferation of DCs themselves, DCs (1 × 10⁶ cells/ml) and splenic CD4+ T cells (1 × 10⁶ cells/ml) from CII/CFA-sensitized control mice on day 10 were cocultured in the presence of CII (3 μg/ml). After 3 days of culture, cell proliferation was measured by BrdU incorporation. For analysis of the effect of DCs on cytokine production by CD4+ T cells, DCs from each group of mice and splenic CD4+ T cells were cocultured with CII (10 μg/ml) in the medium. After 4 days of culture, we examined cytokine production by CD4+ T cells. We also examined the effect of HGF on the cytokine profile of CD4+ T cells. CD4+ T cells purified from each group of mice on days 10, 20, and 40 were restimulated with PMA and ionomycin as described above. After 4 days of incubation with concentrations in the supernatants were measured after the indicated duration of incubation. To examine the effect of HGF in the presence of Ag on Ag-induced T cell activation, spleen cells (5 × 10⁶ cells/ml) obtained...
from CII/CFA-sensitized mice on day 10 were restimulated with CII (10 μg/ml) in the presence or absence of rhHGF at several concentrations. After 3 to 4 days of incubation, cytokine production was measured.

Flow cytometry
Expression of surface molecule on DCs obtained from each group of mice on day 10 was examined as reported previously (43) by flow cytometry (EPICS XL System II; Beckman Coulter). We also examined the expression of CD25 and Foxp3 in CD4⁺ T cells on days 10, 20, and 40. Staining of spleen or LN cells with anti-mouse CD4, CD25, and Foxp3 Abs was conducted following the manufacturer’s protocol. In brief, first the cells were stained with allophycocyanin-conjugated anti-mouse CD4 Ab and FITC anti-mouse CD25 Ab (BD PharMingen). Then, intracellular Foxp3 staining was conducted using anti-mouse Foxp3 Ab and fixation/permeabilization solution and permeabilization buffer contained in a mouse regulatory T cell staining kit (eBioscience). Then stained cells were analyzed by flow cytometry (EPICS Elite; Beckman Coulter).

RT-PCR
mRNA was extracted from CD4⁺ T cells by the acid- guanidium phenol chloroform method using Isogen (Nippon Gene). Then, RT-PCR was conducted as reported previously (39). PCR for GATA-3 consisted of 1 min of denaturation at 94°C, 1 min of annealing at 60°C, and 1 min of extension at 72°C for 18 cycles. PCR for β-actin consisted of 1 min of denaturation at 94°C, 1 min of annealing at 61°C, and 1 min of extension at 72°C for 26 cycles. PCR for GATA-3 was 5'-TCT GAGGAGGAAACGCTAATGG-3' and the antisense primer was 5'-GAACTCTTCGCACACTTGGAGACTC-3'. The sense primer for the transcription factor GATA-3 was 5'-TCT GAGGAGGAAACGCTAATGG-3' and the antisense primer was 5'-GAACCTTCCGACACTTGGAAGACTC-3'. The sense primer for β-actin was 5'-TGGAAATCTGTGGAATCCATGGAAC-3' and the antisense primer was 5'-TAAACACGCGCTACGTAAACGTCGG-3'. PCR products were electrophoresed in a 3% agarose gel, and the results were visualized by ethidium bromide staining.

Statistical analysis
Values are expressed as the mean ± SEM. The Mann-Whitney U test was used to analyze the clinical scores and histologic findings. The unpaired t test was used to analyze the other results. Values of p < 0.05 were considered to be significant.

Results
HGF significantly suppresses T cell priming induced by OVA/alum
Generally, exogenously administered HGF protein delivered by i.v. injection vanishes from organs within several hours (44). So, to achieve efficient delivery of HGF we used biodegradable gelatin hydrogels as a carrier for the CIA model and delivered the HGF/gelatin complex by s.c. injection (37). First, we examined the time course of HGF concentration in sera after s.c. injection of HGF protein, gelatin, or gelatin/rHGF complex. We confirmed that the more sustained release of HGF was achieved by s.c. injection of gelatin/rHGF complex compared with the injection of HGF protein alone (Table I). Then, we examined the effect of this gelatin/rHGF complex (designated HGF in figures) on OVA-induced immune responses. Spleen cells obtained from the mice treated with HGF demonstrated significantly reduced cell proliferation (Fig. 1A) and the production of IL-4 (Fig. 1B), IFN-γ (Fig. 1C), and IL-10 (Fig. 1D) upon stimulation with OVA-Ag. Then, we also confirmed that treatment with HGF in vivo significantly suppressed IL-10 production by CD4⁺ T cells in response to nonspecific stimulation, CD4⁺ T cells were negatively selected and then stimulated in vitro with PMA (1 ng/ml) and ionomycin (0.1 μg/ml) for 2 days. IL-10 concentrations in the supernatants were measured. Data were obtained from four wells per group of mice. ##, p < 0.01; and ###, p < 0.001 (vs control mice).
restimulated with CII (10

trol mice. A percentage of the response compared with that of spleen cells from con-

of incubation was measured by BrdU incorporation. Data are expressed as

We previously reported that HGF significantly suppressed DC

functions such as Ag presentation and cytokine production, thus

regulation of IL-10 production.

We also examined the effect of HGF on the production of IL-17 by T cells. The femoral LN cells from HGF-treated mice produced

significantly less IL-17 than those from control mice on days 10

(Fig. 5A) and 20 (Fig. 5B), although no significant difference was detected in spleens (data not shown).

Controlled release of HGF significantly suppresses development of CIA in mice

Then, we examined the effect of HGF on the development of experimental arthritis. DBA/1 mice were sensitized with CII/CFA on
day 0 and received a booster injection of CII/IFA on day 21. Mice received s.c. injections of gelatin or gelatin/rhHGF complex

on day 0 and every 10 days. The severity of the arthritis in the mice was scored on a scale of 0–4 for each limb. Progression of the

HGF up-regulates IL-10 production by immunocytes under continuous Ag stimulation

Next, we examined the effect of HGF on Ag-primed T cells using ex vivo and in vitro experiments. In ex vivo experiments, mice

were sensitized with CII/CFA on day 0, received gelatin or gelatin/
rhHGF complex on days 0 and 10, and spleen cells were collected

on day 20 from each group of mice. Then the spleen cells were

restimulated in vitro with CII. Spleen cells obtained from the mice

treated with HGF demonstrated significantly increased IL-10 production (Fig. 4A). The production of IFN-γ by spleen cells from

mice treated with HGF tended to decrease compared with that of cells from control mice (Fig. 4B). IL-4 production by spleen cells

from each group of mice was very low and did not differ between each group at this time point (data not shown). We also confirmed

that CD4+ T cells obtained on day 20 from the mice treated with HGF demonstrated significantly increased IL-10 production after

nonspecific PMA and ionomycin stimulation (Fig. 4C). Moreover, we examined the cytokine profile of splenic DCs purified on day

20 and found that IL-10 production by DCs from mice treated with HGF tended to increase compared with that of DCs from control

mice (Fig. 4D), while IL-12p70 production by DCs was as signif-

icantly suppressed by HGF as it was on day 10 (Fig. 4E). These results indicated that, under continuous Ag-stimulation, HGF

could induce IL-10-producing immunocytes including T cells and

DCs. To confirm this possibility, we then conducted in vitro studies. Spleen cells obtained on day 10 from CII/CFA-sensi-

tized mice were restimulated in vitro with CII in the presence or

absence of HGF in the medium. Like the treatment with HGF in

vivo, HGF in vitro significantly up-regulated IL-10 (Fig. 4F) production by splenocytes without affecting IFN-γ and IL-4 production (Fig. 4G).

HGF significantly suppresses Ag-induced DC activation

We previously reported that HGF significantly suppressed DC functions such as Ag presentation and cytokine production, thus

inhibiting OVA-induced not only Th2-type immune responses but also Th1-type immune responses (24). In the present study, we

examined the mechanism of immunosuppression by HGF in CII/

CFA-induced sensitization. DBA/1 mice were sensitized and
treated as described above, and on day 10 DCs were purified from

each group of mice. Then cytokine production by DCs after in

vitro LPS stimulation was examined. Treatment with the HGF

complex in vivo significantly suppressed the production of IL-10

(Fig. 3A), IL-12p70 (Fig. 3B), and IL-23 (Fig. 3C) by DCs after

LPS stimulation. Moreover, compared with DCs from control

mice, DCs from HGF-treated mice demonstrated a significantly
decreased capacity to induce the proliferation of CD4+ T cells

(Fig. 3D) and the production of IL-10 (Fig. 3E) and IFN-γ (Fig.

3F) from CD4+ T cells obtained from the CII/CFA-sensitized

mice in the presence of CII in the medium. Moreover, we also

confirmed that CD40 expression was reduced in DCs obtained

from HGF-treated mice compared with that in DCs from control

mice (Fig. 3G). These results suggested that HGF significantly

suppressed DC function in the early stages of the Ag-induced im-
mune response, thus suppressing Ag-induced CD4+ T cell

activation.

FIGURE 2. Controlled release of HGF in vivo potently suppresses T cell priming by CII/CFA. DBA/1 male mice were sensitized with CII/CFA and a few hours later, received a s.c. injection of gelatin (control) or gelatin/rhHGF (HGF) complex on day 0. On day 10, spleen cells were obtained from each group of mice and spleen cells (5 × 10⁶ cells/ml) were restimulated with CII (10 µg/ml) in vitro. A. Cell proliferation after 3 days of incubation was measured by BrdU incorporation. Data are expressed as a percentage of the response compared with that of spleen cells from control mice. B and C, Production of IFN-γ after 3 days of incubation (B) and IL-10 after 4 days of incubation (C) was measured by ELISA. Data were obtained from four wells per group of mice. **, p < 0.01 (vs control mice).

in vitro with CII. Spleen cells obtained from the mice treated with

HGF demonstrated significantly reduced cell proliferation (Fig. 2A) and IFN-γ production (Fig. 2B). The production of IL-10 by

spleen cells from mice treated with HGF also tended to decrease compared with that by cells from control mice (Fig. 2C). At this

time point, IL-4 production was very low. We obtained almost the

same results using femoral LN cells instead of spleen cells (data

not shown). In preliminary experiments, we confirmed that the s.c.
injection of HGF protein (10 µg/mouse/day) once daily on days

0–9 had no effect on CII/CFA-induced T cell priming (data not

shown). These results indicated that the controlled release of HGF

using the gelatin/rhHGF complex could suppress Ag-induced T cell priming independently of the kind of Ag and mouse strain and that this immunosuppressive effect might be exhibited without up-

regulation of IL-10 production.

HGF up-regulates IL-10 production by immunocytes under continuous Ag stimulation

These results indicated that, under continuous Ag-stimulation, HGF

could induce IL-10-producing immunocytes including T cells and

DCs. To confirm this possibility, we then conducted in vitro studies. Spleen cells obtained on day 10 from CII/CFA-sensi-

tized mice were restimulated in vitro with CII. Spleen cells obtained from mice treated with HGF tended to decrease compared with that of cells from control mice (Fig. 4B). IL-4 production by spleen cells from each group of mice was very low and did not differ between each group at this time point (data not shown). We also confirmed that CD4+ T cells obtained on day 20 from the mice treated with HGF demonstrated significantly increased IL-10 production after nonspecific PMA and ionomycin stimulation (Fig. 4C). Moreover, we examined the cytokine profile of splenic DCs purified on day

20 and found that IL-10 production by DCs from mice treated with HGF tended to increase compared with that of DCs from control

mice (Fig. 4D), while IL-12p70 production by DCs was as signif-

icantly suppressed by HGF as it was on day 10 (Fig. 4E). These results indicated that, under continuous Ag-stimulation, HGF

could induce IL-10-producing immunocytes including T cells and

DCs. To confirm this possibility, we then conducted in vitro studies. Spleen cells obtained on day 10 from CII/CFA-sensi-

tized mice were restimulated in vitro with CII in the presence or

absence of HGF in the medium. Like the treatment with HGF in

vivo, HGF in vitro significantly up-regulated IL-10 (Fig. 4F) production by splenocytes without affecting IFN-γ and IL-4 production (Fig. 4G).

HGF significantly reduces IL-17 production by T cells

We also examined the effect of HGF on the production of IL-17 by T cells. The femoral LN cells from HGF-treated mice produced

significantly less IL-17 than those from control mice on days 10

(Fig. 5A) and 20 (Fig. 5B), although no significant difference was detected in spleens (data not shown).
Arthritis was evaluated until day 39 after immunization. On day 40, the most severely swollen hind paw was obtained from each mouse, and a histologic examination was conducted. HGF treatment significantly suppressed the severity (Fig. 6A) and incidence (Fig. 6B) of CII-induced arthritis. Histologic examination demonstrated that HGF potently reduced articular destruction such as cartilage destruction, synovial hypertrophy, pannus formation, and arthritis was evaluated until day 39 after immunization. On day 40, the most severely swollen hind paw was obtained from each mouse, and a histologic examination was conducted. HGF treatment significantly suppressed the severity (Fig. 6A) and incidence (Fig. 6B) of CII-induced arthritis. Histologic examination demonstrated that HGF potently reduced articular destruction such as cartilage destruction, synovial hypertrophy, pannus formation, and pannus formation.
HGF protein (10 μg/mouse/day) once daily on days 0–40 had no suppressive effect on the development of CII-induced arthritis (data not shown). These results indicated that controlled release of HGF could suppress Ag-induced arthritis.

Continuous treatment with HGF during Ag-induced chronic inflammation enhances Th2-type immune responses

Finally, we elucidated the mechanism of suppression by HGF in the chronic phase of arthritis. Mice were sensitized and then treated as described above. On day 40, spleen cells were obtained from each group of mice and restimulated in vitro with CII. Spleen cells obtained on day 40 from the mice treated with HGF demonstrated significantly reduced cell proliferation (Fig. 7A) and enhanced IL-10 production (Fig. 7B) in response to in vitro CII re-stimulation. Interestingly, in this chronic phase of Ag-induced arthritis, HGF significantly reduced CII-specific total IgG (Fig. 6G) and IgG2a (Fig. 6H) production. In a preliminary experiment, we confirmed that the s.c. injection of HGF (10 μg/mouse/day) once daily on days 0–40 had no suppressive effect on the development of CII-induced arthritis (data not shown). These results indicated that controlled release of HGF could suppress Ag-induced arthritis.

![Figure 5](http://www.jimmunol.org/)
FIGURE 5. Treatment with gelatin/HGF complex in vivo potently suppresses IL-17 production. Mice were sensitized with CII/CFA and a few hours later received a s.c. injection of gelatin (control) or gelatin/rhHGF complex on day 0. On day 10, femoral LN cells were obtained from each group of mice. Some mice also received additional treatment with gelatin (control) or gelatin/rhHGF complex on day 10 and femoral LN cells were obtained on day 20. Then the cells obtained on the indicated days were restimulated with CII (10 μg/ml) in vitro for 4 days and IL-17 concentrations in the supernatants were measured. IL-17 production by LN cells obtained from control mice on day 10 was defined as 1000 EU. A, IL-17 production by LN cells obtained on day 20. B, IL-17 production by LN cells obtained on day 20. ##, p < 0.01 (vs control mice).

![Figure 6](http://www.jimmunol.org/)
FIGURE 6. Treatment with gelatin/HGF complex in vivo significantly suppresses development of CIA. Arthritis was induced in DBA/1 mice by immunization with CII in Freund’s incomplete adjuvant. Mice also received gelatin (control) or gelatin/rhHGF complex (HGF) on day 0. On day 10, femoral LN cells were obtained from each group of mice. Some mice also received additional treatment with gelatin (control) or gelatin/rhHGF complex on day 10 and femoral LN cells were obtained on day 20. Then the cells obtained on the indicated days were restimulated with CII (10 μg/ml) in vitro for 4 days and IL-17 concentrations in the supernatants were measured. Data were obtained from four wells per group. #, p < 0.05 (vs control mice). A, Arthritis scores in the two groups. Clinical scores were determined as described in Materials and Methods. B, Incidence of arthritis in the two groups. C–F, H&E staining of representative hind paws from control mice (C and D) and mice treated with gelatin/HGF complex (E and F). Original magnification: ×16 for C and D and ×32 for E and F. G and H, CII-specific total IgG (G) and IgG2a (H) concentration in the sera obtained from each group of mice on day 40. Data were obtained from nine mice per group. #, p < 0.05; ##, p < 0.01 (vs control mice).

![Figure 7](http://www.jimmunol.org/)
FIGURE 7. In vivo treatment with gelatin/HGF complex (HGF) in the presence of persistent Ag stimulation enhances Ag-specific Th2-type immune responses. Mice were treated as described in Fig. 6. On day 40, spleen cells were collected from each group of mice. A–E, Spleen cell responses to in vitro CII (10 μg/ml) stimulation were examined. A, Cell proliferation after 3 days of incubation. Data are expressed as a percentage of the response compared with that of spleen cells from control mice. B–E, Concentrations of IL-10 (B) and IL-4 (C) after 5 days of incubation, IFN-γ after 4 days of incubation (D), and IL-17 (E) after 3 days of incubation in the supernatants were measured. Data were obtained from four wells per group of mice. #, p < 0.05; ##, p < 0.01; and ###, p < 0.001 (vs spleen cells from control mice).
immune response, spleen cells obtained from control mice produced a significant amount of IL-4 in response to Ag restimulation, and spleen cells from HGF-treated mice demonstrated significantly enhanced production of IL-4 after Ag restimulation (Fig. 7C) with down-regulation of cytokine production for IFN-γ (Fig. 7D) and IL-17 (Fig. 7E). Further, the cytokine profiles of CD4+ T cells from each group of mice after PMA and ionomycin stimulation (Fig. 8, A–D) were the same as those of spleen cells after CII restimulation (Fig. 7, B–E). We also confirmed that treatment with HGF enhanced mRNA expression of the transcription factor GATA-3, which is known as a master gene for Th2 cell development (45), in splenic CD4+ T cells obtained on day 40 (Fig. 8E). Moreover, we found that continuous treatment with HGF in vivo significantly increased IL-10 production (Fig. 8F) and decreased IL-12p70 production (Fig. 8G) by DCs after LPS stimulation. These results indicated that repeated treatment with HGF in chronic inflammation could induce Th2-type immune responses with up-regulation of IL-10 production by DCs.

Discussion

The results of the present study clearly demonstrated that HGF strongly suppresses collagen-induced immune responses, thus attenuating experimental arthritis. In the early phase, systemic delivery of HGF suppressed the activation of DCs in the spleen that was provoked by sensitization with CII, thus down-regulating CII-induced CD4+ T cell activation. During continuous Ag stimulation, HGF up-regulated IL-10 production by immunocytes. Further, the delivery of HGF attenuated the severity and incidence of arthritis in the CIA model with down-regulation of IL-17 production. To our knowledge, this is the first report that clearly demonstrates the effect of HGF on immune-mediated arthritis.

The presentation of Ag by APCs to T cells initiates the differentiation of naive Th cells into the effector T cells. During the differentiation into each phenotype such as Th1, Th2, or regulatory T cells (Treg), the expression of costimulatory molecules on APCs and the cytokine profile produced by APCs play a critical role (46). Among various APCs, DCs are most efficient and crucial (47).

Recent articles reported the effect of HGF on DC functions (24, 48). Rutella et al. (48) reported that, in vitro experiments, HGF suppresses alloantigen-presenting capacity, modulates the costimulatory molecule expression and cytokine production of DCs, and generates DCs that induce Treg cells (“tolerogenic DCs”). In contrast, we reported that HGF potently suppresses Ag-presenting capacity and IL-12p70 production of DCs, thus inhibiting the development of both Th1- and Th2-type immune responses induced by OVA (24).

In the present study, we confirmed that treatment with HGF in vivo suppressed the production of both IL-10 and IL-12p70 by CII/CFA-induced DCs (Fig. 3, A and B). When the DCs and CD4+ T cells were cocultured in the presence of CII, DCs from HGF-treated mice showed a reduced capacity to present Ag to CD4+ T cells (Fig. 3D) and to induce IFN-γ and IL-10 production by CII/CFA-primed CD4+ T cells compared with DCs obtained from CII/CFA-sensitized control mice (Fig. 3F). Moreover, we also found that HGF decreased CD40 expression on DCs (Fig. 3G), which was consistent with our previous study (24). We also confirmed that HGF potently inhibited CII/CFA-induced T cell priming (Fig. 2). Based on these results, in a situation such as Ag-induced T cell priming in which DCs play an essential role, HGF would suppress immune responses through down-regulation of DC function.

Then, with continuous Ag stimulation, HGF up-regulated IL-10 production by immunocytes including T cells (Fig. 4, A, C, and F). IL-10 is an immunosuppressive and regulatory cytokine (49–51). This is consistent with a recent report that HGF reduced acute and chronic rejection of allografts with the increased expression of IL-10 in a mouse model of allogeneic heart transplantation (22). The exact mechanism of induction of IL-10-producing T cells remains unclear. Generally, exogenous IL-10 itself plays an important role in the induction of IL-10-producing T cells (50, 51). In our study, HGF did not directly increase IL-10 production when added to cocultures of DCs and CD4+ T cells obtained from CII/CFA-sensitized control mice on day 10 in the presence of CII (data not shown). HGF did not increase PMA and ionomycin-induced production of IL-10 by CD4+ T cells obtained from CII/CFA-sensitized mice (data not shown). Moreover, to clarify whether IL-10 was produced by Foxp3+ Treg cells, we also examined the percentage and the absolute number of CD4+ (CD25+ Foxp3+ cells in the spleens or draining LNs of each group of mice on days 10, 20, and 40. We found that treatment with HGF in vivo did not
increase CD4\(^+\)Foxp3\(^+\) Treg cells in spleens and LNs in the present study (data not shown). Treatment of splenocytes with HGF in vitro during CII restimulation did not increase Foxp3\(^+\) Treg cells either. In contrast, repeated treatment with HGF in vivo gradually increased IL-10 production by DCs (Figs. 4D and 8F). These results indicated that the augmented IL-10 production by CD4\(^+\) T cells was not mediated by Foxp3\(^+\) Treg cells but, at least in vivo, by up-regulation of IL-10 production by DCs after repeated HGF treatment. The precise mechanism of induction of IL-10-producing CD4\(^+\) T cells by HGF is not clear at present and should be further investigated.

IL-10 also enhances the formation of Th2 cells by down-regulating IL-12 production by DCs (52). Moreover, some reports also emphasize the importance of IL-10 in the induction of Th2 cells (53, 54). As described above, after T cells were primed with Ag, HGF in the presence of continuous Ag stimulation increased IL-10 production by immunocytes, including DCs, along with suppression of IL-12 production by DCs (Figs. 4, 7, and 8), indicating that under continuous Ag stimulation HGF could induce Th2-type immune responses in the chronic phase. In fact, in the chronic phase of CII-induced immune responses, repeated treatment with HGF up-regulated both IL-4 and IL-10 production in T cells (Figs. 7 and 8). These results were consistent with a recent report that HGF ameliorates the progression of experimental autoimmune myocarditis with the induction of Th2 cytokines (23). We also confirmed that HGF enhanced mRNA expression of GATA-3, which specifies Th2 cell development, in CD4\(^+\) T cells in the chronic inflammatory phase (Fig. 8E). Th2-type immune responses suppress Th1-type immune responses (55), and a recent study reported that IL-4 significantly suppresses the development of Th17 cells, a new subset of effector CD4\(^+\) T cells distinct from Th1 or Th2 cells (56). However, in the current study we found that neutralization of IL-4 in vitro did not increase IL-17 production by splenocytes after CII restimulation (data not shown). Collectively, HGF would enhance Th2-type immune responses in chronic inflammation, thus inhibiting both Th1- and Th17-type responses at least in vivo.

Recent studies clarified that IL-17 produced by Th17 cells has a crucial role in the induction of autoimmune tissue injury (30–32, 57, 58). Accumulating evidence indicates that IL-17 plays an essential role not only in the induction of autoimmune arthritis (30, 31) but also in the subsequent bone destruction (32). In the current study, HGF potently suppressed IL-17 production by draining LN cells after in vitro CII restimulation in the early stage of Ag-induced immune responses (Fig. 5). Further, in addition to the sensitization phase, even in the chronic inflammation phase with joint destruction HGF significantly suppressed IL-17 production by spleen cells (Fig. 7E). Moreover, HGF significantly suppressed DC production of IL-23 (Fig. 3C), which is now recognized as a very important cytokine for IL-17 secretion from activated CD4\(^+\) T cells (57, 59). These results indicated that HGF would be beneficial in treating autoimmune arthritis.

TGF-\(\beta\) is an immunosuppressive growth factor. Some phenotypes of T cells function as Treg cells by producing TGF-\(\beta\). In contrast, the role of TGF-\(\beta\) in the induction of the Th17 cell lineage to promote an autoimmune response has been recently highlighted (52, 60, 61). Generally, HGF counteracts the biological functions of TGF-\(\beta\) such as promoting fibrosis (13, 14). In the immune response, however, the relation between HGF and TGF-\(\beta\) differs among experimental systems. HGF suppresses acute and chronic rejection in a mouse model of cardiac allograft transplantation with unexpectedly enhanced expression of TGF-\(\beta\) mRNA (22). In contrast, in allergic airway inflammation HGF did not up-regulate TGF-\(\beta\) production in the lung (24). In the present study on arthritis, HGF reduced mRNA expression of TGF-\(\beta\) in CD4\(^+\) T cells at both early and chronic phases (data not shown).

Generally, exogenously administered HGF proteins vanish from organs within several hours (44). In a preliminary study, we confirmed that s.c. injection of HGF protein (10 \(\mu\)g per mouse) once daily failed to suppress the Ag-induced T cell priming and development of CII-induced arthritis (data not shown). Previously, we used a hydrodynamic-based transfer system to deliver HGF effectively and confirmed that a slight but continuous up-regulation of HGF protein in the sera potentially suppressed OVA/alum-induced T cell priming and allergic airway inflammation (24). However, this delivery system could not be applied to an experimental model of arthritis due to an anatomical narrowing of the tail vein provoked by injection of CII/CFA into the subcutis of the tail. Thus, to achieve a controlled release of HGF, we adopted biodegradable gelatin hydrogels as carriers of HGF. We previously confirmed that when this gelatin/HGF complex was s.c. injected into mice, HGF was delivered under a controlled release based on hydrogel degradation and that the degradation occurred over 10 days (37). We reconfirmed that controlled release of HGF was achieved using a gelatin/rHGF complex by examining the time course of concentration of HGF in the sera (Table I). In this study, the controlled release of HGF potently suppressed Ag-induced T cell priming and development of CII-induced arthritis. Thus, gelatin hydrogels would be an ideal carrier for HGF to exhibit its biological effects, and further application in various models can be expected.

Pulmonary fibrosis is often associated with RA and is one of the major causes of death in RA patients (62). To date, several articles, including our own, reported that HGF inhibits the progression of experimental pulmonary fibrosis (15, 63, 64). Considering the simultaneous effect on pulmonary fibrosis and arthritis, HGF could be an attractive tool in treating RA with pulmonary involvement in a clinical situation. In contrast, in the clinical use of HGF the possibility of promoting tumor progression should be considered. Therefore, for practical usage of HGF in clinical situations further studies should be performed.

In summary, our results in the present study indicated that HGF could exhibit its immunosuppressive effects in different manners at different stages of immune response. In the early phase of Ag-induced immune responses HGF potently suppressed DC function, thus inhibiting T cell priming by Ag. In contrast, during chronic inflammation HGF gradually increased IL-10 production by DCs, which subsequently induced IL-10 producing T cells and Th2-type immune responses. The precise mechanism should be further investigated in detail.

Acknowledgment

We thank K. Kurokaki for technical assistance.

Disclosures

The authors have no financial conflict of interest.

References

