Cutting Edge: IL-4-Mediated Protection of Primary B Lymphocytes from Apoptosis via Stat6-Dependent Regulation of Glycolytic Metabolism

Fay J. Dufort, Blair F. Bleiman, Maria R. Gumina, Derek Blair, Dean J. Wagner, Mary F. Roberts, Yousef Abu-Amer and Thomas C. Chiles

J Immunol 2007; 179:4953-4957; doi: 10.4049/jimmunol.179.8.4953
http://www.jimmunol.org/content/179/8/4953

References This article cites 24 articles, 15 of which you can access for free at:
http://www.jimmunol.org/content/179/8/4953.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Cutting Edge: IL-4-Mediated Protection of Primary B Lymphocytes from Apoptosis via Stat6-Dependent Regulation of Glycolytic Metabolism

Fay J. Dufort,* Blair F. Bleiman,* Maria R. Gumina,* Derek Blair,* Dean J. Wagner,§ Mary F. Roberts,† Yousef Abu-Amer,‡ and Thomas C. Chiles2*

IL-4 prevents the death of naive B lymphocytes through the up-regulation of antiapoptotic proteins such as Bcl-xL. Despite studies implicating glucose utilization in growth factor-dependent survival of hemopoietic cells, the role of glucose energy metabolism in maintaining B cell viability by IL-4 is unknown. We show that IL-4 triggers glucose uptake, Glut1 expression, and glycolysis in splenic B cells; this is accompanied by increased cellular ATP. Glycolysis inhibition results in apoptosis, even in the presence of IL-4. IL-4-induced glycolysis occurs normally in B cells deficient in insulin receptor substrate-2 or the p85α subunit of PI3K and is not affected by pretreatment with PI3K or MAPK pathway inhibitors. Stat6-deficient B cells exhibit impaired IL-4-induced glycolysis. Cell-permeable, constitutively active Stat6 is effective in restoring IL-4-induced glycolysis in Stat6-deficient B cells. Therefore, besides controlling antiapoptotic proteins, IL-4 mediates B cell survival by regulating glucose energy metabolism via a Stat6-dependent pathway. The Journal of Immunology, 2007, 179: 4953–4957.

Naive lymphocytes require extrinsic signals to maintain viability and promote growth. Many prosurvival factors prevent death through the up-regulation of antiapoptotic Bcl-2 family proteins (1, 2). These proteins function, in part, to maintain mitochondrial membrane integrity (2, 3). The role of the mitochondria in apoptosis and glucose metabolism suggests that these two cellular processes may be coupled (4–6). Indeed, a growing body of evidence indicates that impaired glycolysis may limit the oxidizable substrate availability needed to maintain mitochondrial membrane potential, thereby triggering apoptosis (2, 3, 5).

IL-4 is a pleiotropic cytokine that acts on naive B cells to prevent cell death (7–9). Binding of IL-4 to its receptor (IL-4R) results in the activation of several signal transduction cascades, including the JAK1 and JAK3 tyrosine kinases (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1 and JAK3 phosphorylate tyrosine residues in the cytoplasmic domain of the IL-4Rα that serve as docking sites for Stat6 (7, 10). JAK1

Materials and Methods

Reagents

Anti-Stat6 (Tyr641), anti-phospho-ATF2 (Thr71), and anti-phospho-p44/42 MAPK (Thr202/Tyr204) Abs were from Cell Signaling Technology. The anti-Glut1 Ab was from Research Diagnostics. PE-conjugated F(ab’2) of goat anti-mouse IgG and IgM (anti-Ig) were obtained from Jackson ImmunoResearch Laboratories. Mouse IL-4 was from R&D Systems. LPS was from Sigma-Aldrich. All other reagents were from Calbiochem-Novabiochem International. Cellular ATP was determined using the ATP determination kit from Molecular Probes.

B cell isolation

BALB/cByJ and p85α-deficient mice (BALB/cAnNTac-Pik3r1 N12, backcrossed nine times) were obtained from Taconic Farms. Stat6-deficient mice

1 This work was supported by U. S. Public Health Service Grants AI60896 and AI49994. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of the Navy, the Department of Defense, or the U. S. Government.

2 Address correspondence and reprint requests to Dr. Thomas C. Chiles, Department of Biology and Department of Chemistry, Boston College, Chestnut Hill, MA 02467, or to Dr. Mary F. Roberts, Department of Biology and Department of Chemistry, Boston College, Chestnut Hill, MA 02467. E-mail address: ChilesT@bc.edu

3 Abbreviations used in this paper: IRS-2, insulin receptor substrate-2; 1D-HMQC, one-dimensional heteronuclear multiple quantum correlation; 2DG, 2-deoxy-D-glucose; WT, wild type.
Glucose uptake was measured by monitoring the uptake of 3H-labeled 2-deoxy-D-glucose (Amersham Biosciences) as previously described (15). Glycolysis was followed by the incubation of B cells (10^6 cells per 0.5 ml) with [5-3H]glucose (Amersham Biosciences) for 90 min. B cells (100 μl) were removed and placed in 1.5-ml microcentrifuge tubes containing 100 μl of 0.2 N HCl. The production of 3HOH resulting from enolase-mediated dehydration of [5-3H]glucose was quantitated by evaporation diffusion (25°C) as previously described (15). Cells were then analyzed on a BD FACSCanto flow cytometer (BD Biosciences).

Flow cytometry

Apoptosis measurements were conducted by TUNEL according to the manufacturer’s instructions (BD Biosciences Pharmingen). For Glut1 staining, B cells were washed twice in staining buffer (1 ml of PBS containing 1% FCS and 0.1% NaN3) and then incubated for 20 min (4°C) with the anti-CD16/CD32 (clone 2.4G2) mAb Fc block reagent (1:500 v/v). Cells were washed twice in staining buffer and incubated for 60 min with 1/500 dilution of anti-Glut1 Ab or isotype control Ab (4°C) followed by incubation with PE-conjugated F(ab′)2 of goat anti-rabbit IgG (1/800) as described (15). Cells were then analyzed on a BD FACSCanto flow cytometer (BD Biosciences).

Glucose utilization measurements

Glucose uptake was measured by monitoring the uptake of 3H-labeled 2-deoxy-D-glucose (2-DG) (Amersham Biosciences) as previously described (15). Glycolysis was followed by the incubation of B cells (10^6 cells per 0.5 ml) with [5-3H]glucose (Amersham Biosciences) for 90 min. B cells (100 μl) were removed and placed in 1.5-ml microcentrifuge tubes containing 100 μl of 0.2 N HCl. The production of 3HOH resulting from enolase-mediated dehydration of [5-3H]glucose was quantitated by evaporation diffusion (25°C) as previously described (4, 15).

One-dimensional heteronuclear multiple quantum coherence (1D-HMQC)

B cells (10^6) were cultured in RPMI 1640 containing 10 mM [1-13C]glucose or [2-13C]glucose (Cambridge Isotope Laboratories). At the indicated times, B cells were extracted with 70% (v/v) ethanol, the extract was subsequently frozen in liquid nitrogen and lyophilized. The dry material was resuspended in 0.5 ml of D2O and the 1D-HMQC spectra (detecting only those protons coupled to 13C) were acquired using an INOVA 500 spectrometer (Varian) as described (15).

TAT-Stat6 construct

Stat6 constructs were cloned into the pTAT-HA bacterial expression vector as described by Hirayama et al. (17). To generate an active form of Stat6 in which Stat6AAGCC-3(H11032)/H11032(5-GCTCATTGAGGAGAAGGCTAGCGGCATAT TGCTTACTAATA-H11032) was used: Stat6-VT_F (5-GCTCATTGGAGGAGAAGGCTAGCGGCATAT TGCTTACTAATA-H11032); forward) and Stat6-VT_R (5-GCTCATTGGAGGAGAAGGCTAGCGGCATAT TGCTTACTAATA-H11032-reverse). TAT-Stat6WT and TAT-Stat6 wild type (TAT-Stat6WT) fusion proteins were produced in BL21 Escherichia coli and purified as previously described (17).

Results and Discussion

IL-4 modulates glucose metabolism in B cells

We initially determined whether IL-4 modulates the acquisition of extracellular glucose in B cells. IL-4 treatment of small dense B cells resulted in an approximate 7-fold increase in glucose uptake (Fig. 1A). We also evaluated the metabolic fate of glucose to determine whether IL-4 modulates glucose catabolism. To monitor glycolysis, the production of 3HOH resulting from the dehydration of [5-3H]glucose catalyzed by enolase was measured (3, 15). B cells exhibited a measurable baseline rate of glycolysis, which was increased ~5-fold by IL-4 (Fig. 1C). Nuclear magnetic resonance spectroscopy was also used to monitor 13C fixation from [1-13C]glucose into glycolytic metabolites (15). A 1D-HMQC sequence to select only those 1H coupled to 13C nuclei revealed enhanced glycolysis during an initial 31-h period of IL-4 stimulation as evidenced by the increased 13C incorporation into the methyl group of lactate from [1-13C]glucose (Fig. 1D). If [2-13C]glucose is used instead of [1-13C]glucose, there will be no 13C incorporation into the lactate methyl group by the glycolytic pathway; however, if the pentose phosphate pathway is operational 13C will be incorporated into the methyl group of lactate (15). B cells cultured in [2-13C]glucose revealed no substantial glucose flux through the pentose phosphate pathway following IL-4 treatment (Fig. 1D). The increase in glycolysis was accompanied by a 2-fold increase in cellular ATP concentration in B cells treated with IL-4 (ATP levels in naive B cells corresponded to 8.6 nM; ATP levels in IL-4-stimulated B cells were increased ~2-fold).

![FIGURE 1](http://www.jimmunol.org/)
for 18 and 22 h corresponded to 12.0 nM, and 17.7 nM, respectively). Taken together, these results indicate that glucose uptake and metabolism via the glycolytic pathway is up-regulated by IL-4.

Glycolysis contributes to IL-4-mediated survival of B cells

To determine whether increased glycolytic flux by IL-4 contributed to the rescue of naïve B cells from apoptosis by IL-4, we used the glycolysis inhibitor 2-DG, which can be phosphorylated by hexokinase but not further metabolized by glycolytic enzymes (18). 2-DG was added to B cells at the start of culture with IL-4, and at various times B cells were harvested and viability was determined by propidium iodide exclusion. B cells cultured in the absence of IL-4 exhibited decreased viability over time, whereas the addition of IL-4 was sufficient to provide substantial protection from death (Fig. 2A). By contrast, 2-DG reduced the percentage of viable B cells in cultures containing IL-4 (Fig. 2A). The decreased cell viability was representative of apoptosis, as demonstrated in parallel 2-DG-treated, IL-4-stimulated B cells by a TUNEL assay (Fig. 2B).

IL-4-induced glucose utilization does not require IRS-2 or PI3K activity

To evaluate the contribution of PI3K activity to IL-4-induced glycolysis, B cells were cultured with the PI3K inhibitor wortmannin, and the effect on glycolysis following the addition of IL-4 was measured. Wortmannin did not significantly decrease IL-4-induced glycolysis in comparison to IL-4-stimulated B cells cultured without wortmannin (Fig. 3A). The efficacy of wortmannin as an inhibitor of endogenous PI3K activity was confirmed in that IL-4-stimulated Akt Ser173 phosphorylation was blocked (Fig. 3A, inset). The requirement for PI3K activity in IL-4-induced glycolysis was further evaluated in B cells deficient in the p85α-regulatory subunit of PI3K (19). Increased glycolytic flux was not significantly impaired in IL-4-treated, p85α-deficient B cells in comparison to WT cells (Fig. 3B). As a control, enhanced glycolysis following anti-Ig stimulation was reduced in p85α-deficient B cells (Fig. 3B), an event shown previously to be dependent on the p85α subunit (15). Of note, p85α-deficient B cells exhibited impaired IL-4-induced Akt phosphorylation (Fig. 3C). We also observed no measurable difference in IL-4-induced glycolysis between WT and IRS-2-deficient B cells (Fig. 3B, inset). Collectively, these results suggest that IRS-2/PI3K signaling is dispensable for IL-4-induced glycolysis in B cells.

A recent report implicated p38 MAPK in IL-4 signaling of B cells (20). To investigate whether p38 MAPK activity was required for IL-4-induced glycolysis, B cells were pretreated with SB203580, an inhibitor of p38 MAPK, before stimulation with IL-4. We found that SB203580 had no significant effect on the increase in glycolysis by IL-4 (Fig. 4A). The possibility that ERK signaling may contribute to IL-4-induced glycolysis was...
Increased glycolysis by IL-4 requires signaling through Stat6

To determine whether IL-4 induces glucose utilization in a Stat6-dependent manner, glycolytic flux from WT and Stat6-deficient splenic B cells was evaluated. IL-4-induced glycolysis was significantly reduced in Stat6-deficient B cells in comparison to WT B cells (Fig. 4C). We note that 12 h following IL-4 stimulation there remained an approximate 2-fold increase in glycolysis (in comparison to control Stat6-deficient B cells), suggesting the presence of a Stat6-independent pathway. Currently, the identity of this pathway is unknown. IL-4-induced Akt phosphorylation on Ser173 was intact in Stat6-deficient B cells (data not shown). Notwithstanding, these findings suggest that Stat6 is indispensable for IL-4-induced glycolytic catabolism in B cells. To test this further, we determined whether the reconstitution of Stat6-deficient B cells with WT Stat6 was sufficient to rescue IL-4-induced glycolysis. A TAT-Stat6WT protein was generated that contains a short peptide sequence from the HIV TAT protein (17). The TAT sequence confers the ability to rapidly and efficiently (>90%) transduce proteins into mammalian cells (21). IL-4 was capable of inducing glycolysis in ex vivo Stat6-deficient splenic B cells reconstituted with TAT-Stat6WT (Fig. 4D). We also evaluated the effects on glycolysis with a constitutively active form of Stat6 (TAT-Stat6VT), which has been shown to bind DNA and to activate transcription in the absence of IL-4 stimulation (17). The addition of TAT-Stat6VT to Stat6-deficient B cells was sufficient to increase glycolytic flux in the absence of IL-4 stimulation (Fig. 4D). Interestingly, this level of glycolysis surpassed that of IL-4-stimulated Stat6-deficient B cells reconstituted with TAT-Stat6WT.

The findings reported herein represent the first demonstration that IL-4 signaling regulates glucose energy metabolism in primary B cells. The data also point to a critical role for glycolytic metabolism in maintaining primary B cell viability. Our findings raise the intriguing question as to why increased glucose uptake and glycolytic metabolism is required for the survival pathway driven by IL-4. One possibility is that, in the absence of IL-4, B cells cannot import and use glucose to levels sufficient to maintain normal housekeeping functions such as maintenance of ionic integrity and volume regulation (22). Indeed, restricting glycolytic metabolism results in a failure to maintain cellular homeostasis, eventually triggering apoptosis (2, 3, 5).

Interestingly, we find that IRS-2 and PI3K activity are dispensable for IL-4-induced glycolytic flux. Our results differ from reports demonstrating a role for PI3K activity in the survival of T cells and IL-3-dependent hemopoietic cell lines (2, 3, 14). This discrepancy may point to inherent differences in the prosurvival signaling pathways used by B cells and these other cell types. In keeping with this, we have identified a heretofore unknown function of Stat6-dependent signaling in regulating glucose energy metabolism. The molecular basis underlying Stat6-dependent up-regulation of glycolytic flux is currently unknown. It is plausible that Stat6 may control the transcriptional activation of genes encoding glycolytic enzymes in response to IL-4. In support of this, recent gene expression profiling studies have revealed increased levels of transcripts encoding several glycolytic enzymes following IL-4 treatment of B cells (23). It is also possible that members of the Pim family of serine/threonine kinases, which are downstream targets of
IL-4-mediated Stat6 signaling, may regulate glucose energy metabolism via the phosphorylation of rate-limiting glycolytic enzymes (5, 24). Additional studies will be required to delineate the regulatory functions of Stat6 in glycolytic homeostasis.

Acknowledgments
We thank Dr. Morris F. White (Howard Hughes Medical Institute, Children’s Hospital Boston, Harvard Medical School, Boston, MA) for the IRS-2-deficient splenic tissue.

Disclosures
The authors have no financial conflict of interest.

References