Functional Transient Receptor Potential Melastatin 7 Channels Are Critical for Human Mast Cell Survival

Rob C. E. Wykes, Moonhee Lee, S. Mark Duffy, Weidong Yang, Elizabeth P. Seward and Peter Bradding

J Immunol 2007; 179:4045-4052; doi: 10.4049/jimmunol.179.6.4045
http://www.jimmunol.org/content/179/6/4045

References
This article cites 40 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/179/6/4045.full#ref-list-1

Subscription
Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Functional Transient Receptor Potential Melastatin 7 Channels Are Critical for Human Mast Cell Survival

Rob C. E. Wykes,1,8† Moonhee Lee,7 S. Mark Duffy,6 Weidong Yang,5 Elizabeth P. Seward,2,3† and Peter Bradding2,2*

Mast cells play a significant role in the pathophysiology of many diverse diseases such as asthma and pulmonary fibrosis. Ca2+ influx is essential for mast cell degranulation and release of proinflammatory mediators, while Mg2+ plays an important role in cellular homeostasis. The channels supporting divalent cation influx in human mast cells have not been identified, but candidate channels include the transient receptor potential melanin (TRPM) family. In this study, we have investigated TRPM7 expression and function in primary human lung mast cells (HLMCs) and in the human mast cell lines LAD2 and HMC-1, using RT-PCR, patch clamp electrophysiology, and RNA interference. Whole cell voltage-clamp recordings revealed a nonselective cation current that activated spontaneously following loss of intracellular Mg2+. The current had a nonlinear current-voltage relationship with the characteristic steep outward rectification associated with TRPM7 channels. Reducing external divalent concentration from 3 to 0.3 mM dramatically increased the size of the outward current, whereas the current was markedly inhibited by elevated intracellular Mg2+ (6 mM). Ion substitution experiments revealed cation selectivity and Ca2+ permeability. RT-PCR confirmed the presence of mRNA for TRPM7 in HLMC, LAD2, and HMC-1 cells. Adenoviral-mediated knockdown of TRPM7 in HLMC with short hairpin RNA and in HMC-1 with short interfering RNA markedly reduced TRPM7 currents and induced cell death, an effect that was not rescued by raising extracellular Mg2+. In summary, HLMC and human mast cell lines express the nonselective cation channel TRPM7 whose presence is essential for cell survival. The Journal of Immunology, 2007, 179: 4045–4052.
gating but has been shown to phosphorylate annexin I and actomyosin and thus couples the channel to the cytoskeleton (18, 19). Channel knockdown has been shown to induce cell death (16), inhibit cell proliferation (20), and inhibit or enhance cell adhesion depending on the model studied (18, 19).

In this study we have investigated TRPM7 expression and function in human mast cells using a combination of RT-PCR, patch clamp electrophysiology, and RNA interference. We demonstrate for the first time that human mast cells express functional TRPM7 channels whose presence is essential for cell survival.

Materials and Methods

Reagents

We used the following reagents: stem cell factor, IL-6, and IL-10 (R&D Systems); mouse IgG1 mAb YB5B8 (anti-CD117; Cambridge Bioscience); sheep anti-mouse IgG1 Dynabeads (Dynal Biotech); DMEM/Glutamax/HEPES, antibiotic/antimycotic solution, MEM nesosomial amino acids, and FCS (Invitrogen Life Technologies); HiPerfect transfection RNA (siRNA) and controls (Invitrogen Life Technologies); TRPM7 short hairpin RNA (shRNA) and controls (Biofocus). Physiological salts were purchased from Sigma-Aldrich unless otherwise stated.

Human mast cells

HLMC were dispersed and purified from macroscopically normal lung obtained within 1 h of resection for lung cancer by using immunomagnetic affinity selection as previously described (21). Final mast cell purity was 99% with >97% viability. All human subjects gave written informed consent, and the study was approved by the Leicestershire Research Ethics Committee. HLMC were cultured in DMEM/Glutamax/HEPES containing antibiotic/antimycotic solution, nesosomial amino acids, 10% FCS, 100 ng/mL stem cell factor, 50 ng/mL IL-6, and 10 ng/mL IL-10. Half the medium was replaced every 7 days.

LAD2 mast cells, derived from a patient with mast cell leukemia, were a gift from Dr. D. Metcalfe (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD) and cultured in StemPro-34 SFM serum-free complete medium (Invitrogen Life Technologies), with 100 ng/mL stem cell factor as previously described (22). Half the medium was replaced every 7 days.

The HMC-1 cell line, derived from a patient with mast cell leukemia, was a gift from Dr. J. Butterfield (Mayo Clinic, Rochester, MN). HMC-1 cells were maintained in Iscove’s modified DMEM (Invitrogen Life Technologies) as previously described (23).

RT-PCR

RNA was prepared from cell lysates (Qiagen) and 500 ng converted to cDNA (BioRad iScript kit). With the aid of the Primer 3 program, we designed primers specific for human TRPM6 and TRPM7 to be used in the Primer 3 program. The primers chosen for this study were the following two pairs of primers were used for each channel: TRPM7 were checked for specificity using a BLAST search of the human genome. All primers were designed to span across exons to avoid possible amplification of genomic DNA. The following primers were used (data not shown).

FIGURE 1. RT-PCR confirms the expression of mRNA for TRPM7 but not for TRPM6. A, Gels demonstrating expression of TRPM7 in three HLMC donors (THP-1 cells were used as a positive control at a predicted band size 309 bp). B, Gel expression of TRPM7 but not TRPM6 in LAD2 cells. The same results were observed when different TRPM6 and TRPM7 primers were used (data not shown).

RT-PCR

RNA interference

HMC-1 cells were transfected according to the manufacturer’s instructions using HiPerFect transfection reagent, with one of three following pairs of TRPM7 siRNA oligonucleotides: TRPM7A 5’-AAACGAUACACUG UGACAGGCCUCC and 3’-GGGAGGGCGUACAGAUGUU; TRPM7B 5’-AAUACUGACAGAUGUAA and 3’-GGGUGG UUAUAUAAUGUCAGAUAU; and TRPM7C 5’-AAUACUAGAC AACAGAAUUGAAG and 3’-CAACUAUAUCUGUCGUGAUG UU). A liquid junction potential of −15 mV was corrected for offline. Series resistance was usually <10 MΩ, and never higher than 17 MΩ. Series resistance was also compensated (typically >70%) electronically using a patch clamp amplifier (Axopatch 200B; Axon Instruments). Voltage protocol generation and data acquisition were performed using the pClamp program (v.6), running on a Pentium computer equipped with a Digidata acquisition board (Axon Instruments). 200 ms ramps from −100 to +100 mV were evoked from a membrane holding potential of 0 mV. Current traces were low-pass filtered at 5 kHz using a four-pole Bessel filter supplied with the amplifier and digitized at 10 kHz. Data were stored on the computer hard drive and analyzed offline using commercial software (Origin; Microcal).

Electrophysiology

Mast cells adhere to 0.01% poly-L-lysine-coated coverslips was placed in a micropipet perfusion chamber and viewed under an inverted phase-contrast microscope (Zeiss Axiosvert 25 or 100). Cells were continuously superfused at a high flow rate (2–3 mV/min) with an external solution containing the following: 147 mM NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 13 mM glucose, 10 mM HEPES (pH adjusted to 7.3) with sodium hydroxide; osmolarity adjusted with sucrose to ~310 mOsm. Currents were recorded in the whole cell patch configuration using borosilicate glass electrode coated with Sylgard 184 (Dow Corning) and fire polished on a microforge to a resistance of 3–4 MΩ. Initial experiments used a basic pipette recording solution containing 147 mM NaCl, 10 mM HEPES, and 10 mM EGTA. In subsequent experiments pipettes were filled with internal solution containing 135 mM cesium-glutamate, 8 mM NaCl, 10 mM HEPES, 10 mM EGTA, 3.6 mM CaCl2 (adjusted to pH 7.3 with cesium hydroxide (BCI Biomedicals)); osmolarity ~305 mOsm. This recording solution buffers intracellular Ca2+ to ~100 nM (calculated using WEBMAXCLITE v.1.15, available at www.stanford.edu/~cpatton/webmax). A liquid junction potential of −15 mV was corrected for offline. Series resistance was usually <10 MΩ, and never higher than 17 MΩ. Series resistance was also compensated (typically >70%) electronically using a patch clamp amplifier (Axopatch 200B; Axon Instruments). Voltage protocol generation and data acquisition were performed using the pClamp program (v.6), running on a Pentium computer equipped with a Digidata acquisition board (Axon Instruments). 200 ms ramps from −100 to +100 mV were evoked from a membrane holding potential of 0 mV. Current traces were low-pass filtered at 5 kHz using a four-pole Bessel filter supplied with the amplifier and digitized at 10 kHz. Data were stored on the computer hard drive and analyzed offline using commercial software (Origin; Microcal).
were plated in triplicate in 100 dent's paired or unpaired between groups of data were explored using one-way ANOVA or Stu-

TRPM7, are activated by lowered intracellular Mg²⁺

Two closely related TRPM channel subtypes, TRPM6 and TRPM7, are activated by lowered intracellular Mg²⁺ and have

Adenoviral transfection and shRNA delivery in HLMC

Adenoviruses encoding enhanced GFP (eGFP) and shRNA directed against eGFP, luciferase, and three different target sequences for human TRPM7 (referred to as v1, v2 and v3) were purchased from Biofocus. The optimal protocol for transduction of primary HLMC was determined empirically by fluorescent imaging of cells 1–6 days after infection with the eGFP virus (Ad5C20Att01, titer 2.9E+10 vp/ml). HLMCs collected from three donors, were plated in triplicate in 100 μl of medium into each well of a 96-well plate (10⁴ cells/well). A total of 50 μl of virus diluted to give a multiplicity of infection of 2000. Nonspecific effects of adenoviral infection on cell viability and ion channel expression were assessed in time- and culture-matched experiments performed on cells infected with either the eGFP adenovirus or control shRNA targeted against eGFP and luciferase.

Data presentation and statistical analysis

Data are expressed as mean ± SEM unless otherwise stated. Differences between groups of data were explored using one-way ANOVA or Student’s paired or unpaired t test (two-tailed) as appropriate.

Results

HLMC and mast cell lines express TRPM7 but not TRPM6 mRNA

Two closely related TRPM channel subtypes, TRPM6 and TRPM7, are activated by lowered intracellular Mg²⁺ and have similar biophysical properties including an outwardly rectifying current-voltage (I-V) relationship, cation selectivity P₅₀/P₇₅ is 1/0.06, and divalent permeability (24). To investigate whether one or both of these channels are expressed in HLMC, LAD2 cells, and HMC-1 cells, we performed RT-PCR experiments to determine the expression of mRNA for the two channels. We consistently observed strong expression for TRPM7 in HLMC (5/5 donors), LAD2 cells and HMC-1 cells (Fig. 1). In contrast, we could not detect expression of mRNA for TRPM6. This supports the observation that TRPM6 is expressed predominantly in the kidney and small intestine but not the lung (25, 26), and is consistent with the failure to detect expression of this channel by human mast cells from skin and lung in a previous gene array study (15).

Human mast cells express TRPM7-like currents

TRPM7 is known to be regulated by the concentration of intracellular Mg²⁺, with strong current activation occurring when concentrations fall below 1 mM (16, 27). To investigate whether a TRPM7-like current could be activated in HLMC and a model human mast cell LAD2, we initially conducted electrophysiological experiments using a simplified pipette solution (symmetric sodium chloride), which contained no Mg²⁺. Applying a 200 ms voltage ramp from −100 to +100 mV (Fig. 2A), we evoked a steeply outwardly rectifying current, with a reversal potential (V₉₀) of +5.2 ± 2.4 mV in LAD2 cells (n = 21) and 3.4 ± 0.4 mV in

FIGURE 2. An outwardly rectifying, cation-selective current develops slowly after obtaining the whole cell configuration. A, Schematic showing current-voltage (I-V) curves were generated by applying 200 ms voltage ramps from a holding potential of 0 mV (i). A 200-ms conditioning pulse to −100 mV was applied before the ramp to allow inactivation to reach a quasi-steady state preventing distortion of the I-V curve by inactivation during the ramp. Currents evoked by a ramp (ii) from −100 to +100 mV (black line) mirrored the resultant current evoked by the ramp back from +100 to −100 mV (gray line), indicating good voltage clamp and no current inactivation during the ramp. B, A second voltage protocol was also routinely used. From a holding potential of −20 mV, single steps of 100-ms duration were applied in 10-mV increments (−130 to +120 mV) (inset). Immediately after obtaining the whole cell configuration (baseline), no current is evident (i). Using this protocol, a similar outwardly rectifying current developed over time (ii). This current displayed no notable inactivation over the duration of the pulse and developed slowly with peak current amplitudes recorded 7–10 min after obtaining the whole cell configuration (i vs ii). The amplitude of the current then remained stable for the duration of the experiments (20–30 min). I-V curve from the same cell is shown (iii). Results are from representative HLMCs. C, Ion substitution experiments were used to determine the ion selectivity of the current. Using a 3 M KCl agar bridge as a ground reference, the normal extracellular solution was replaced with one containing low sodium chloride (plus glucose to maintain isotonicity) or isotonic CaCl₂. The shifts in the currents V₉₀ following solution exchange show that the current is cation selective (sodium chloride line) and calcium permeable (calcium chloride line). Results are from representative LAD2 cell experiments.
HLMC

\[\text{HLMC} \ (n = 9), \text{indicating activation of either a nonselective cationic conductance or Cl}^- \text{ conductance. Similar currents were obtained using voltage steps (Fig. 2B). This I-V curve is reminiscent of the current-voltage properties of several TRP channels including TRPM7 (16). The current developed slowly over time with peak current amplitudes occurring 7–10 min after obtaining the whole cell configuration (Fig. 2B), and remained stable for the duration of the experiments (20–30 min). This slow time course for current activation is compatible with the dialysis of a cytosolic regulator such as Mg}^{2+} \text{ that suppresses current activation under resting conditions. The mean peak inward and outward currents for HLMC at -100 and +100 mV were -33.2 ± 5.8 pA and +171.1 ± 18.2 pA, respectively (n = 9), and for LAD2 -42.7 ± 5.8 pA and +152.4 ± 17.4 pA, respectively (n = 21). Reducing the external divalent cation concentration from 3 to 0.3 mM dramatically increased the size of the outward current; LAD2 mean inward peak current increased to -47.2 ± 6.8 pA and outward to +352.4 ± 55.7 pA (n = 11, p = 0.0002). To investigate the ion selectivity of the current we performed ion substitution experiments. Replacement of the standard (147 mM NaCl) extracellular solution to one containing 40 mM CaCl\(_2\) resulted in a leftward shift in the current Vm from +3.5 ± 1.4 mV to -25.7 ± 6.2 mV; \(P_{\text{Ca}}/P_{\text{Na}} = 0.06/1 \) (n = 4 LAD2 cells, p = 0.0027), indicating that the current carries cations rather than Cl\(^-\) (Fig. 2C). Switching to an external recording solution composed of 110 mM CaCl\(_2\) resulted in a rightward shift in the Vm to +15.2 ± 4.3 mV (n = 4 LAD2 cells, p = 0.041). This result, coupled with the increase in inward current in 110 mM CaCl\(_2\) compared with 40 mM NaCl is indicative of Ca\(^{2+}\) permeability (Fig. 2C).

In the initial whole cell patch experiments described, we used a simplified pipette solution. Under these conditions resting intracellular Ca\(^{2+}\) concentration ([Ca\(^{2+}\)\(_i\)]) is decreased. It has previously been shown that simplified pipette solutions similar to these can activate both TRPM7 and the Ca\(^{2+}\) release-activated Ca\(^{2+}\) current (ICRAC) (28, 29). We therefore examined whether [Ca\(^{2+}\)\(_i\)], influenced the amplitude or biophysical characteristics of the recorded current. To examine this, we used a pipette solution designed to buffer [Ca\(^{2+}\)\(_i\)], to 100 nM (see Materials and Methods for composition), which would allow us to determine whether our original TRPM7-like currents were contaminated by ICRAC. ICRAC displays an inwardly rectifying I-V curve with a positive Vm. The size of the mean inward currents in LAD2 cells and HLMC were not significantly different when the two pipette solutions were compared (Fig. 3). However, there was a small, but significant leftward shift in the Vm (no Ca\(^{2+}\) buffering Vm +5.2 ± 2.4 mV; n = 21 LAD2 cells; 100 nM buffered Ca\(^{2+}\) Vm -3.5 ± 1.1 mV, n = 17 LAD2 cells; p = 0.004). Visual inspection of the traces revealed a slight inward rectification at negative potentials for currents recorded in Ca\(^{2+}\)-free internal solution, which was absent when Ca\(^{2+}\) was buffered to 100 nM (Fig. 3). This finding suggests that under our original recording solutions, there was a small contamination of the TRPM7-like current by another conductance, possibly ICRAC. To avoid any further possible contamination of current traces by ICRAC, subsequent experiments were conducted using the Ca\(^{2+}\)-buffered internal solution.

There are presently no specific blockers for TRPM7 commercially available but TRPM7 has been reported to be inhibited by raised (6–10 mM) concentrations of intracellular Mg\(^{2+}\) (16, 27, 28, 30). Inclusion of 6 mM Mg\(^{2+}\) in the patch pipette effectively blocked current activation in HLMC (n = 7 cells) (Fig. 4A). La\(^{3+}\) (2 mM) has been reported to completely block the inward, but only partially block the outward currents of cloned TRPM7 channels.
We found that extracellular application of 2 mM La^{3+} reduced both the inward ($p = 0.012$) and outward ($p = 0.04$) currents in HLMC ($n = 4$) in a similar manner to those reported for the cloned channel (Fig. 4B).

TRPM7 is not regulated by β_2-adrenoceptors in HLMC

TRPM7 currents are reported to be activated by the nonselective β-adrenoceptor agonist isoproterenol (32). However, TRPM7 currents in HLMC were not augmented or suppressed by either the selective β_2-adrenoceptor agonist salbutamol at concentrations up to 10^{-5} M ($n = 4$ cells, $p = 0.11$) or the selective β_2-adrenoceptor antagonist and inverse agonist ICI 118551 at concentrations up to 10^{-6} M ($n = 4$ cells, $p = 0.34$).

TRPM7 knockdown induces cell death in the HMC-1 human mast cell line

All the properties of the current reported in this study are comparable to those described for the cloned recombinantly expressed human TRPM7 channel (16, 31). For conclusive proof that the current was mediated by activation of TRPM7, we first performed siRNA experiments in HMC-1 to knock down mRNA expression and therefore, consequently, protein expression of TRPM7. We used three different siRNA oligonucleotides designed against the TRPM7 mRNA sequence (TRPM7 A, B, and C). In preliminary experiments using a FITC-labeled oligonucleotide and flow cytometry, we assessed the transfection efficiency in HMC-1 cells to be 95% (Fig. 5). RT-PCR showed that transfection of each of the TRPM7 siRNA constructs resulted in a significant reduction in
mRNA expression for TRPM7 (Fig. 6, A and B) without reducing the expression of either β-actin or another related TRP channel (TRPV2) (Fig. 6C). The TRPM7 siRNA B and C were most effective and were used for additional experiments.

Monitoring cell survival using trypan blue demonstrated that HMC-1 cells transfected with a control scrambled siRNA continued to proliferate rapidly (Fig. 7A). In contrast, there was rapid cell death in cells transfected with TRPM7 siRNA B and C, so that after 3 days nearly all cells had died (p < 0.001 by ANOVA) (Fig. 7A). There was only marginal rescue by culturing HMC-1 in 10 mM extracellular Mg²⁺ (Fig. 7A), which was not significant when applying a t test with Bonferroni’s correction for multiple comparisons.

To confirm that the siRNAs had reduced TRPM7 protein expression, cells were also analyzed using electrophysiology. Cells that had been cotransfected with a FITC-labeled oligonucleotide were identified and recorded 24, 48, and 72 h after transfection. This analysis was complicated by the fact that TRPM7 knockdown killed the cells, but nevertheless it was possible to demonstrate in remaining viable cells at 48 and 72 h, that TRPM7 siRNA B and C significantly reduced the magnitude of TRPM7 currents when compared with the scrambled control (Fig. 7B). Thus at +100 mV, outward current was 324 ± 27.4 pA in scrambled controls at 72 h posttransfection, compared with 188 ± 37.1 pA for TRPM7 siRNA B (p = 0.016) and 223 ± 28.5 pA (p = 0.032) for TRPM7 siRNA C (n = 6 cells for each condition). Transfection with the scrambled siRNA control had no effect on TRPM7 currents (p = 0.26) (Fig. 7B).

TRPM7 knockdown induces cell death in primary HLMC

Efficient transfection of HLMC to date has not been possible using lipid transfection reagents (our unpublished data). We therefore used an adenoviral delivery system for the transduction of primary HLMC. Using eGFP as a control, we were able to demonstrate ≥70% transduction efficiency without loss of cell viability (Fig. 8A). We tested the ability of adenoviruses expressing different shRNA constructs targeted at TRPM7 (v1, v2, and v3) to knock down TRPM7 currents in HLMC from three different donors. Transfection with two irrelevant shRNA constructs targeted at eGFP and luciferase, and with eGFP itself, did not alter cell viability or the magnitude of the TRPM7 currents (Fig. 8, B and C). In contrast infection with adenovirus engineered to express shRNA TRPM7 v1, v2, and v3 all reduced cell viability from days 3–5 postinfection, with v2 and v3 being the most effective (Fig. 8B) (p < 0.05 for combined TRPM7 shRNA compared with culture-matched controls at both days 4 and 5; n = 3 experiments performed on HLMC from two donors). In viable cells, TRPM7 currents were markedly reduced by shRNA TRPM7 v2 and v3 by 3 days after infection and by 5 days after infection with v1 (Fig. 8C). Thus at +100 mV, outward current was 248 ± 29.7 pA in control cells (n = 9) 5 days posttransfection, compared with 58.9 ± 11.5 pA for TRPM7 v2 (p = 0.0004, n = 6), and 79.7 ± 18.3 pA for TRPM7 v3 (p = 0.0004, n = 6). Currents were also reduced by adenovirus carrying shRNA TRPM7 v1 but less markedly (current at +100 mV 107.3 ± 9.2 pA, p = 0.001, n = 3).

Discussion

We have identified molecularly the first functionally active cation channel in HLMC and human mast cell lines capable of carrying divergent cations. The biophysical properties of this channel indicate it is TRPM7, which is supported by the expression of TRPM7 mRNA in these cells, and loss of current activity after “knockdown” using TRPM7 RNA interference. Knockdown was highly effective and lead to cell death, indicating an essential role for this channel in cell survival.

TRPM7 is a member of the melastatin-like subfamily of transient receptor potential ion channels. It is very closely related to TRPM6 with which it shares very similar electrophysiological properties and an α-kinase domain in the C terminus. Although both channels are apparently involved in Mg²⁺ homeostasis, and can potentially form TRPM6/7 heterodimers, they have also been shown to have nonredundant roles (33). In this study we did not see expression of TRPM6 using RT-PCR, and it was not expressed in human mast cells from skin, lung, or cord blood when analyzed by DNA microarrays (15). Furthermore expression of TRPM6 is localized predominantly to the kidney and small intestine, and is absent in several tissues in which mast cells are present (25, 26).
Taken together, this result suggests that the current we have identified is carried only by TRPM7.

We have previously identified several ion channels and currents in human mast cells but had not previously identified TRPM7 because we had always performed electrophysiological recordings with intracellular Mg²⁺ and ATP present, which inhibit the channel (13, 23, 34–36). The electrophysiological properties of the currents recorded in this study are identical with those previously described for cloned heterologously expressed TRPM7 (16, 31). Furthermore, siRNA knockdown of TRPM7 in HMC-1 was associated with both reduced TRPM7 mRNA expression and ionic currents. This property was specific for TRPM7 in that there was no knockdown of TRPM7 with a scrambled siRNA control, and no knockdown of TRPV2 mRNA with the TRPM7 siRNA. Similarly, three distinct adenoviral-delivered shRNA, which target TRPM7, reduced the magnitude of TRPM7 currents in HLMC, whereas several controls did not. Thus we have used several approaches, which when taken together, confirm that the channel we have identified in HMC-1 cells, LAD2 cells, and HLMC is indeed TRPM7.

The presence of functional TRPM7 has been reported to be a critical requirement for cell survival in several model systems. Therefore it is perhaps not surprising that its knockdown also lead to cell death of the HMC-1 human mast cell line and primary HLMC. The mechanism by which TRPM7 maintains cell survival in DT-40 chicken B cells has been proposed to be through its ability to maintain Mg²⁺ homeostasis because the lethal effects of TRPM7 knockdown can be rescued by raising the extracellular concentration of Mg²⁺ (16). However, high extracellular Mg²⁺ did not prevent cell death in retinoblastoma cell lines following TRPM7 knockdown (20), and we found it only had a minimal effect on rescuing HMC-1 mast cells. This effect might be because unlike DT-40 cells, HMC-1 cells, and retinoblastoma have no other Mg²⁺ entry pathways, such as the closely related TRPM6, or Mg²⁺ transporters such as SLC41A2 family proteins (37), which may compensate for the loss of TRPM7 channel and maintain Mg²⁺ at sufficient levels for the cells to survive. Interestingly, the α-kinase domain of TRPM7 phosphorolyzes annexin I (38), and because annexin I is itself implicated in the regulation of cell growth, differentiation, and apoptosis (39, 40), this finding may provide another link between TRPM7 and cell survival.

Examining the further physiological roles of TRPM7 in mast cells will be difficult because the cells die rapidly. However, it seems likely that the role of TRPM7 extends beyond maintaining cell survival and divalent cation homeostasis. The α-kinase domain in the TRPM7 C terminus phosphorolyzes actomyosin and interferes with cell adhesion and spreading (18, 19). However, there are contradictory studies detailing whether cell spreading is enhanced or diminished following TRPM7 knockdown (18, 19). Nevertheless, this finding suggests that TRPM7 may play an important role in cell migration and cell-cell interactions. TRPM7 has also been shown to contribute to intracellular Ca²⁺ signals in retinoblastoma cells (20). Thus retinoblastoma cells over-expressing TRPM7 demonstrated elevated baseline cytosolic-free Ca²⁺, and enhanced Ca²⁺ influx following stimulation with bradykinin. If applicable to other cell types such as mast cells, TRPM7 could potentially contribute to the Ca²⁺ signal of various cell responses such as Ag-induced secretion and migration, and growth factor-dependent cell survival.

Takezawa et al. (32) reported that the TRPM7 channel is regulated by β-adrenoceptors even in the presence of 3 mM intracellular Mg²⁺ · ATP as demonstrated by the application of the non-selective β-agonist isoproterenol at high concentrations (320 μM). This report is in contrast to our previous experience in HLMC with the selective β₂-adrenoceptor agonist salbutamol (36). We have shown previously that salbutamol closes the intermediate conductance Ca²⁺-activated channel KᵥCa3.1 in HLMC, whereas the selective β₂-adrenoceptor inverse agonist ICI 118551 opens it. Whether recording in either the whole cell or perforated patch mode of the patch clamp technique, we never saw the development of a TRPM7 current in response to salbutamol (36). In this study we have extended this work to look at the effects of salbutamol on TRPM7 currents, which had been activated in the absence of intracellular Mg²⁺ and ATP. Again, salbutamol and ICI 118551 were without effect. Thus we conclude that β₂-adrenoceptors are not coupled to TRPM7 in HLMC.

Previous attempts to transfect primary HLMC with plasmids using numerous lipid transfection reagents have failed (our unpublished data). We now show that the Ad5C20Att01 adenovirus is highly efficacious at carrying plasmids into HLMC and for the delivery of shRNA. Also, for up to 5 days this virus does not alter cell viability. This technique is therefore an invaluable tool for studying the biology of primary HLMC and will permit the genetic manipulation of many intracellular signaling pathways.

In summary we have demonstrated that human mast cells express functional TRPM7 channels that are a critical requirement for cell survival. This requirement of functional channels for cell survival means it may prove difficult to determine the further biological roles of this interesting channel in human mast cells. Nevertheless, identifying mast cell-specific regulatory pathways for TRPM7 may offer novel approaches to modifying mast cell function in a variety of diseases.

Disclosures
The authors have no financial conflict of interest.

References
HUMAN MAST CELLS EXPRESS TRPM7

