Dendritic Cell Type Determines the Mechanism of Bystander Suppression by Adaptive T Regulatory Cells Specific for the Minor Antigen HA-1

Richard A. Derks, Ewa Jankowska-Gan, Qingyong Xu and William J. Burlingham

J Immunol 2007; 179:3443-3451; doi: 10.4049/jimmunol.179.6.3443
http://www.jimmunol.org/content/179/6/3443

References
This article cites 47 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/179/6/3443.full#ref-list-1

Subscription
Information about subscribing to J Immunology is online at:
http://jimmunol.org/subscription

Permissions
Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts
Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts

The Journal of Immunology is published twice each month by
The American Association of Immunologists, Inc.,
1451 Rockville Pike, Suite 650, Rockville, MD 20852
Copyright © 2007 by The American Association of Immunologists All rights reserved.
Print ISSN: 0022-1767 Online ISSN: 1550-6606.
Dendritic Cell Type Determines the Mechanism of Bystander Suppression by Adaptive T Regulatory Cells Specific for the Minor Antigen HA-1

Richard A. Derks, Ewa Jankowska-Gan, Qingyong Xu, and William J. Burlingham

One hallmark of acquired tolerance is bystander suppression, a process whereby Ag-specific (adaptive) T regulatory cells (T_R) inhibit the T effector cell response both to specific Ag and to a colocalized third-party Ag. Using peripheral blood T cells from recipients of HLA-identical kidney transplants as responders in the trans vivo-delayed type hypersensitivity assay, we found that dendritic cells (DC), but not monocyte APCs, could mediate bystander suppression of EBV-specific recall response. When HA-1^{H9252} peptide was added to mixtures of plasmacytoid DC (pDC) and T cells, bystander suppression of the response to a colocalized recall Ag occurred primarily via indolamine-2,3-dioxygenase (IDO) production. Similarly, addition of HA-1^{H9252} peptide to cocultures of T cells and pDC, but not myeloid DC (mDC), induced IDO activity in vitro. When mDC presented HA-1^{H9252} peptide to Ag-specific CD⁸⁺_T, cytokine release (TGFB, IL-10, or both) was the primary mode of bystander suppression. Bystander suppression via mDC was reversed not only by Ab to TGFB and its receptor on T cells, but also by Ab to thrombospondin-1. EBV addition did not induce IDO or thrombospondin-1 in T-DC cocultures, suggesting that these DC products are not induced by T effector cells, but only by T_R cells. These results shed light upon the mechanism of bystander suppression by donor Ag-specific T_R in patients with organ transplant tolerance and underscores the distinct and critical roles of mDC and pDCs in this phenomenon. The Journal of Immunology, 2007, 179: 3443–3451.

A prototypical feature of acquired peripheral tolerance is the suppression of a response to colocalized third-party Ag by a donor Ag-specific T regulatory (T_R) cell. The characteristic features of this process were originally described by Bullock et al. (1). Using a guinea pig model, the authors showed that T cells specific for a hapten could be able to suppress the development of a contact sensitivity response by T cells specific for a carrier molecule, if the hapten and carrier are linked covalently (1). This same concept was later expanded upon primarily by Streilein and colleagues (2–4), who studied ocular immune privilege, and later by Waldmann and colleagues (5) in mouse skin allograft tolerance models. Due to the requirement that the tolerogen and Ag be physically linked, i.e., expressed by the same APC in order for suppression to occur, the terms “linked suppression” or “linked recognition” were coined. In the field of oral tolerance, the term “bystander suppression” was introduced to describe an inhibition of a T memory response as a result of a regulatory response to an unrelated but colocalized tolerogen (6). In bystander suppression, the tolerogen and third-party Ag need not be presented on the same APC. In this case, it is soluble mediators, triggered by the tolerogen, which serve to induce suppression of response to the third-party Ag (6–8).

Once the concept of multiple lineages of dedicated T_R became widely accepted, it quickly became apparent that without an APC, tolerogen-specific T_R would be unable to affect a third-party Ag-specific T effector cell (T_E) (9). In particular, direct T-T interaction models did not adequately account for T_R-mediated suppression in vivo when natural (i.e., nonadaptive) T_R were the source of T_R (10). These novel findings in mice raised questions regarding the role of the APC in immune regulation of T_R responses during human and rhesus monkey renal transplant tolerance, modeled in the SCID mouse footpad using the trans vivo-DTH (TV-DTH) assay system (11–13). Because the tolerogen- and third-party recall Ags are not covalently linked in these studies, we will use the term bystander suppression from this point forward to describe our regulation model.

We envisioned two alternative hypotheses of APC function in bystander suppression: 1) a passive APC model, in which the APC serves to facilitate T-T interactions by presenting MHC-peptide ligands to the T_E, stimulating it to produce IL-10 or TGFB-β that binds IL-10- and/or TGFB-β receptors on the third-party T_E; or 2) an active APC model, in which the APC propagates regulatory effects from the T_R to the T_E through various APC products. If the second model is correct and the APC is of critical importance in bystander suppression, an additional question follows: can any APC type mediate this process or is a specialized APC needed? Peripheral blood dendritic cells (DC) have been shown to have regulatory properties that differ in mechanism based on subtype (14). Recent work in the field of transplantation tolerance has suggested that plasmacytoid DCs (pDC) may be necessary to induce
tolerance and immune regulation in both human and mouse systems (15, 16); pDC have also been implicated in the generation of human IL-10-producing CD8⁺ T_{reg} in vitro (12). We wished to determine whether pDC might be required for bystander suppression, or rather, whether myeloid DCs (mDC), thought to be primarily involved in T_{reg} stimulation, could also mediate bystander suppression.

To test these alternative hypotheses, we used a model dependent on CD8⁺ T_{reg} which recognize the hemopoietic-restricted minor histocompatibility (H) Ag HA-1^H in the context of HLA-A2 (11). We have previously shown in a case of long-term kidney allograft tolerance that CD8⁺ T_{reg} with low binding of HLA-A2/HA-1^H tetramer were present in PBMC. These cells could suppress both 1) CD8⁺ T_{reg} that bind to the same tetramer but with higher staining intensity, and 2) CD4⁺ T_{reg} specific for a recall Ag that is colocalized with CD8⁺ T_{reg} and HA-1^H Ag. The suppressive response initiated by the CD8⁺ T_{reg} was exclusively sensitive to physiologic levels of HA-1^H Ag endogenously expressed by donor cells (11).

We report here that while both monocytes and DC could mediate a positive TV-DTH response to a viral recall Ag, only DC could mediate bystander suppression of this response by HA-1^H-specific T_{reg}. Both mDC and pDC were found to share the ability to mediate bystander suppression, but used different mechanisms to silence a T_{reg} response.

Materials and Methods

Source of human PBMC and peptides

All blood donors were EBV seropositive and thus had memory B and T cells specific for EBV Ags. Each study subject had received an HLA-identical kidney transplant from a sibling donor and had excellent graft function at time of blood draw or leukapheresis. PBMC were obtained by leukopheresis and purified as previously described (11). Underlined residue indicates amino acid polymorphism.

Cell separation

Both mDC and pDC were separated on an immunogenetic bead column (autoMACS; Miltenyi Biotec) per the manufacturer’s instructions. Briefly, CD19⁺ and CD14⁺ cells were removed first. If monocytes were to be used, CD14⁺ cells were removed by positive selection, before the removal of CD19⁺ cells; otherwise both subsets were removed in a single step. Next, CD11c⁺ (BDCA-1⁺) and BDCA-3⁺ -positive cells were removed to isolate the mDC. Finally, neuropilin-1⁺ T_{reg} with low binding of HLA-A2/HA-1^H tetramer were present in PBMC. These cells could suppress both 1) CD8⁺ T_{reg} that bind to the same tetramer but with higher staining intensity, and 2) CD4⁺ T_{reg} specific for a recall Ag that is colocalized with CD8⁺ T_{reg} and HA-1^H Ag. The suppressive response initiated by the CD8⁺ T_{reg} was exclusively sensitive to physiologic levels of HA-1^H Ag endogenously expressed by donor cells (11).

We report here that while both monocytes and DC could mediate a positive TV-DTH response to a viral recall Ag, only DC could mediate bystander suppression of this response by HA-1^H-specific T_{reg}. Both mDC and pDC were used, CD14⁺ immunostaining. Purity of the T cell-enriched population was 97%.

By testing each cell type individually in APC-population, based on CD14 (monocytes), CD11c (mDC), and CD123 (pDC) immunostaining. Purity of the T cell-enriched population was determined by flow cytometry and judged to be over 95% for each cell subset (11). This response can be inhibited by bystander suppression, but used different mechanisms to silence a T_{reg} response.

ELISA tests for TSP-1 and TGF-β

Cell cultures were set up as described above for kynurenine detection. After 48 h of culture, TSP-1 was detected by adding 100 μl of supernatant to the TSP-1 ELISA kit (Chemicon International). After 48 h of culture, cell-associated TGF-β was detected by washing the cell pellets in PBS, followed by incubation in RPMI 1640 at a pH of 2.0 for 15 min to remove latency-associated peptide (LAP), and assaying the resulting supernatant after spinning down to remove cellular debris at 15,000 × g for 3 min. Active TGF-β in culture supernatants was detected by adding 100 μl of supernatant to the TGF-β ELISA kit (R&D Systems) without prior acid activation. Our experience was that all of the released TGF-β was already active, because activation did not increase the ELISA readings.

TSP-1 inhibition assay

For short-term cultures to analyze the role of TSP-1 in release of active TGF-β from cell-bound latent forms, a 1:10 ratio of T cells-mDC (1 × 10⁵ DCs/10⁵ T cells) was incubated in 100 μl of supernatant to the TSP-1 ELISA kit (Chemicon International). After 48 h of culture, cell-associated TGF-β was detected by washing the cell pellets in PBS, followed by incubation in RPMI 1640 at a pH of 2.0 for 15 min to remove latency-associated peptide (LAP), and assaying the resulting supernatant after spinning down to remove cellular debris at 15,000 × g for 3 min. Active TGF-β in culture supernatants was detected by adding 100 μl of supernatant to the TGF-β ELISA kit (R&D Systems) without prior acid activation. Our experience was that all of the released TGF-β was already active, because activation did not increase the ELISA readings.

In vitro T-DC coculture

T cells (8 × 10⁴) were cultured in serum-free medium (X-Vivo; Invitrogen Life Technologies), along with either 50 μg/ml HA-1^R or HA-1^H peptide. mAb 133 (a gift from Dr. D. Mosher, Department of Biomedical Chemistry, University of Wisconsin, Madison, WI) was added at a final concentration of 50 μg/ml or alternatively self or donor cell lysates were added at a concentration of 8–10 μg and left to incubate at 37°C in 5% CO2 for 72 h. To detect TGF-β activity, 100 μl of supernatants were harvested and kynurenine was detected using the absorbance method, as previously described (21).

Statistical analysis

Prism Graphpad software version 4 for Macintosh was used for paired t test comparing data of various APC-T cell cultures for each experimental condition.
Results

DC are critical for inhibition of TV-DTH response by HA-1H-specific T_R

Table I describes the four patients used as a source of PBMC for these studies. Each had received an HLA-matched kidney transplant from a sibling. All four were HLA-A2/HA-1R/R genotype with HLA-A2/HA-1MS or HA-1H donors. Two were off all immunosuppressive drugs with excellent renal function, i.e., functionally tolerant, at the time of PBMC donation (I and V), while the other two were still taking immunosuppressive medication (II and III). Table II provides information on the ratios of mDC and pDC for each patient. Lineage-negative, HLA-DR-positive DCs were quantitated by flow cytometry, and the relative numbers of mDC (CD11c⁺) and pDC (CD123⁺) were determined.

Fig. 1A summarizes bystander suppression data from unseparated PBMC as well as T cells coinjected with purified monocytes, mDC, or pDC. All four types of challenge caused an equivalent footpad swelling response to EBV recall Ags. The bystander suppression seen with T-DC mixtures was similar to the bystander suppression seen with unseparated PBMC, which contains ~1–3% DC. In the TV-DTH system, we kept the ratio of T cells-DC the same as what is seen physiologically in whole PBMC, i.e., 1 × 10⁵ DC to 7 × 10⁵ T cells, or 1.5%. When EBV Ag, mDC, and T cells were coinjected along with HA-1H peptide, a significant (p < 0.01) inhibition of anti-EBV response occurred. A more profound bystander suppression was observed in the T cell-pDC mixtures (p < 0.001, HA-1H plus EBV vs EBV alone; Fig. 1A). Surprisingly, when purified monocytes were used as the sole APC, no significant inhibition of the recall response occurred in the presence of HA-1H peptide as compared with DC, CD14⁺ monocytes were not involved in bystander suppression.

Fig. 1B examines the role of DC type and cytokines in the balance between HA-1H-specific T_R and T_T. As shown, control IgG-treated PBMC were unresponsive to HA-1H Ag in TV-DTH. Swelling responsiveness mediated by HA-1H-specific T_T present in whole PBMC could be restored by either anti-TGF-β (patients I and III; p < 0.01) or anti-IL-10 (patients I and II; p < 0.05) indicating the presence of both HA-1H-specific T_T cells and TGF-β- or IL-10-producing T_R (Fig. 1B).

Table II. Analysis of DC percentages from each patient^a

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>Total DC, %</th>
<th>mDC, %</th>
<th>pDC, %</th>
<th>pDC:mDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.65</td>
<td>0.55</td>
<td>0.1</td>
<td>0.18</td>
</tr>
<tr>
<td>II</td>
<td>2.69</td>
<td>1.9</td>
<td>0.79</td>
<td>0.41</td>
</tr>
<tr>
<td>III</td>
<td>2.0</td>
<td>1.7</td>
<td>0.3</td>
<td>0.17</td>
</tr>
<tr>
<td>V</td>
<td>1.28</td>
<td>1.0</td>
<td>0.18</td>
<td>0.18</td>
</tr>
</tbody>
</table>

^a Each value is calculated as a percentage of gated live cell events, i.e., total PBLs as determined from flow cytometry. mDC were defined as CD3⁺CD14⁺CD19⁺HLA-DR⁺, CD11c⁺; pDC were defined as CD3⁺CD14⁺CD19⁺HLA-DR⁺, CD123⁺.

FIGURE 1. TV-DTH responses in the presence of donor-type minor H Ag HA-1. A. Bystander-suppression of recall response tested with whole PBMC or mixtures of T cells and APC as indicated. APC fractions were separated and added to enriched T cells from the same individual along with donor Ag and either control IgG, anti-TGF-β, or anti-IL-10. B. Attempts to reveal cryptic T_R responses to HA-1 by neutralization of IL-10 or TGF-β. mDC and pDC were separated from patients I–III and added to purified T cells. Cells were then injected in the DTH footpad assay along with donor Ag and either control IgG, anti-TGF-β, or anti-IL-10. Values of p were determined by paired t test comparing EBV to EBV plus H. Values are presented as mean ± SEM × 10⁻⁴ inches and results are a composite of results using cells from patients I to V (n = 2 independent experiments/patient). B. Attempts to reveal cryptic T_R responses to HA-1 by neutralization of IL-10 or TGF-β. mDC and pDC were separated from patients I–III and added to purified T cells. Cells were then injected in the DTH footpad assay along with donor Ag and either control IgG, anti-TGF-β, or anti-IL-10. Values of p were determined by paired t test comparing the TGF-β or IL-10 conditions to the IgG conditions. Results are the mean ± SEM of net swelling (test-PBMC alone control) responses in n = 3 patients. C. Bystander suppression of recall response tested with PBMC from which DC had been depleted (left). The right side depicts DC-depleted PBMC that have had the DC added back. The percent inhibition is listed above each condition. All results taken from cells from patient III (n = 2 independent experiments).
An identical pattern of recovery of HA-1H-specific TV-DTH response was noted when mDC were used as the sole APC to purified T cells. In contrast, no response to HA-1H could be revealed with either cytokine-neutralizing Abs when pDC were used as the sole APC source. This could not be due to a general failure of pDC to support a TV-DTH response, because as shown in Fig. 1A, a strong (±30 × 10⁻⁴ inches swelling) response to EBV could be detected after pDC-T cell coinjection.

To further show that DC are necessary for bystander suppression to occur in the presence of donor allopeptide, we depleted them from whole PBMC and then used the remaining DC-negative fraction in the DTH assay with recall and donor Ags (Fig. 1C). The DC-depleted fraction failed to induce significant suppression of recall response. When DC were added back to the DC-depleted population, strong suppression (65% inhibition) was restored.

Role for IDO in pDC-mediated suppression of recall response by HA-1-specific Tₘ

The data in Fig. 1 indicate that DC, but not monocytes, can mediate the inhibition of recall response in the presence of donor Ag, and that pDC, unlike mDC, can mediate suppression by a cytokine-independent mechanism. Previous reports have attributed the regulatory effects of pDCs to the enzyme IDO (22, 23). To see whether this was true of bystander suppression, we used 1-methyltryptophan (1-MT) to block IDO activity. As shown in Fig. 2, an identical pattern of recovery of HA-1H-specific TV-DTH response was noted when mDC were isolated and added to T cells into the DTH assay along with EBV, H peptide, or 1-MT. Footpad swelling was measured, as indicated on the y-axis. TV-DTH values are presented as mean ± SEM × 10⁻⁴ inches and are a composite of results using cells from patients II and III (n = 2 independent experiments/patient). Values of p were determined by paired t test comparing EBV plus H to EBV plus H plus 1MT for both mDC and pDC.

Induction of IDO activity in T-pDC cultures in response to cross-presentation of donor minor H Ag

The above results indicate that bystander suppression of DTH mediated via pDC was due to the inhibitory effects on Tₘ cells caused by IDO production. To confirm that IDO was induced by cognate interaction between pDC and minor H Ag-specific Tₘ, we used an in vitro assay for kynurenine, a specific by-product of the IDO-catalyzed catabolism of tryptophan (21). Patients’ mDC or pDC were incubated with autologous T cells in the presence of self HA-1H or donor-type HA-1H peptide, or cell lysates of self or donor origin. As shown in Fig. 3, self Ag HA-1H (Fig. 3A) and self PBMC lysates (Fig. 3B) both induced baseline levels of kynurenine (500–700 ng/ml) when pDC were present, whereas donor HA-1H peptide (p < 0.05; Fig. 3A) or lysate (p < 0.01; Fig. 3B) each induced a 4- to 5-fold increase in IDO activity. As expected, the elevated kynurenine release in pDC-T cell cultures with HA-1H was completely blocked by the specific IDO inhibitor 1-MT (Fig. 3A). In contrast, low amounts of kynurenine were not induced at significant levels in supernatants of T-mDC cultures upon addition of donor Ag. Importantly, stimulation of pDC-T cell cocultures with EBV Ag did not lead to IDO induction. Kynurenine production was dependent on the concentration of the donor peptide added, as shown in Fig. 3C with doses of ≥50 µg/ml yielding
optimal response to H; no reaction to R was seen at the same dose of peptide. These in vitro data were consistent with the results seen in the TV-DTH system, and show that indirect or cross-presentation of donor minor H Ag by recipient pDC to TR induced bystander suppression via IDO.

Induction of IDO activity in T-pDC cultures in response to direct presentation of donor minor H Ag

HA-1 expression is generally limited to cells of hemopoietic origin, thus a relevant target of CD8+ T cell specific for HA-1 would be donor-derived T cells and DC that persist long after transplantation (11, 24). We questioned whether the kynurenine assay might detect regulation induced by the “direct pathway,” i.e., minor HA-1 Ag naturally presented on an intact donor DC. We cocultured T cells from patient III with patient or donor pDC or mDC as the sole source of Ag. As shown in Fig. 4, donor pDC were able to induce a significant production of kynurenine. Specifically, there was a 17-fold increase in IDO activity in donor pDC vs autologous pDC (p < 0.01) compared with only a 2-fold increase in donor vs autologous mDC. These results are consistent with the higher IDO competence of pDC vs mDC. It is possible that the low number of pDC contaminating the donor mDC preparation (<1%) are responsible for the weak IDO signal in the T-mDC cultures.

TGF-βR on the T cells is required for suppression of recall DTH in T-mDC cultures

To further characterize the TGF-β pathway of DC-mediated inhibition of the recall TV-DTH response, DC or T cells from patient III, a TGF-β regulator (Table I), were pretreated separately with anti-TGF-βRII blocking Ab and then washed and tested in TV-DTH assay (Fig. 5A). When TGF-βRII was blocked on the T cells, with unmanipulated mDC as the sole APC, recall TV-DTH response was restored (Fig. 5B; p < 0.05). When TGF-βRII was blocked on the mDC, no effect was seen, i.e., recall response inhibition still occurred (Fig. 5B), indicating a dominant role of T cell-expressed TGF-βRII in recall suppression. When pDC served as the sole APC, no reversal of bystander suppression was observed when either the T cell or pDC were pretreated with the anti-TGF-βRII Ab.

Anti-TSP-1 and anti-TGF-β reverse suppression of recall DTH mediated via mDC

Having established that TGF-β produced in T-mDC interaction must bind to its receptor on the T cell to induce the inhibition of recall response in the presence of donor Ag, the question remains: by what mechanism do mDC enable TR to mobilize and release TGF-β for suppression? Previous studies in tolerant monkey and mouse kidney allograft recipients and in mouse models of anterior chamber-associated immune deviation have shown that TGF-β and TSP-1 (13, 25). Because TSP-1 is known to be an autocrine-negative regulator produced by DCs (26) and because it is known to regulate the conversion of TGF-β from latent to active form (27), we wished to determine whether mDC or pDC could induce their effects through TSP-1. Both mDC and pDC from patients III or V (both TGF-β regulators, Table I) were separated and added to the T cells of the same patient in the DTH assay along with either anti-TGF-β or anti-TSP-1 Ab. When Ab to the active form of

![Graph](http://www.jimmunol.org/)

FIGURE 4. Kynurenine production of pDC and not mDC correlates with inhibition of recall DTH in response to direct presentation of donor minor Ag. Recipient T cells were incubated with donor or self DCs and incubated in in vitro culture as described in Fig. 3. Supernatants were analyzed for kynurenine. Results are taken from tests using cells from patient III (n = 2 independent experiments). Values of p were determined by paired t test comparing self or donor DC.

FIGURE 5. The TGF-βR on the T cell is required for the suppression of recall DTH. Either T cells or DCs were reacted with anti-TGF-βRII Ab and washed (top, shown diagrammatically). Values are presented as mean ± SEM × 10^{-4} inches and are a composite results using cells from patients II and III. Value of p was determined by paired t test comparing EBV plus H with each condition, A or B (bottom).
TGF-β was added, the bystander suppression response was abrogated fully in the case of mDC (p < 0.001), and partially in the case of pDC (p < 0.01; Fig. 6A). When anti-TSP-1 was added, HA-1H-triggered inhibition of recall DTH was fully reversed in mDC-T cell coinjections (p < 0.01), but was only slightly affected in pDC-T cell coinjections (p = NS; Fig. 6A).

To determine how TSP-1 works to facilitate TGF-β-type regulation in the T-mDC culture system, HA-1H or HA-1R peptide was added to in vitro T-DC cultures for 6 h along with inhibitors of the catalytic activity of TSP-1. These inhibitors were the mAb 133 (28) or the antagonist peptide LSLK (27), both of which interfere with the active site of TSP-1. These inhibitors were the mAb 133 added to in vitro T-DC cultures for 6 h along with inhibitors of the catalytic activity of TSP-1. These inhibitors were the mAb 133, or peptide LSLK. Results from patient V. Values of p determined from the paired t test comparing each H condition to the R condition. Values are presented as mean ± SEM. *, p < 0.5; **, p < 0.01; ***, p < 0.001.

The supernatants and cell lysates were tested for TGF-β levels by ELISA to determine the amount of bound and free TGF-β. When H peptide was added to the cell culture, TGF-β levels in the supernatant and cell pellet rose at 6 h, compared with cultures incubated with R peptide (p < 0.001 H vs R for the supernatants; p < 0.05 H vs R for the cell pellets) (Fig. 6B). However, when the TSP-1 inhibitors were added, TGF-β was no longer detectable in the supernatant, while the levels remained unchanged in the pellet (Fig. 6B). This result suggests that TSP-1 is responsible for the conversion of latent TGF-β into secreted active TGF-β that can bind to TGF-βRII on the recall Ag-specific T cell.

FIGURE 6. Anti-TSP-1 reversed TGF-β-mediated suppression of the recall response. DC and T cells were isolated and added to the following assays. A. TV-DTH assay. Results from patients III and V. Values of p determined from the paired t test comparing H plus EBV with either H plus EBV plus anti-TGF-β or H plus EBV plus anti-TSP-1 condition. A6.1 (Ab4) was the anti-TGF Ab used in this experiment. B, TGF-β assay 6-h cell lysates or supernatants were taken from cultures to which R or H peptides have been added with two inhibitors of TSP-1: mAb 133, or peptide LSLK. Results from patient V. Values of p determined from paired t test comparing each H condition to the R condition. Values are presented as mean ± SEM. *, p < 0.5; **, p < 0.01; ***, p < 0.001.

TGF-β and TSP-1 are both produced by T-mDC and T-pDC coculture, but not T-monocyte coculture. A, TSP-1 ELISA dose response titration. Cell culture supernatants from mDC-T cell cultures to which different doses of H or R peptide were added for 48 h. B, TSP-1 ELISA from 48-h cell culture supernatants of cells to which R, H, or EBV have been added. Results from cells taken from patients I, III, and V. Values of p were determined by paired t test comparing the H condition to the R condition. C, TGF-β ELISA of 48 h cultures of cells to which R or H peptides have been added. Results are from patients III and V. Values of p determined by paired t test.

TGF-β and TSP-1 are induced by addition of allopeptide to T-mDC and T-pDC coculture, but not to T-monocyte coculture

To further analyze the mechanism of bystander suppression via TSP-1 and TGF-β and to clarify the functional deficiency of monocytes, purified T cells along with either purified mDC, pDC, or monocytes were incubated in the presence of HA-1R or HA-1H peptide in vitro culture for 24 h. As shown in Fig. 7A, HA-1H induced TSP-1 production in mDC-T cell cultures in a dose-dependent, Ag-specific manner (Fig. 7A). Using an optimal concentration determined by the previous experiment (≥50 μg/ml), cocultures of T cells with both mDC and pDC resulted in a 5-fold increase in TSP-1 secretion relative to R peptide control in T cell–monocyte cocultures with Ag failed to release TSP-1 (Fig. 7B). Furthermore, EBV did not induce TSP-1 secretion from either mDC or pDC. This implies that the induction of TSP-1 is the result of cognate interaction of DC with Tc cells, and not a general consequence of any cognate T cell–DC interaction. Similarly, both cell-bound and secreted TGF-β were induced in response to HA-1H, but not HA-1R, in both mDC-T and pDC-T cocultures. The difference between HA-1H and HA-1R stimulation was significant for cell-bound TGF-β (p = 0.043) and approached significance for

FIGURE 7. TGF-β and TSP-1 are both produced by T-mDC and T-pDC coculture.
secreted TGF-β \((p = 0.067) \). Neither form of TGF-β was induced in monocyte-T cell cocultures (Fig. 7C).

Discussion

DC have been shown to be key to peripheral tolerance in a variety of experimental models (15, 23, 29, 30). We have previously described a model of bystander suppression in which tetramer-dim, minor H Ag HA-1H-specific, CD8^+ T~R~ that could be induced to express TGF-β upon Ag challenge using a mixed population of APC (11). To test whether we could replicate this HA-1H tetramer-low T cells in T-DC cocultures (Fig. 7C).

FIGURE 8. H peptide induces surface TGF-β on CD8^+. HA-1H tetramer-low T cells in T-DC cocultures. DC and T cells were incubated together in an in vitro culture along with H peptide for 9 days and analyzed for HA-1H-specific T cells with tetramer and cell surface TGF-β. The x-axis represents HA-1H tetramer staining, and the y-axis represents cell surface TGF-β staining. Percentages are given in the corner of each quadrant. Left plot, mDC-T cell cultures; right plot, pDC-T cell cultures. Results drawn from cells taken from patient III.

HA-1H peptide induces cell-surface TGF-β in CD8^+. HA-1H tetramer-low, minor Ag-specific T~R~ in T-DC cultures

We have previously reported that in recipients of a kidney transplant from an HLA identical/HA-1H-mismatched donor, tolerance was associated with tetramer-dim, minor H Ag-specific CD8^+ T~R~ that could be induced to express TGF-β upon Ag challenge using a mixed population of APC (11). To test whether we could replicate this phenotype in an in vitro system, we incubated T cells from patient III with either mDC or pDC and cultured with HA-1H peptide for 9 days. We reasoned that 9 days of culture was necessary for TCR expression to return to sufficient levels after the initial down-regulation in response to Ag exposure. In this way, we could simultaneously measure HA-1H/HLA-A2-specific tetramer binding and surface TGF-β expression. Using HA-1H/HLA-A2-specific tetramers and gating on CD8^+ cells, we found that when mDC were used to present the HA-1H peptide, an increased number of tetramer-dim TGF-β-positive T cells were present (3.78% of total CD8^+), as compared with T-pDC cultures, (2.26%; Fig. 8). A significant number of tetramer-bright CD8^+ T~R~ (mean fluorescence intensity >100) were present in HA-1H-stimulated cultures with mDC, but none were strongly TGF-β1 positive as expected (11). When pDC were the sole APC, the total number of tetramer-bright T cells were reduced, and the relative number of TGF-β-negative, tetramer-dim cells were increased relative to mDC-T cell cultures (1.6 vs 0.5%).

Discussion

DC have been shown to be key to peripheral tolerance in a variety of experimental models (15, 23, 29, 30). We have previously described a model of bystander suppression in which tetramer-dim, minor H Ag HA-1H-specific, CD8^+ T~R~ from a tolerant transplant recipient mediated inhibition of a DTH response driven by the CD4^+ T~R~ that could be induced to express TGF-β upon Ag challenge using a mixed population of APC (11). To test whether we could replicate this phenotype in an in vitro system, we incubated T cells from patient III with either mDC or pDC and cultured with HA-1H peptide for 9 days. We reasoned that 9 days of culture was necessary for TCR expression to return to sufficient levels after the initial down-regulation in response to Ag exposure. In this way, we could simultaneously measure HA-1H/HLA-A2-specific tetramer binding and surface TGF-β expression. Using HA-1H/HLA-A2-specific tetramers and gating on CD8^+ cells, we found that when mDC were used to present the HA-1H peptide, an increased number of tetramer-dim TGF-β-positive T cells were present (3.78% of total CD8^+), as compared with T-pDC cultures, (2.26%; Fig. 8). A significant number of tetramer-bright CD8^+ T~R~ (mean fluorescence intensity >100) were present in HA-1H-stimulated cultures with mDC, but none were strongly TGF-β1 positive as expected (11). When pDC were the sole APC, the total number of tetramer-bright T cells were reduced, and the relative number of TGF-β-negative, tetramer-dim cells were increased relative to mDC-T cell cultures (1.6 vs 0.5%).

In contrast to pDC, mDC mediated the inhibition of response to a recall Ag primarily through TSP-1 and TGF-β. TSP-1 is produced by a number of cell types, including platelets and DCs (26), while TGF-β is up-regulated after Ag stimulation on the surface of both CD4^+ and CD8^+ Ag-specific T~R~ (12, 35, 36). The TGF-β induced in both natural and adaptive T~R~ cells appears to be primarily expressed as a large latent complex of TGF-β, LAP, and latent TGF-β-binding protein (13, 37–39). TSP-1 is the major molecule which liberates active TGF-β from its cell surface or matrix-bound, LAP complex form (27). Indeed, while most of the induced TGF-β remained cell-bound, specific inhibitors of the LAP-binding site of TSP-1 could block release of TGF-β into T-DC culture supernatants when minor H Ag was present (Fig. 6B). Together, these results suggest that TSP-1 induction in the mDC is necessary for the activation of latent complex TGF-β and its release from the T~R~. TSP-1 also may have suppressive properties independent of TGF-β by its interaction with CD47 on T~R~ cells (40). A6.1 (Ab-4) is a mAb to TSP-1 that does not affect the LAP binding and does not interfere with TSP-1-mediated conversion of latent to active TGF-β (Ref. 28 and R. A. Derks, unpublished observations). Reversal of bystander suppression by A6.1 means that either the catalytic role of TSP-1 in conversion of latent-to-active TGF-β is not critical for bystander suppression, or that A6.1 interferes with other functions of TSP-1, like CD47 binding, that may be important in bystander suppression.
Both mDC and pDC were equally capable of producing soluble TSP-1 in vitro cultures with HA-1\(^{11}\) and T cells. TSP-1 was essential for inhibition via mDC, whereas there was only a partial reversal of bystander suppression by either anti-TGF-\(\beta\)- or TSP-1 Ab in T-pDC coinjections in the SCID mouse footpad. In our hands, monocytes were not induced to secrete TSP-1 in response to cognate interaction with HA-1\(^{11}\)-specific T\(_R\) offering one explanation as to why monocytes do not mediate efferent suppression. In contrast to these results, thioglycolate-elicited macrophages from mouse peritoneal exudates were induced to express TSP-1 following overnight incubation with Ag and active TGF-\(\beta\)-1 (25). It is possible that blood monocytes, used in the present study, require differentiation to macrophages to become “TSP-1 competent” cells.

We further defined the target of TGF-\(\beta\) suppression by blocking the TGF-\(\beta\)RII on responder T cells and the mDC. These results indicate that the target of active TGF-\(\beta\) produced during T-DC interaction with minor H peptide is the T cell and not the DC, consistent with recent evidence that a T cell-expressing TGF-\(\beta\)-R is required for tolerance (41, 42). Taken together, the data suggest the following sequence: when the DC presents cognate MHC/peptide Ag to the T\(_R\), latent TGF-\(\beta\) is induced on the T\(_R\) and TSP-1 is induced in the DC. TSP-1 then binds to surface receptors on both T\(_R\) (CD47) and DC (CD36) where it can activate the latent TGF-\(\beta\)-1 (43). This active TGF-\(\beta\)-1 then binds to the TGF-\(\beta\)R on the bystander T\(_E\) cell to generate suppression. One difficulty that could impede the interpretation of this data is what the source of TGF-\(\beta\) is in this system. The data in Fig. 8 suggest that a critical source of TGF-\(\beta\) is the T\(_R\) itself. Tetramer-low T cells cocultured for 9 days with mDC and allopeptide were TGF-\(\beta\)-positive; these T cells have previously been characterized as the ones in which regulatory function resides (11). This experiment was also done in serum-free medium, eliminating any potential TGF-\(\beta\) contamination from the medium itself binding to the cells.

A key question raised by the data is: why does the T\(_R\)-DC interaction promote IDO and TSP-1 induction, while T\(_R\)-monocyte interaction does not? We can reasonably assume that all kynurenine measured in T-DC cocultures is from the DC, as IDO competency has been identified in APC only, and not T cells (Figs. 3 and 4) (23). Both IDO and TSP-1 are DC products that are up-regulated in DC during in vitro culture by the action of ATP binding to the purinergic receptor P2Y\(_{1R}\) expressed on these DC (44). One might speculate that interactions between the T\(_R\) and APC induce bursts of extracellular ATP that bind P2Y\(_{1R}\) and allow the induction of TSP-1 or IDO. In contrast, the effect of ATP signaling through P2X,Rs expressed on monocytes is completely different, inducing proinflammatory signals such as IL-1\(\beta\) (45). Preliminary data indicate that the purinergic receptor inhibitor sumarin was able to reverse recall DTH inhibition in both T-mDC and T-pDC coinjection assays, suggesting that purinoceptors indeed are important in both IDO and TSP-1/TGF-\(\beta\) pathways of suppression (R. A. Derks, E. Jankowska-Gan, and W. J. Burlingham, unpublished data). This P2Y\(_{1R}\)R ligation may represent an early step common to both mDC and pDC pathways of bystander suppression. The source of extracellular ATP is still also unclear; at this point, we cannot rule out either the APC or the T\(_R\) as the source for this signal.

In the 9-day culture of DC with T cells and donor minor H peptide, mDC were able to induce expression of surface TGF-\(\beta\) in a significant portion of low tetramer-binding (HLA-A2/HA 1\(^{11}\)) CD8\(^+\) cells (Fig. 8), a subset previously shown to contain TGF-\(\beta\)-producing T\(_R\) (11). The pDC-T cocultures generated fewer TGF-\(\beta\)-\(\beta\) cells in the tetramer-low subset, and fewer tetramer-high cells known to contain the classical CD8\(^+\) CTL (11, 46). These results suggest that, in addition to mediating a more profound form of efferent suppression, pDC-produced IDO may limit T\(_R\) survival and sustained TGF-\(\beta\)-expression by CD8\(^+\) activated T\(_R\). However, the mDC tend to promote both TGF-\(\beta\)-tetramer-dim T\(_R\), and TGF-\(\beta\)-tetramer-bright T\(_E\), maintaining a metastable form of allotolerance.

Besides interacting with donor and recipient DC, it is possible that T\(_E\) cells interact with vascular endothelial cells in the kidney transplant inducing yet another pathway of bystander suppression, for example, via induction of IDO (47). This pathway of efferent suppression would not be relevant for minor Ags such as HA-1, which is generally restricted in its expression to cells of hemopoietic origin (46). However, several minor Ags such as HY and HA-8 are “ubiquitous” in nature and thus could be suited to endothelial cell-mediated IDO-based suppression (48).

In conclusion, the present study supports the hypothesis that DC are required for bystander suppression of third-party T\(_E\) in the presence of colococalized donor Ag-specific T\(_R\). Surprisingly, each DC precursor subtype used a similar TSP-1 pathway to harness TGF-\(\beta\) for bystander suppression, while pDC add an additional IDO pathway to achieve this result. In contrast, monocytes do not appear capable of mediating bystander suppression to minor HA-1\(^{11}\)Ag because they lack TSP-1 and IDO competence in short-term assays. These findings offer insight as to the previously undefined mechanism of bystander suppression in tolerance to minor H-mismatched, HLA-matched renal transplant, insights that may also be relevant to HLA-mismatched transplantation tolerance mediated by allopeptide-specific adaptive T\(_R\) (12).

Acknowledgments

We thank Dr. Eli Goulmy for reading and critical comments and Dr. David Wilkes for helpful suggestions regarding the inhibition of IDO.

Disclosures

The authors have no financial conflict of interest.

References

