Novel Engineered Trastuzumab Conformational Epitopes Demonstrate In Vitro and In Vivo Antitumor Properties against HER-2/new

J Immunol 2007; 178:7120-7131; doi: 10.4049/jimmunol.178.11.7120
http://www.jimmunol.org/content/178/11/7120

References

This article cites 58 articles, 31 of which you can access for free at:
http://www.jimmunol.org/content/178/11/7120.full#ref-list-1

Subscription

Information about subscribing to *The Journal of Immunology* is online at:
http://jimmunol.org/subscription

Permissions

Submit copyright permission requests at:
http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts

Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/alerts
Novel Engineered Trastuzumab Conformational Epitopes Demonstrate In Vitro and In Vivo Antitumor Properties against HER-2/neu

Trastuzumab is a growth-inhibitory humanized Ab targeting the oncogenic protein HER-2/neu. Although trastuzumab is approved for treatment of advanced breast cancer, a number of concerns exist with passive immunotherapy. Treatment is expensive and has a limited duration of action, necessitating repeated administrations of the mAb. Active immunotherapy with conformational B cell epitopes affords the possibility of generating an enduring immune response, eliciting protein-reactive high-affinity anti-peptide Abs. The three-dimensional structure of human HER-2 in complex with trastuzumab reveals that the Ag-binding region of HER-2 spans residues 563–626 that comprises an extensive disulfide-bonding pattern. To delineate the binding region of HER-2, we have designed four synthetic peptides with different levels of conformational flexibility. Chimeric peptides incorporating the measles virus fusion “promiscuous” T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563–598 and 597–626 showing greater reactivity. All epitopes were immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597–626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab. The Journal of Immunology, 2007, 178: 7120–7131.

The Journal of Immunology

www.jimmunol.org

†‡¶ § "Promiscuous" T cell epitope via a four-residue linker sequence were synthesized, purified, and characterized. All conformational peptides were recognized by trastuzumab and prevented the function of trastuzumab inhibiting tumor cell proliferation, with 563–598 and 597–626 showing greater reactivity. All epitopes were immunogenic in outbred rabbits eliciting Abs which recognized HER-2, competed with trastuzumab for the same epitope, inhibited proliferation of HER-2-expressing breast cancer cells in vitro and caused their Ab-dependent cell-mediated cytotoxicity. Moreover, immunization with the 597–626 epitope significantly reduced tumor burden in transgenic BALB-neuT mice. These results suggest the peptide B cell immunogen is appropriate as a vaccine for HER-2-overexpressing cancers because the resulting Abs show analogous biological properties to trastuzumab. The Journal of Immunology, 2007, 178: 7120–7131.
end, our laboratory has studied a number of epitopes from the HER-2 ECD identified from computer-aided analysis; we reported the anitumor properties of chimeric B cell epitope sequences 528–647 and 316–339 that incorporate a promiscuous T cell epitope (measles virus fusion protein (MVF)) (18, 19). These studies are the basis for the phase I clinical trial currently being conducted at The Ohio State University James Cancer Hospital.

The crystal structure of the trastuzumab Fab bound to HER-2 reveals that it binds at the C-terminal portion of subdomain IV of the HER-2 ECD (20) which should facilitate the design of new therapeutics and vaccines. Trastuzumab binds the C-terminal end of domain IV of the extracellular region of HER-2 amino acids 579–625. Binding of trastuzumab blocks activation of HER-2 by promoting receptor endocytosis as well as blocking proteolytic cleavage of the ECD. Thus, the selection, design, and synthesis of selected regions allow us by active immunization to generate sequence-specific anti-peptide Abs. By examining the mechanistic effects of these Abs such as induction of apoptosis, decreased cell proliferation, Her-2 down-regulation, dephosphorylation, inhibition of signal pathways, inhibition of homo/heterodimerization, ADCC, and complement-dependent cytotoxicity (CDC), we are then able to select these readouts as guides for pursuing in vivo studies as well as for translating these vaccines to the clinic.

In particular, Abs raised against a peptide that could closely mimic the native structure of the pocket-like trastuzumab-binding region of HER-2 are likely to provide more effective functional cross-reactive immune responses with potent antitumor properties. We have successfully used several different strategies to mimic the conformation of epitopes in native proteins (21–24). We also demonstrated the use of peptide cyclization by incorporating native disulfide bonds in the 626–649 sequence of HER-2/neu (24) which resulted in improved in vitro and in vivo activity compared with the linear noncyclized peptide.

In this study, we have designed several HER-2 epitopes at the HER-2/trastuzumab interface requiring an elaborate scheme for the successful synthesis, purification, and characterization of these complex epitopes. We show that with varying degrees of reactivity all conformationally restricted peptides were recognized by trastuzumab and blocked the function of trastuzumab inhibiting tumor cell proliferation. All the cyclic and linear epitopes were highly immunogenic in inbred mice eliciting high titer Abs. The 597–626 and 613–626 epitopes elicited strong native-like anti-peptide Abs. By examining the mechanistic effects of these Abs such as induction of apoptosis, decreased cell proliferation, Her-2 down-regulation, dephosphorylation, inhibition of signal pathways, inhibition of homo/heterodimerization, ADCC, and complement-dependent cytotoxicity (CDC), we are then able to select these readouts as guides for pursuing in vivo studies as well as for translating these vaccines to the clinic.

Materials and Methods

Synthesis of linear and disulfide-constrained peptides

HER-2 B cell epitopes 563–598, 585–598, 597–626, and 613–626 were synthesized co-linearly with a promiscuous Th epitope derived from the measles virus fusion protein (amino acid 288–302). Peptide synthesis was performed on a Milligen/Biosearch 9600 peptide solid-phase synthesizer using F-moc/B-But chemistry on preloaded clear acid resin (Peptides International) and cleaved using reagent B (trifluoroacetic acid:phenol:water:trisopropylsilane, 90:4:4:2). Three disulfide bonds were introduced in the epitope HER-2 563–598 to more closely mimic the three-dimensional structure of HER-2 protein. Chemoselective protecting groups Cys(Trr), Cys(Acm), Cys(But) were used for desired disulfide paring. The protecting group from Cys(Trr) comes off in the global cleavage reaction as confirmed by electrospray ionization mass spectroscopy (ESI-MS) analysis. Pure fractions were analyzed using analytical Waters HPLC. pooled together, and lyophilization in 1% acetic acid solution, Clevage of the peptide performed in phase-HPLC purification, and lyophilization in acidic medium and prevention of oxidation of free sulhydryl groups of Cys residues as confirmed by ESI-MS analysis was performed.

Circular dichroism (CD) measurements

Aqueous solutions for CD were prepared by dissolving the freeze-dried peptide in the appropriate amount of water to give a final concentration of 0.5 mM and were used as stock solution for further dilution. CD spectra were recorded on an Aviv model 62A DS CD instrument as reported earlier (24). Mean residue ellipticity (θ) values were calculated according to the equation: θ = (θ190 + θ208) / 2. Where θ is the recorded ellipticity (deg), M, the m.w. of the peptide, n, the number of residues in the peptide, c, the peptide concentration (milligrams per milliliter), and l, the path length of the cuvette. Helicity of peptides was determined according to Chen et al. (25) with reference to mean residue ellipticity of polylysine for 100% α-helix (θ222 = −35,700 (26).

Animals

Female New Zealand White outbred rabbits and FVB/n inbred mice were purchased from Harlan Breeders. Virgine female BALB-neuT mice (27), BALB/c mice transgenic for the rat-transforming neu oncogene expressed under the control of mouse mammary tumor virus promoter, were bred in our animal facility. Animal care and use was in accordance with institutional guidelines.

Cell lines and Abs

All cell culture medium, FCS, and supplements were purchased from Invitrogen Life Technologies. The human breast tumor cell lines, BT-474, SK-BR-3, and MDA-468, were purchased from American Type Culture Collection and maintained according to the supplier’s guidelines. TUBO cells are a cloned cell line established in vitro from a lobular carcinoma that arose spontaneously in a BALB-neuT mouse (28). TS/A cells are derived from a spontaneous breast cancer of a wild-type BALB/c mouse. HER-2 mAb Ab-2 (clone 9G6) was purchased from Neomarkers. Rat neu mAb Ab-4 was purchased from Calbiochem. Humanized mouse mAb Herceptin (trastuzumab) was provided by Genentech (South San Francisco, CA).

Immunoassays

To determine the ability of trastuzumab to bind various peptides, a trastuzumab-specific ELISA was performed. Ninety-six-well plates were coated with 100 µl of peptide at 2 µg/ml in PBS overnight at 4°C. Non-specific binding sites were blocked for 1 h with 200 µl of PBS-1% BSA, and plates were washed with 3 x 0.1% Tween 20/PBS. Wells were then coated with 100 µl of PBS-1% BSA for 4 h on a rocker. Plates were washed four times with 0.1% Tween 20/PBS. Wells were then coated overnight at 4°C with 50 µl of either PBS-1% BSA or SK-BR-3 cell lysate (1 x 10^5 cells in 20 ml of lysis buffer)
buffer). Lysis buffer was composed of 1% Triton X-100, 10% glycerol, 150 mM NaCl, 50 mM HEPES, 1.5 mM MgCl₂, 1 mM EDTA, 10 mM pyro-phosphate, 100 mM NaF, 0.2 mM Na₃VO₄, 10 μg/ml aprotinin, 10 μg/ml leupeptin, and 1 mM PMSF. Plates were washed four times with 0.1% Tween/PBS and serial dilutions of rabbit sera (starting at 1/100) were added and the plates were incubated for 2 h on a rocker. Ab binding was detected as described above. The anti-HER-2 response was measured using a second competitive inhibition assay. Wells were coated overnight at 4°C with 100 μl of 500 ng/ml recombinant human HER-2 ECD/Fc chimera (R&D Systems) and plates blocked with 2% BSA for 1 h at 25°C. A constant amount (1/2000 dilution) of rabbit anti-597–626 CYC abs or anti-597–626 NC abs was added to the plates and at the same time various amounts of inhibitor (trastuzumab or isotype control human IgG) was added. Bound anti-peptide rabbit Abs was detected with HRP-conjugated anti-rabbit IgG Ab (mini-mized for binding human IgG). The inhibition rate was calculated according to the following formula: (ODanti-peptide Ab) – ODanti-peptide Ab + inhibitor / (ODanti-peptide Ab) × 100.

Peptide immunization and Ab purification

Mice and rabbits were immunized s.c. at multiple sites with a total of 1 mg (rabbits) or 100 μg (mice) of peptide dissolved in H₂O with 100 μg of a muramyl dipeptide adjuvant, N-acetyl-glucosamine-3-yI-acetyl-t-alanyl-t-isoglutamine (MDP). Peptides were emulsified (50:50) in Seppic Montanide-LA 2702 vehicle. The same dose of booster injections was administered twice at 3 and 6 wk. Sera were collected and complement was inactivated by heating to 56°C for 30 min. High-titered sera were purified on a protein A/G agarose column (Pierce) and eluted Abs were concentrated and exchanged in PBS using 100-kDa cutoff centrifuge filter units (Millipore). The concentration of Abs was determined by Coomassie plus protein assay reagent (Pierce).

BALB-neuT mice were immunized in the same manner described, commencing at 5–6 wk of age. After the second boost, the transgenic mice received two subsequent boosters at monthly intervals. Tumor size (length and width) in each of 10 mammary glands was measured twice weekly with Vernier calipers beginning at 18 wk of age. Individual tumors were calculated by the formula (length × width²)/2. All mice were euthanized at 25 wk of age.

Flow cytometry

A total of 1 × 10⁶ BT-474, SK-BR-3, TUBO, or MDA-468 cells were incubated with 1, 10, or 100 μg of mouse or rabbit antipeptide Abs, HER-2-specific mouse mAb Ab-2 (Lab Vision) and rat neu-specific mAb Ab-4 (Calbiochem) were used as positive controls, and isotypic IgG was used as a negative control. Cells were incubated for 2 h at 4°C in 100 μl of PBS/2% FCS/0.1% NaN₃. The cells were washed twice in cold PBS and incubated with FITC-labeled secondary Ab (1/50 dilution) for 1 h on ice in 100 μl of PBS/1% FCS/0.1% NaN₃. The cells were washed twice, fixed in 1% formaldehyde, and analyzed by a FACSCalibur flow cytometer (BD Biosciences). A total of 10,000 cells were counted for each sample and final processing was performed. Debris, cell clusters, and dead cells were gated out by light-scattered assessment before single-parameter histograms were drawn and smoothed.

Cell survival assay by trypsin blue exclusion

This assay was adapted from Nahta et al. (29). BT-474 cells were seeded at a density of 1 × 10⁷ cells/well in 12-well plates. Twenty-four hours later, cells were treated in triplicate with 20 μg/ml anti-peptide Abs, trastuzumab, or normal rabbit IgG for an additional 72 h. The percentage of inhibition was calculated using the formula: (ODnormal rabbit IgG – ODpeptide Ab)/ODnormal rabbit IgG × 100.

ADCC

Effector PBMCs from normal human donors obtained by density gradient centrifugation in Ficoll-Hypaque (Pharmacia Biotech) were washed twice in RPMI 1640–5% FCS and then serially diluted in 96-well plates to give E:T ratios of 25:1, 12.5:1, and 6.25:1. The following day, 1 × 10⁵ target cells received 50 μg of protein A/G-purified anti-peptide rabbit Abs or trastuzumab (Genentech). BT-474 and MDA-468 target cells (HER-2high and HER-2low, respectively) were labeled with 100 μCi/10⁶ cells of Na¹ⁱ₁₂⁵I (PerkinElmer) and incubated for 1 h at 37°C. After three washings, 5 × 10⁵ target cells were delivered to each well so as to give a final volume of 0.2 ml/well. The cells were incubated for 4 h at 37°C, after which time 75 μl of cell-free supernatants were harvested and radioactivity determined using a gamma counter. To assess nonspecific lysis effector and target cells were cocultivated in the presence of normal rabbit Abs. Cyto-toxicity was calculated by the formula (percent lysis) = (% (A × B)/C – B) × 100, where A represents 3¹⁰⁵ (cpm) from test supernatants, B represents 3¹⁰⁵ (cpm) from target alone in culture (spontaneous release), and C represents maximum 3¹⁰⁵ release from target cells lysed with 5% Triton X-100. Results represent the average of triplicate samples.

Statistical analysis

Differences in MT cell proliferation assay were evaluated with the Student t test. Tumor growth over time was analyzed using Stata’s XTGEE (cross-sectional generalized estimating equations) model which fits general linear models that allow you to specify within animal correlation structure in data involving repeated measures. The model includes terms for treatment group, time, and the interaction of treatment by time. This interaction term is used to calculate the differences in the slopes of each group. The XTGEE model assumes that the data are normally distributed and that volume is a continuous linear variable. Log transformation of the volume addresses both of these issues. The slopes by treatment of the log-transformed tumor volumes were calculated and compared with determine whether there was a statistically significant difference between treatments. The significance level was set at α = 0.01 to control for the overall type I error rate when doing multiple comparisons. The results of the above regression are transformed back into their original units.

Results

Design and synthesis of conformational and linear peptides

The crystal structure of the extracellular region of HER-2 bound to the trastuzumab Fab reveals that trastuzumab binds subdomain IV of the HER-2 ECD (20). The Ag-Ab interaction is mediated by three regions of HER-2. These regions are composed of loops which consist of residues 579–583 (formed by two disulfide bonds; C563-C576 and C567-C584), 592–595 (cysteine disulfide pairing between C587-C596), and 615–625 (cysteine disulfide bond between C600-C623). We have selected this 64 residue cysteine-rich region of the HER-2 ECD for the design of several peptides to minimally mimic the binding epitope. Four constructs (Table I) encompassing residues 563–626 were designed to contain at least one region of the three binding sequences that make contact with trastuzumab. In addition, we have incorporated the native disulfide bonds in each of these epitopes.

Epitopes containing one or two intramolecular disulfide bond were cyclized using iodine oxidation and characterized as reported (24). In the case of epitope MVF 563–598, which contains three intramolecular disulfide bonds, the first and second disulfide bond formation was performed with in situ reaction using I₂/H₂O, the first disulfide bond formation occurring in the first hour. The addition of water boosts the removal of acetamidomethyl groups and concurrent formation of second disulfide bond. This was confirmed by polyethyleneoxide (PEO)-maleimide reaction; biotinylation agent PEO-maleimide, which attacks free sulfhydryl groups to form addition product and therefore can be used to determine the completion of disulfide pairing and was confirmed by ESI-MS (24). Two Cys(Bu³) groups remained intact during the cyclization...
procedure. The third disulfide bond was formed by silyl-chloride-sulfoxide method and the completion of third disulfide bond was confirmed by PEO-maleimide reaction; no PEO-maleimide addition was observed, which was confirmed by ESI-MS characterization (Fig. 1). Linear peptide was generated by DTT reduction. These spectroscopic results indicate that we have successfully synthesized conformational peptides incorporating three disulfide bonds.

The HER-2 B cell epitopes were synthesized colinearly with a promiscuous Th epitope derived from the measles virus fusion protein (MVF) (amino acids 288–302). A four-residue linker sequence, GPSL, connects the Th and B cell epitopes; this linker sequence forms a hairpin loop. The small, flexible nature of glycine and the ability of proline to readily form the cis-conformer make these amino acids amenable to tight turns. Serine favors hydrogen bonds with the free amide of the backbone and interacts favorably with solvent and leucine is buried in the hydrophobic core. Independent folding of the Th and B cell epitopes is achieved using the flexible linker sequence (30, 31).

Specificity of peptides binding to trastuzumab

To examine the ability of trastuzumab to bind the conformational cyclized synthetic peptides, a trastuzumab specificity ELISA was developed. Polystyrene plates were coated overnight with various peptides and the following day probed with trastuzumab. Trastuzumab binds to all four of the peptides MVF 563–598, 585–598, 597–626, and 613–626 but not the irrelevant control peptide MVF 316–339 (Fig. 2A). The 563–598 peptide exhibited the highest reactivity with the mAb. Moreover, trastuzumab binds the synthetic peptide MVF 563–598 that incorporates the natural disulfide pairings of HER-2 in a dose-dependent manner and to a lesser extent the linear noncyclized peptide (Fig. 2B). These results suggest that the conformation induced by cyclization mimics the native sequence better than the flexible peptide.

Conformational peptides prevent trastuzumab inhibiting tumor cell growth

The ability of trastuzumab to bind the ECD of HER-2 and inhibit the downstream signaling of HER-2, resulting in growth inhibition of HER-2-overexpressing cell lines has been demonstrated extensively (13). Because we have shown that trastuzumab recognizes all four of the peptides, we investigated whether these peptide prevent trastuzumab from inhibiting tumor cell growth. By preincubating trastuzumab with peptide, the response rate of the breast cancer cell line BT474 to trastuzumab was blocked by all peptides (MVF 563–598CYC, MVF 585–598CYC, MVF 597–626CYC, and MVF 613–626) in a dose-dependent manner, while an equivalent concentration of trastuzumab without preincubation with peptide blocked tumor growth (Fig. 3A). These results suggest that the conformation induced by cyclization mimics the native sequence better than the flexible peptide.
of control peptide had no effect (Fig. 3). At a concentration of 60 μg/ml only the 563–598 and 597–626 peptides had a statistically significant decrease (p < 0.05) in inhibition compared with nonspecific peptide (MVF 127–144), indicating that both MVF 563–598CYC and MVF 597–626CYC peptides bind to trastuzumab and prevent the mAb from inhibiting tumor cell growth.

Immune response of peptide constructs in FVB/n mice

We investigated the immune response of each of these constructs in FVB/N mice (n = 5–10). Each of the constructs elicited high-titered Abs in mice, as evidenced by Ab titers over 100,000 (Fig. 4A). Notably both the cyclized (CYC) and linear (NC) forms of MVF563–598 along with irrelevant control peptide (MVF316–339).

Effects of 597–626 peptide constructs in outbred rabbits

Based on the ability of Abs induced by the synthetic peptide vaccine 597–626 to bind the native receptor with high specificity and to be recognized by trastuzumab, this epitope was considered to be the most promising vaccine candidate. We therefore evaluated the immunogenicity of the 597–626 construct in outbred New Zealand White rabbits to generate a large quantity of Abs for in vitro studies. Both the cyclized and linear peptides elicited high-titered Abs (Fig. 6A).

IgG was the predominant isotype generated in rabbits. Abs elicited by 597–626 CYC construct contained 95.8% IgG, 3.7% IgM, and 0.5% IgA, whereas Abs elicited against 597–626NC had 94.4% IgG, 5.0% IgM, and 0.6% IgA (data not shown). We examined the cross-reactivity of the rabbit Abs to the native protein using flow cytometry. Abs raised against both 597–626CYC and NC recognized both HER-2-overexpressing cell lines BT474 (Fig. 5).

Cross-reactivity of the peptide Abs with native HER-2

It is essential for Abs raised against a synthetic peptide to recognize the native protein to be considered a potential vaccine candidate. We tested the binding of FVB/N purified Abs to the HER-2-overexpressing human breast cancer lines BT474 and SK-BR-3 by immunofluorescence staining of a single-cell suspension (Fig. 5, left and middle panel). Abs generated against 597–626 bound well within 1 log of HER-2-specific mouse mAb Ab-2 in both BT474 and SK-BR-3 (Fig. 5C) cell lines and showed the largest shift of the anti-peptide Abs. Abs against the 613–626 epitope were capable of recognizing the native protein (Fig. 5D). However, Abs to 563–598 and 585–598 showed weak binding to both cell lines (Fig. 5, A and B).

Anti-peptide Abs did not demonstrate binding to MDA468 (Fig. 5, right panel), a non-HER-2-overexpressing breast cancer cell line. The 563–598 sequence harbors a putative N-linked glycosylation site at residue 571 (Table I, boxed residues). The published crystal structure of HER-2 bound to trastuzumab was enzymatically deglycosylated, whereas the crystal structure of HER-2 bound to the pertuzumab Fab reveals a sugar moiety at position 571 (34). Abs against 563–598 peptides did not cross-react with SK-BR-3 cells treated with tunicamycin, which prevents addition of N-linked oligosaccharides to proteins (data not shown). The lack of recognition of Abs elicited to 563–598 may be due to conformational differences when HER-2 is glycosylated. The 585–598 epitope is most likely too short (containing only 14 aa) to elicit cross-reactive Abs specific to HER-2.
and SK-BR-3 (Fig. 6C) but MDA468 cells (Fig. 6D) which do not overexpress HER-2. This data suggest that the Abs induced by the vaccine constructs were specific for the HER-2 protein. In addition, the binding of anti-peptide Abs to HER-2 was measured using two ELISA. First, we performed a sandwich ELISA in which SK-BR-3 cell lysate was used as a source of HER-2. Fig. 7A reveals that anti-597–626 Abs (1/100 dilution) recognize HER-2 in a similar manner as trastuzumab (20 μg/ml). Next, the ability of 597–626 anti-peptide Abs to bind recombinant human HER-2/Fc chimera was examined. Both 597–626CYC and 597–626NC Abs had a titer of 8000 (Fig. 7B) against the native protein. To test whether the 597–626 anti-peptide Abs bound to the same epitope as trastuzumab, the mAb or isotype control human IgG were used as competitor for Ag binding in ELISA experiments. Anti-peptide Abs were allowed to bind to immobilized HER-2 in the presence and absence of various concentrations of trastuzumab or human IgG. At a concentration of 1000 ng/ml, trastuzumab was able to inhibit the binding of anti-597–626CYC Abs (Fig. 7C) and anti-597–626NC Abs (Fig. 7D) to HER-2 by 75.0 and 70.9%, respectively. The results demonstrate that both anti-597–626CYC and anti-597–626NC Abs recognize the same or similar determinant as that of trastuzumab.

FIGURE 5. Cross-reactivity of peptide Abs to breast cancer cell lines. The reactivity of purified Abs from immunized FVB/n mouse sera was tested with BT474 (left panel), SK-BR-3 (middle panel), which are breast cancer cell lines that overexpress HER-2, and MDA468 (right panel), a non-HER-2 overexpressing cell line, using flow cytometric analysis. Abs shown were raised against peptides (A) 563–598, (B) 585–598, (C) 597–626, and (D) 613–626. Ab binding was detected with goat-anti-mouse FITC-conjugated secondary Abs. Histograms indicate linear peptide Abs (light gray shading), cyclized peptide Abs (dark gray shading), normal mouse IgG (negative control, light gray line histogram), and Ab-2 (positive control, black shading).
Effect on breast cancer cell viability and proliferation

We next examined the effect of 597–626 peptide Abs on tumor cell survival in vitro (29). BT474 cells were plated overnight; the next day cells were treated with either 20 μg/ml Abs elicited from 597CYC, 597NC, trastuzumab, normal rabbit IgG, or medium alone. Cell viability was measured after 72 h by trypan blue exclusion. Cells treated with Abs elicited from 597–626CYC and 597–626NC had 61 and 46% viability, respectively, compared with untreated cells (Fig. 8A) whereas trastuzumab treated cells had 21% viability, indicating that Abs against both conformational...
and linear form of 597–626 are able to decrease BT474 cell viability. We then examined the ability of anti-peptide Abs to effect in vitro tumor cell proliferation using the MTT assay. As shown in Fig. 8, Abs elicited by peptide epitopes 597CYC and 597NC had a similar effect on the proliferation of BT474 cells (19 and 18% inhibition, respectively), whereas trastuzumab demonstrated a 59% inhibition on tumor cell proliferation. These findings demonstrate that Abs against both conformational and linear forms of 597–626 are able to diminish cell viability as well as have antiproliferative effects on BT474 cells in vitro.

Effect of conformational restriction on the MVF 597–626 sequence

The chimeric peptide epitopes are quite complex involving several turns, antiparallel β-sheets, β-turn, and some helical structure in the MVF epitope. Our structural analysis of the cyclized and non-cyclized peptides by CD (data not shown) was quite similar involving those secondary elements. Peptide MVF 597–626CYC is partially folded because of conformational constraints imposed by one disulfide bond. This disulfide bond reduces the conformation freedom of the polypeptide chain. CD measurements (data not shown) at 100 μM concentration shows minimum at 198 nm as well as 195 nm indicating population of turns in this peptide. The peptide MVF 597–626NC shows only one minimum at 198 nm indicating different topology of

Abilities of anti-peptide Abs to mediate ADCC

It has been well-documented that in vivo the Fc portions of Abs can be of foremost importance for efficacy against tumor targets (35). When Fc binding is reduced or completely removed, trastuzumab loses virtually all of its antitumor activity in vivo (36). Consequently, Fc-dependent ADCC is critical for in vivo efficacy. Therefore, we measured the ability of the anti-peptide Abs to mediate ADCC in vitro. Peptide Abs elicited in rabbits against both the cyclized and linear peptide invoked lysis of the breast cancer cell line BT474 in the presence of human PBMCs, analogous to trastuzumab (Fig. 9). These results suggest that Abs raised against both conformational and linear form of 597–626 are able to mediate ADCC in a similar manner as trastuzumab.

Cross-reactivity of HER-2 peptide Abs with the rat neu receptor

The amino acid sequences of rat neu (top) and human HER-2 (bottom, light gray shading) were aligned between human HER-2 sequence 597–626. *, Disparate residues. Flow cytometric analysis was performed on TUBO (B) and TS/A (C) cell lines. TUBO are derived from a spontaneous breast cancer of a BALB-neuT transgenic mouse and overexpress rat neu; TS/A is a spontaneous breast cancer from a wild-type BALB/c mouse. Histograms indicate 597NC Abs (light gray shading), 597CYC (dark gray shading), normal rabbit IgG (negative control, dotted line histogram), and Ab-4 (anti-neu Ab, black shading).
the B cell component with lack of any constraint because of absence of disulfide bond. Both peptides do not show characteristic CD minimum of the β-sheet structure, this observation suggests the presence of isolated β-turns and constrained secondary structure in disulfide-bonded peptide construct. A plausible explanation is that this region of the protein as well as the individual peptide may fold independently and does not require constraining by disulfide bonds as they are conformationally flexible.

Effects of peptide constructs in BALB-neuT mice

We used the BALB-neuT transgenic mouse mammary cancer model as a measure of the ability of the peptide constructs to reduce tumor progression. BALB/c inbred mice transgenic for the transforming activated rat HER-2/neu oncogene under the control of a mammary-specific promoter is likely the most aggressive model of HER-2/neu carcinogenesis (27). A point mutation that replaces the valine residue at position 664 in the transmembrane domain with glutamic acid favors HER-2/neu homo- and heterodimerization and renders the neu gene product constitutively active (37). Animals rapidly develop tumors; in preliminary studies using untreated mice, all animals developed tumors by 25 wk of age.

There is 88% sequence homology between human HER-2 and rat neu; the human 597–626 sequence has 93% homology with the rat neu sequence, with two disparate amino acids (Fig. 10A). We examined whether Abs raised against 597–626 were capable of recognizing the rat neu receptor using the TUBO cell line, a cell line established in vitro from a lobular carcinoma that arose spontaneously in a BALB-neuT mouse. As depicted in Fig. 10B, Abs against both cyclized and linear forms of 597–626 were shifted relative to normal rabbit IgG and were comparable to Ab-4, a mouse mAb that binds rat neu. Flow cytometric analysis of the non-neu-expressing TS/A cell line demonstrated that no Abs bound this cell line (Fig. 10C).

Based on these results, the conformationally restricted MVF 597–626 was chosen for study in female transgenic BALB-neuT mice. Previous studies have shown the age at which mice are immunized is critical (33). Transgenic mice that began receiving dendritic cells transduced with adenovirus expressing the neu oncoprotein past 6-wk old had larger tumor burden compared with mice receiving the vaccine at 5–6 wk of age (38). Transgenic mice were immunized with 597–626CYC beginning at 5–6 wk of age. Mice received two booster immunizations at 3-wk intervals and subsequently two additional immunizations at 4-wk intervals. Impressively, 597CYC elicited high-titer anti-neu Ab responses in all mice 3 wk after the third immunization (Fig. 11A). At 25 wk of age, untreated mice and mice immunized with irrelevant peptide had an average tumor burden of 3486 mm³ (±1166) and 2720 mm³ (±1163), respectively (p = 0.6441). Mice immunized with 597–626CYC had a significant reduction in tumor burden (p < 0.0001), with an average tumor burden of 378 mm³ (±228.0). The in vivo antitumor activity observed here correlates with the in vitro studies indicating the 597–626 construct is capable of inhibiting tumor cell growth as well as mediate ADCC in a similar manner as trastuzumab. These results indicate that the conformationally restricted 597–626 epitope is capable of significantly inhibiting tumor growth in a mouse model that parallels several characteristics of the stepwise mammary carcinogenesis in women.

Discussion

HER-2 vaccines have been designed that use whole cells expressing tumor Ags (39–41), proteins (42), as well as DNA expression plasmids (43–45). Most of the immunotherapies targeting the HER-2 oncoprotein have focused on T cell epitopes, and several studies have produced notable results indicating that vaccinated patients can develop immunity to HER-2 peptides and native protein (46–48). Recent clinical trials results using a HER-2 CTL epitope showed an increase in disease-free survival in vaccinated HER-2/neu-expressing breast cancer patients (85.7%) compared with the control group (59.8%) (49). However, the effectiveness of a CTL vaccine for clinical use is limited to patients who express the appropriate HLA haplotype. To date mAbs, based on B cell immune responses, and not vaccines to activate the T cell immune responses, have been successful in clinical trials and approved for usage (50). In particular, the clinical efficacy of trastuzumab suggests that the generation of a robust and focused humoral immune response may be biologically significant for tumor defense.

Before the publication of the three-dimensional structure of HER-2 (20), the identification of HER-2 B cell epitopes was achieved through computer-aided analysis (18, 19, 51). In addition, several HER-2 B cell mimotopes have been identified through phage display (11, 52, 53). Riemer et al. (52) used a constrained 10-mer random peptide phage display library to identify peptide mimotopes to trastuzumab; Abs raised against one of these peptides recognized HER-2/neu and caused internalization of the receptor from the cell surface in a similar manner as trastuzumab (52). Although this peptide sequence bears no sequence homology to HER-2, it was matched to the third loop of HER-2 at the HER-2/trastuzumab interface using computational methods (54). Jiang
et al. (53) identified another mimotope that matched to an epitope between loops 1 and 2 of HER-2 at the HER-2/trastuzumab interface. These studies indicate that all three loops are important for trastuzumab-binding HER-2.

We have designed four peptide constructs that each contains at least one of the three loops of HER-2 involved in binding trastuzumab. The use of synthetic peptides to represent protein domains is restricted by conformational issues. The protein fragment of interest is stabilized by secondary and tertiary interactions in the native protein, but the matching peptide in solution will typically have a random coil structure. Lacking structural restraints, the flexibility of peptides can lead to varied conformations presented to the immune system, most of which are non-native (55). Linear peptides are highly flexible and can adopt a variety of conformations in solution. However, only a few of these conformations are responsible for their immunoreactivity (56). One approach to achieve molecular mimicry to the parent protein is through constricting the peptide by cyclization if the natural sequence bears cysteine residues that are paired to provide loop sequences with enhanced stability. Cyclic peptides can cause preferred spatial arrangements that duplicate the bioactive conformation, resulting in improved binding and immunological properties.

In our previous studies, we demonstrated that conformational cyclic epitopes HER-2 sequence 626–649 (24) had the desired secondary structural characteristics as determined by CD measurements. Abs against the cyclized epitope bound the HER-2 protein with a higher affinity than the noncyclized epitope and were twice as effective in ADCC assay and in reducing tumor growth in transgenic mice. However, in the present study, we were unable to differentiate between the conformations of the epitope region spanning residues 597–626. Similarly, the Abs that were generated were also very similar in reactivity and biological efficacy.

We have designed peptide constructs to include the native disulfide bonds of the epitopes to more closely mimic the native structure. Each of the peptide constructs were recognized by trastuzumab, with 563–598 showing the greatest recognition. In addition, all peptides were able to prevent trastuzumab from inhibiting tumor cell growth. However, Abs raised against the 563–598 epitope do not, to an appreciable extent, recognize HER-2 as measured by flow cytometry.

This may be due to the asparagine-linked glycosylation site (571-NGS) found within this sequence. It has been reported previously that trastuzumab’s mouse counterpart mAb, 4D5 recognized glycosylated HER-2 and unglycosylated HER-2, indicating that either the mAb recognizes a conformation of the protein attained only when it is glycosylated, or, conversely, the epitope recognized by 4D5 comprises partly of carbohydrate (57). Abs against the 563–598 peptide inability to bind native HER-2 may due to a local conformational change when HER-2 is glycosylated, or, alternatively, dominant epitopes in the 563–598 peptide are not surface exposed on the native protein. However, Abs raised against the third loop of HER-2 (597–626) did recognize HER-2 and were investigated further. The 597–626 epitope was immunogenic in outbred rabbits; these polyclonal Abs recognized HER-2. In addition, competition experiments revealed that trastuzumab was able to inhibit the binding of anti-597 Abs to HER-2, indicating the anti-peptide Abs bound the same epitope as trastuzumab.

Trastuzumab is known to affect tumor growth by both direct and indirect mechanisms. The direct mechanisms involve binding to HER-2 and altering the receptor’s signaling properties that can result in tumor growth cell inhibition (13). Anti-597 Abs were able to diminish cell viability as well as inhibit tumor cell growth of the BT474 cell line in a similar manner as trastuzumab. The indirect mechanisms involve the classical pathways in which trastuzumab kills tumor cells by mediating ADCC and CDC. We show here that anti-597 Abs were able to mediate ADCC in a manner similar to trastuzumab. Although the mechanisms by which Abs exert their therapeutic effects are still being debated, the putative mechanisms are either direct (i.e., block signaling functions, internalization of receptors, reduce proteolytic cleavage of receptors) or indirect action mediated by the immune system CDC, ADCC. Thus, we have attributed the antitumor response and protective efficacy to the generation of anti-peptide Abs and not to a T cell-mediated immune response. However, because we did not evaluate the types of tumor infiltrating leukocytes that may have been induced after peptide vaccination or in mammary tumors of BALB-neuT mice after defined stages, we cannot discount the possibility that a T cell response (CD8+ or CD4+) to the vaccine may have played a role in efficacy. In future studies, we will explore the tumor microenvironment and its interface with the tumor cells because it is known that some tumors are infiltrated with lymphocytes, macrophages, and granulocytes.

To demonstrate in vivo efficacy of the 597–626 vaccine, we used the BALB-neuT transgenic mouse model. Although a more desirable model would be mice transgenic for human HER-2, only recently has a model been described in which animals form tumors (58). Abs against the 597–626 epitope were cross-reactive with rat neu protein, thus we used this animal model. It has been shown that the induction of anti-HER-2/neu Abs are both necessary and sufficient for protection of BALB-neuT mice from developing tumors as shown by deletion of CD4+ and CD8+ cells (32, 33). Thus, this animal model is advantageous to studies that identify B cell epitopes necessary in the protection of BALB-neuT transgenic mice from developing tumors. By 25 wk of age, mice immunized with the 597CYC construct had a statistically significant reduction in tumor burden compared with both naive and MVF-immunized mice. Because we have demonstrated that Abs against the 597–626 epitope bind to HER-2 at the trastuzumab interface, the mechanism of action of the endogenous tumor protective in BALB-neuT mice most likely include down modulation of the HER-2/neu receptor as well as interaction with the immune system via the Fc domain of endogenous Abs against the 597–626 epitope.

In summary, we report here an epitope that mimic the HER-2/ trastuzumab interface capable of inducing Abs with antitumor properties that significantly reduces tumor burden in vivo in transgenic mice. There are inherent limitations of passive immunotherapy with trastuzumab including unequal tissue distribution, limited half-life, prolonged administration, possible immunogenecity with high dosages, and cardiotoxicity. Immunotherapy with peptide vaccines that produce endogenous Abs may be more valuable than repeated administration of an exogenous mAb. Peptide vaccines are easy to produce, amenable to quality control, and cost effective. The active generation of Abs with similar characteristics as trastuzumab has the potential to suppress the development of HER-2-overexpressing breast cancers.

Disclosures
The authors have no financial conflict of interest.

References

