Detection and Long-Term In Vivo Monitoring of Individual Tumor-Specific T Cell Clones in Patients with Metastatic Melanoma

Jaroslav Michalek, Ivo Kocak, Vuk Fait, Jan Zaloudik and Roman Hajek

J Immunol 2007; 178:6789-6795; doi: 10.4049/jimmunol.178.11.6789

http://www.jimmunol.org/content/178/11/6789

References This article cites 27 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/178/11/6789.full#ref-list-1

Subscription Information about subscribing to *The Journal of Immunology* is online at: http://jimmunol.org/subscription

Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts
Detection and Long-Term In Vivo Monitoring of Individual Tumor-Specific T Cell Clones in Patients with Metastatic Melanoma

Jaroslav Michalek, Ivo Kocak, Vuk Fait, Jan Zaloudik, and Roman Hajek

We investigated the presence of individual melanoma-specific T cell clones in patients with metastatic melanoma. Ten patients were examined for the presence of melanoma-reactive T cells using dendritic cells loaded with autologous tumor cells. Their specificity was tested using nonradioactive cytotoxicity test. Individual immunodominant T cell clones were identified by the clonotypic assay that combines in vitro cell culture, immunomagnetic sorting of activated IFN-γ+ T cells, TCRβ locus-anchored RT-PCR, and clonotypic quantitative PCR. All patients had detectable melanoma-reactive T cells in vitro. Expanded melanoma-reactive T cells demonstrated specific cytotoxic effect against autologous tumor cells in vitro. Three patients experienced objective responses, and their clinical responses were closely associated with the in vivo expansion and long-term persistence of individual CD8+ T cell clones with frequencies of 10^{-6} to 10^{-3} of all circulating CD8+ T cells. Five patients with progressive disease experienced no or temporary presence of circulating melanoma-reactive T cell clones. Thus, circulating immunodominant CD8+ T cell clones closely correlate with clinical outcome in patients with metastatic melanoma. The Journal of Immunology, 2007, 178: 6789–6795.

Adoptive immunotherapy using tumor-infiltrating lymphocytes, tumor-specific T cells, or tumor-specific vaccination strategies using dendritic cells (DC) loaded with tumor Ags demonstrated objective partial response in 30–50% of patients with metastatic melanoma (MM) and other solid tumors in the absence of serious vaccine toxicity (1–8). Such tumor regression largely exceeds the rate of spontaneous regression of melanoma metastases and it is very likely due to the effect of adoptive immunotherapy. Because most of the patients demonstrate only a short-term response in various adoptive immunotherapy trials, the optimal number of tumor-reactive T cells that are believed to be central for the anticancer effect in vivo has not been well defined yet. This may be caused in part by our limited methodological approaches to monitor Ag-specific T cells in vivo and in part by changing the repertoire of tumor-specific T cell clones that occur in vivo at various stages of cancer treatment. Relatively limited information exists about the frequency of naive T cell precursors that are able to recognize a given Ag in association with MHC class I or MHC class II. In humans, for example, the relative frequency of KLH-specific T cell clones closely correlate with clinical outcome in patients with metastatic melanoma.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 This work was supported by the Grant Agency of the Czech Republic (no. 301/04/1387).
2 Address correspondence and reprint requests to Dr. Jaroslav Michalek, Cell Immunotherapy Center, Masaryk University, Kamenice 5, Brno 61300, Czech Republic. E-mail address: jmichalek@fnbrno.cz.
3 Abbreviations used in this paper: DC, dendritic cell; MM, metastatic melanoma; GVHD, graft-vs-host disease; GVL, graft-vs-leukemia; qPCR, quantitative PCR.

Received for publication November 29, 2006. Accepted for publication March 19, 2007.

*Cell Immunotherapy Center, Masaryk University, Brno, Czech Republic; †Cancer Immunobiology Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; ‡Masaryk Memorial Oncology Institute, Brno, Czech Republic; and §Department of Hematooncology, University Hospital, Brno, Czech Republic.

Copyright © 2007 by The American Association of Immunologists, Inc. 0022-1767/07/$2.00

www.jimmunol.org
TABLE I. Characteristics of patients with metastatic melanoma

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Sex</th>
<th>Age at Diagnosis (years)</th>
<th>No. of Metastatic Sites</th>
<th>No. of Therapeutic Regimens</th>
<th>Treatment Response/Survival (mo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>46</td>
<td>1</td>
<td>1 (A)</td>
<td>sd/60</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>67</td>
<td>2</td>
<td>2 (D;A)</td>
<td>PR/22</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>58</td>
<td>3</td>
<td>1 (A)</td>
<td>PR/27</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>76</td>
<td>2</td>
<td>1 (A)</td>
<td>PD/12—died</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>64</td>
<td>5</td>
<td>2 (D;A)</td>
<td>PD/4—died</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>26</td>
<td>4</td>
<td>3 (D;AI;T)</td>
<td>PD/16—died</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>62</td>
<td>4</td>
<td>2 (TFCV;A)</td>
<td>PD/7—died</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>64</td>
<td>3</td>
<td>2 (A,F)</td>
<td>PD/8—died</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>54</td>
<td>1</td>
<td>2 (ALF)</td>
<td>MR/16</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>70</td>
<td>3</td>
<td>3 (D;ALT)</td>
<td>PD/7</td>
</tr>
</tbody>
</table>

*Therapeutic regimens: dacarbazine (D); IFN-α2a (A) and/or IL-2 (I); temozolomide (T), fotemustin (F), cisplatin (C), vinblastine (V) in combination or temozolomide alone or fotemustin alone. M, Male; F, female; sd, stable disease; PR, partial response; PD, progressive disease; MR, mixed response.

Materials and Methods

Patient characteristics and cell collection

Ten consecutive patients with MM (American Joint Committee on Cancer stage IV) were enrolled in the study and treated according to the Czech Oncology Society guidelines with dacarbazine or temozolomide, fotemustin, cisplatin, vinblastine, IFN-α, and IL-2 at the Masaryk Memorial Oncology Institute (Brno, Czech Republic) from March 2001 to September 2005. Fresh PBMC as well as tumor cells were obtained as a part of routine diagnostic procedures at least 3 wk after the chemotherapeutic regimen was given. Tumor cells were obtained from lymph node metastases at the time of lymph node biopsy. Basic patient characteristics are described in Table I. All patients provided signed informed consent forms prepared in agreement with the Declaration of Helsinki and approved by the local Ethical Committee. As controls, PBMC from healthy individuals were used. Tumor cells were obtained from histopathologically verified tumor tissue by cutting into small pieces (~2 mm), cultivated shortly before harvest, and frozen at −80°C. PBMC were isolated using gradient centrifugation on Histopaque 1077 (Sigma-Aldrich) and either used immediately or stored deeply frozen at −80°C.

Generation of melanoma-specific T cells

PBMC were incubated in 6-well culture plates in medium consisting of X-VIVO 10 (BioWhittaker) with 10% heat-inactivated human AB serum (Sigma-Aldrich), 80 U/ml DNase (Boehringer Mannheim), and 2 mM l-glutamine (Sigma-Aldrich) in an atmosphere of 5% CO₂ for 2 h. The non-adherent fraction was used for the generation of CTLs. After removing the nonadherent fraction, adherent cells were then cultured in the presence of 800 U/ml GM-CSF (Schering-Plough) and 100 ng/ml IL-4 (Sigma-Aldrich). On days 3 and 6, half of the culture was replaced with fresh complete medium and cytokines were added. Immature DC were obtained with typical morphological and phenotypic characteristics (CD80⁺, CD86⁺, CD81low; data not shown). Melanoma cells were irradiated (60 Gy) and used as Ag pulsed to immature DC at a ratio of 1:1 on day 7. DC maturation was induced on day 8 using 1,000 U/ml TNF-α (Bender MedSystems). CTLs were elicited from autologous PBMC using stimulation by Ag-loaded DC. Washed nonadherent lymphocyte-rich PBMC fraction was resuspended in medium consisting of X-VIVO 15, 50 mg/l gentamicin, 2 mM l-glutamine, 25 mg/ml HEPES (BioWhittaker), and 10% heat-inactivated human AB serum (Sigma-Aldrich). Ag-specific T cell priming was initiated by Ag-pulsed mature autologous DC added to primary cultures at a ratio (T cell:DC) of 20:1. Cells were incubated in tissue culture flasks at 37°C in 5% CO₂ for 7 days, and the restimulation with the same Ag-pulsed DC was performed in a ratio (T cell:DC) of 2:1 to obtain the highest yield of tumor-reactive T cells. Activated IFN-γ-producing tumor-reactive T cells were harvested 24 h after restimulation using the Secretion Assay Cell Enrichment and Detection Kit (MACS Reagents; Miltenyi Biotec) as described previously (16).

Flow cytometric analysis

Cells were washed with PBS and incubated with FITC-conjugated, PE-conjugated, or allophycocyanin-conjugated Abs for 15 min on ice. Cell surface phenotype was analyzed by flow cytometry using anti-CD4-FITC, anti-CD8-FITC, anti-CD3-APC (Immunotech), and anti-IFN-γ-PE mAbs (Miltenyi Biotec). After washing with cold PBS, cells were fixed with 1% formaldehyde (Sigma-Aldrich) and stored at −80°C. PBMC were isolated using gradient centrifugation on Histopaque 1077 (Sigma-Aldrich) and either used immediately or stored deeply frozen at −80°C.

FIGURE 1. Sorting melanoma-reactive IFN-γ⁺ T cells. Melanoma-reactive IFN-γ⁺ T cells were sorted immunomagnetically. Representative data from patient no. 3 are shown. A, The presorted cell population (gated on CD3⁺ cells) with the presence of both CD3⁺CD4⁺ and CD3⁺CD8⁺ T cells. B, Enrichment of CD3⁺IFN-γ⁺ T cells.
paraformaldehyde (Sigma-Aldrich) and analyzed using a Cytomics FC 500 flow cytometer (Beckman Coulter).

Tumor-specific reactivity of CTLs in vitro
Harvested IFN-γ-positive CTLs were cultured in complete medium containing X-VIVO 15 with 50 mg/l gentamicin, 2 mM L-glutamine, 25 mg/ml HEPES (BioWhittaker), 10% heat-inactivated human AB-serum (Sigma-Aldrich), and 500 U/ml IL-2 (Proleukin; Chiron) for 3–4 wk. PHA (5 μg/ml) (Sigma-Aldrich) was added on day 1. Cultures were usually started with 10⁵ melanoma-reactive IFN-γ-positive T cells, and when possible the single-cell culture was initiated in parallel. Complete culture medium was replaced twice weekly, and feeder cells (irradiated PBMC from healthy volunteers) were added once weekly starting at the second week of expansion. CTL assay with Calcein-AM (Molecular Probes) was performed as published elsewhere (17). This assay produces results comparable with a modified version of the SMART method (SMART Race cDNA Amplification Kit; BD Clontech) as described previously (15). TCRβ primers (5'-GCTTCTGATGGCTCAAACACAGCGACCTC-3') was used to obtain TCRβ PCR products from the 5' end to the start of the TCRβ region. The PCR product was ligated into the pGent-Easy vector (Promega) and used for Escherichia coli transformation. Clones were defined by the presence of at least two identical DNA sequences (clonotypes) of the TCRβ CDR3. For each PCR product, at least 50 colonies were selected, amplified by PCR with vector-specific primers, and used for direct sequencing to obtain TCRβ CDR3 sequences corresponding to sorted, activated melanoma-reactive T cells.

Identification of TCRβ CDR3 sequences
Clonotypic assay (14, 15) was used for identification of individual melanoma-specific T cell clones based on the analysis of unique DNA sequences of TCRβ CDR3. It was performed on sorted populations of activated IFN-γ melanoma-reactive T cells that were further separated immunomagnetically to CD8⁺CD4⁻ and CD3⁺CD4⁺ fraction by CD4-positive selection (Miltenyi Biotec). At least 97% of the CD3⁺CD4⁺ fractions were CD8⁺ T cells (data not shown). A total of 1 × 10⁶ IFN-γ T cells (either CD4⁺ or CD8⁺) was used for mRNA extraction (Oligotex Direct mRNA Mini Kit; Qiagen). Anchored RT-PCR was performed using

FIGURE 2. CTL assay. Expanded melanoma-reactive T cells demonstrate the specific cytotoxic effect to autologous melanoma tumor cells (Melanoma). Representative data from two different patients (nos. 1 and 3) are shown in A. In patient no. 3, single immunodominant CD8⁺ T cell clones (Clone 3A) demonstrated specific cytotoxicity to autologous melanoma cells but not to allogeneic melanoma cells from patient no. 1. Negligible response against autologous DCs (DC only) and no response to irrelevant Ags such as myeloma cell line (ARH77) and allogeneic PBMC (AlloPBMC) were noted. Abrogation of CTL activity by anti-human HLA class I Ab is shown in B.

In vivo quantitative monitoring of individual immunodominant T cell clones
The most immunodominant T cell clones were selected based on the frequency of their unique DNA sequence of the TCRβ CDR3 region (>10% of the same clonotype among all bacterial colonies sequenced). Clonetype-specific primers and probes were designed for the TCRβ CDR3 with Primer Express version 1.5. Clonotypic quantitative PCR (qPCR) was performed using an ABI PRISM 7700 on PBMC lysates or biopsy DNA as described previously (15). qPCR was a 50-cycle 2-step reaction using Platinum Taq (Invitrogen Life Technologies), with the annealing/extension phase at 65°C. A standard curve was plotted and template copies were calculated. Plasmid template for the qPCR standards was the same as that used in the sequencing of the CDR3. Each primer/probe set, at least 50 colonies were selected, amplified by PCR with vector-specific primers, and used for direct sequencing to obtain TCRβ CDR3 sequences corresponding to sorted, activated melanoma-reactive T cells.
Results

Patients with MM have circulating melanoma-reactive CD4+ and CD8+ T cells

DC loaded with irradiated autologous tumor cells were used for activation of T lymphocytes in 10 patients with MM. Patient characteristics are shown in Table I. After two rounds of stimulation, low frequencies of IFN-γ-producing CD4+ (0.9–3.2%, median 1.3%) and CD8+ (0.6–2.4%, median 1.0%) T cells were detected (Fig. 1A). Melanoma-reactive IFN-γ-producing T cells were immunomagnetically separated. The percentage of activated CD3+ IFN-γ+ T cells before magnetic separation was 1.8–4.4% (median 2.4%) and after the procedure reached 59.7–88.4% (median 76.2%) of all CD3+ T cells (Fig. 1B). Sorted CD3+ IFN-γ+ T cells (0.52–2.39 × 10⁶ cells) were further expanded for 3–4 wk until at least 10⁸ viable T cells were reached. After the expansion, 96.7–99.5% (median 99.0%) of cells were CD3+ T cells with a prevalence of 72.8–86.4% (median 81.1%) CD3+CD8+ cells, remaining T cells were CD4+.

Expanded melanoma-reactive CTLs demonstrate specific cytotoxic potential

A specificity of expanded melanoma-reactive CTLs was tested against the original autologous melanoma cells in five patients (nos. 1, 3, 4, 7, and 8) with sufficient numbers of remaining tumor cells. Unselected T cells showed specific cytotoxicity to autologous tumor cells in all five individuals, reaching 21–39% (median 26.2%) of all CD3+ T cells before magnetic separation and 59.7–88.4% (median 76.2%) of all CD3+ T cells after the procedure (Fig. 1B). Sorted CD3+ IFN-γ+ T cells from patient no. 3 recognized specifically autologous tumor cells (0.9–3.2%, median 1.0%) T cells were detected before magnetic separation and 59.7–88.4% (median 76.2%) of all CD3+ T cells after the procedure. A specificity of expanded melanoma-reactive CTLs was tested against irradiated autologous tumor cells. Unselected T cells showed specific cytotoxicity to autologous tumor cells in all five individuals, reaching 21–39% (median 26.2%) of all CD3+ T cells before magnetic separation and 59.7–88.4% (median 76.2%) of all CD3+ T cells after the procedure.

Identification of immunodominant T cell clones in vitro

We next analyzed the clonal composition of the sorted IFN-γ+ melanoma-reactive T cells and defined them by the unique sequences of their TCRβ CDR3 region in patient nos. 1–8. TCRβ loci of the sorted cells were amplified by template switch-anchored RT-PCR, as described in Materials and Methods, to ensure that all melanoma-reactive TCRβ sequences were amplified without bias to particular TCRβ V families. Thus, the melanoma-reactive clonotypes were represented in the anchored RT-PCR product with a relative frequency reflecting that found in the original sorted cell population. Sequencing of 50 bacterial colonies containing TCRβ CDR3 from each sort was performed to identify the number and frequency of individual T cell clones in each sorted population. We have previously demonstrated the specificity and sensitivity of this approach to analyze the clonality of HIV-, GHV-, and GVL-specific T cells (15, 17). We have also demonstrated that only highly immunodominant T cell clones (forming at least 10% of all in vitro-identified clonotypes) are also detectable in vivo (15, 17).

Table II. Characteristics of immunodominant T cell clones

<table>
<thead>
<tr>
<th>Patient</th>
<th>Clone No./Frequency</th>
<th>Clone frequencyb</th>
<th>TCRβ V region</th>
<th>Amino acid sequence of TCRβ CDR3 region</th>
<th>TCRβ J regionc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SD</td>
<td>1/A 21/54 V6-1</td>
<td>10%</td>
<td>EAGRY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 B</td>
<td>6/54 V20-1</td>
<td>10%</td>
<td>GHEQHN</td>
<td></td>
<td>J2-7</td>
</tr>
<tr>
<td>2 A</td>
<td>24/51 V12-4</td>
<td>10%</td>
<td>LKTPSYSSYN</td>
<td></td>
<td>J1-1</td>
</tr>
<tr>
<td>2 B</td>
<td>13/51 V11-1</td>
<td>10%</td>
<td>DTRKSSSP</td>
<td></td>
<td>J1-3</td>
</tr>
<tr>
<td>2 C</td>
<td>9/51 V6-2</td>
<td>10%</td>
<td>QAGDTV</td>
<td></td>
<td>J2-1</td>
</tr>
<tr>
<td>3 A</td>
<td>26/50 V4-2</td>
<td>10%</td>
<td>DTSGIKTXG</td>
<td></td>
<td>J2-2</td>
</tr>
<tr>
<td>4 A</td>
<td>9/55 V4-1</td>
<td>10%</td>
<td>EAFPYNLSSGN</td>
<td></td>
<td>J1-5</td>
</tr>
<tr>
<td>4 B</td>
<td>7/55 V5-5</td>
<td>10%</td>
<td>TRNQP</td>
<td></td>
<td>J1-1</td>
</tr>
<tr>
<td>4 C</td>
<td>6/55 V5-1</td>
<td>10%</td>
<td>GASPYN</td>
<td></td>
<td>J2-1</td>
</tr>
<tr>
<td>4 D</td>
<td>6/55 V20-1</td>
<td>10%</td>
<td>GVPVSYNT</td>
<td></td>
<td>J2-1</td>
</tr>
<tr>
<td>5 A</td>
<td>7/51 V17</td>
<td>10%</td>
<td>VVRTRG</td>
<td></td>
<td>J1-6</td>
</tr>
<tr>
<td>5 B</td>
<td>6/51 V3-1</td>
<td>10%</td>
<td>NPGILAY</td>
<td></td>
<td>J2-6</td>
</tr>
<tr>
<td>6 A</td>
<td>12/52 V28</td>
<td>10%</td>
<td>GEHQN</td>
<td></td>
<td>J2-1</td>
</tr>
<tr>
<td>6 B</td>
<td>8/52 V6-5</td>
<td>10%</td>
<td>RTSQINT</td>
<td></td>
<td>J1-4</td>
</tr>
<tr>
<td>6 C</td>
<td>6/52 V11-2</td>
<td>10%</td>
<td>PGISRTSYNS</td>
<td></td>
<td>J1-2</td>
</tr>
<tr>
<td>7 A</td>
<td>7/50 V5-4</td>
<td>10%</td>
<td>OTAYL</td>
<td></td>
<td>J2-1</td>
</tr>
<tr>
<td>8 A</td>
<td>8/51 V22-1</td>
<td>10%</td>
<td>VDTGSSSTT</td>
<td></td>
<td>J2-5</td>
</tr>
<tr>
<td>8 B</td>
<td>7/51 V10-2</td>
<td>10%</td>
<td>PSTIYF</td>
<td></td>
<td>J2-5</td>
</tr>
</tbody>
</table>

a The dominant T cell clones were defined as >10% frequency of their unique DNA sequence of the TCRβ CDR3 region among all bacterial colonies sequenced. sd, Stable disease; PR, partial response; PD, progressive disease.

b Clone frequency represents the frequency of unique DNA sequences of the TCRβ CDR3 region among all bacterial colonies sequenced.

c Sequences are according to the ImMunoGeneTics classification of TCRβ (http://imgt.cines.fr).

Tumor-specific CD3-CD8+ T cell clones

Immunodominant CD3-CD8+ T cell clones

Identification of immunodominant T cell clones in vitro

We next analyzed the clonal composition of the sorted IFN-γ+ melanoma-reactive T cells and defined them by the unique sequences of their TCRβ CDR3 region in patient nos. 1–8. TCRβ loci of the sorted cells were amplified by template switch-anchored RT-PCR, as described in Materials and Methods, to ensure that all melanoma-reactive TCRβ sequences were amplified without bias to particular TCRβ V families. Thus, the melanoma-reactive clonotypes were represented in the anchored RT-PCR product with a relative frequency reflecting that found in the original sorted cell population. Sequencing of 50 bacterial colonies containing TCRβ CDR3 from each sort was performed to identify the number and frequency of individual T cell clones in each sorted population. We have previously demonstrated the specificity and sensitivity of this approach to analyze the clonality of HIV-, GHV-, and GVL-specific T cells (15, 17). We have also demonstrated that only highly immunodominant T cell clones (forming at least 10% of all in vitro-identified clonotypes) are also detectable in vivo (15, 17). Table II shows the number of successfully sequenced bacterial colonies and the number of different melanoma-reactive T cell clones identified for each patient. The frequency and amino acid sequences of CDR3 regions that occurred in >10% of bacterial colonies in vitro are also shown. These are likely to represent the most “dominant” T cell clones and their presence in peripheral blood of melanoma patients were further studied in vivo. We observed considerable heterogeneity in the clonality of melanoma-reactive T cell clones among the patients. Notably, melanoma-reactive CD8+ T cells from patients nos. 4–8 who died due to rapid cancer progression were highly polyclonal, comprising between 28 and 35 (median 31) individual clonotypes, whereas melanoma-reactive CD8+ T cells from patients with at least some measurable clinical response were far more oligoclonal, comprising between 5 and 22 (median 9) individual clonotypes. Indeed, within these oligoclonal repertoires, only one or two CD8+ clones stood out as being clearly dominant in frequency for each patient with at least some treatment response. In one case (patient no. 3), we were able to...
identify a single immunodominant CD8+ T cell clone (Clone 3A, Table II) that represented 6 of 15 in vitro-expanded clones initiated from a single-cell culture. This particular clone was the same as the most immunodominant CD8+ T cell clone identified from the culture expanded in vitro from 10^6 melanoma-reactive IFN-γ+ T cells in a single well, and we were able to monitor this clone in vivo for 24 mo as described in the next section.

Melanoma-reactive CD4+ T cells were rather polyclonal in all patients regardless of their clinical response, comprising between 15 and 32 individual clonotypes with no clearly dominant clones (Table II, top).

Long-term persistence of immunodominant CD8+ T cell clones correlates with better clinical outcome

Having identified individual immunodominant CD8+ T cell clones in vitro, we next quantified the dominant clones at multiple time points after the patient was diagnosed with MM in peripheral blood. We have also examined the presence of these clones in tumor biopsies performed at the time of diagnosis and, in some cases, at the time of further metastatic spread of melanoma. We designed clone-specific PCR primers and probes specific for the TCRβ CDR3 region of each dominant melanoma-reactive clone, the sequence of which had been detected in at least 10% of bacterial colonies from the anchored RT-PCR product (Table II, bottom)—a total of 18 individual clones. We performed clonotypic quantitative real-time PCR on each sample from each recipient. Because a single T cell contains one productively rearranged TCRβ locus of a particular sequence, the copy number detected in each PCR was directly equivalent to the absolute number of melanoma-reactive clone cells present in the sample. Fig. 3 shows the levels of each immunodominant clone in the peripheral blood of seven patients characterized and numbered as shown in Table I. Notably, subjects 1–3 who are long-term survivors of MM have demonstrated a long-term persistence of the most dominant CD8+ T cell clones in vivo in their peripheral blood. In contrast, subjects 4–7 had only temporary or no (subject 8) detectable immunodominant CD8+ T cell clones in their peripheral blood. Quantification of absolute numbers of melanoma-reactive CD8+ T cell clones showed in general some variability reaching from the threshold levels of qPCR 0.000001–0.001 of CD8+ T cells in peripheral blood. It revealed a long-term persistence with minimal or mild expansion in long-term survivors but disappeared shortly after diagnosis of MM in nonsurvivors.

Because we did not see any dominant (comprising >10% of identical TCRβ CDR3 in DNA sequenced bacterial colonies in vitro) CD4+ T cell clones, we tested the presence of the two most frequent melanoma-reactive CD4+ T cell clones in their peripheral blood. Quantification of absolute numbers of melanoma-reactive CD8+ T cell clones showed in general some variability reaching from the threshold levels of qPCR 0.000001–0.001 of CD8+ T cells in peripheral blood. It revealed a long-term persistence with minimal or mild expansion in long-term survivors but disappeared shortly after diagnosis of MM in nonsurvivors.

Because we did not see any dominant (comprising >10% of identical TCRβ CDR3 in DNA sequenced bacterial colonies in vitro) CD4+ T cell clones, we tested the presence of the two most frequent melanoma-reactive CD4+ T cell clones detected in vitro in 5 of 55 (9.1%, subject 2) and 5 of 52 (9.6%, subject 4) bacterial colonies. None of these two CD4+ T cell clones were detected by the quantitative clone-specific PCR in vivo in the peripheral blood of any of the follow-up samples. Similarly, in the case of the two minor CD8+ T cell clones detected in vitro with frequencies 5 of 54 (9.3%, subject 1) and 5 of 51 (9.8%, subject 2), none of these clones was detected in vivo.

FIGURE 3. Long-term in vivo monitoring of immunodominant T cell clones. Individual immunodominant melanoma-reactive T cell clones identified in vitro at the time of metastatic dissemination (time 0) were quantitatively monitored in vivo in the peripheral blood of patient nos. 1–8. The number of clonotypic T cells is expressed as a percentage of all CD3+CD8+ T cells at the time of examination. No clonotypic T cells were detected in the peripheral blood of patient no. 8. The detection threshold for the clonotypic assay was 10^-9%.
Finally, we examined the presence of immunodominant CD8+ clones in original tumor-infiltrated lymph node biopsies by the clone-specific PCR and demonstrated the presence of these clones in all survivors (subjects 1–3) but only in three of six nonsurvivors studied (in subjects 4, 6, and 7). Subjects 6 and 8 were rebiopsied for a new metastatic involvement (12 and 6 mo, respectively, after their initial lymph node biopsy), but none of their immunodominant CD8+ T cell clones were detected. Subjects 9 and 10 were not studied by the clone-specific qPCR.

Discussion

By using DCs loaded with irradiated autologous tumor cells, we were able to identify circulating melanoma-reactive T cells in patients with MM. After stimulation, Ag-reactive T cells activate and produce IFN-γ. Both populations of CD4+ and CD8+ melanoma-reactive T cells were present. Such cells can be enriched immunomagnetically and further expanded in vitro (16, 19). To generate melanoma-specific CTLs for further study, we expand IFN-γ+ melanoma-reactive T cells that contain most of the immunodominant T cell clones. Despite the advanced stage of tumor spread, it was possible to expand functional melanoma-reactive T cells. For the most part, CD8+ CTLs were expanded and demonstrated a tumor-specific cytotoxic effect. Cytotoxicity against autologous melanoma cells was blocked by an anti-HLA class I Ab, indicating that the effect was most likely mediated through CD8+ HLA class I interaction. This finding confirms an important role for CD8+ CTLs in specific cytotoxicity that is in agreement with studies using a defined melanoma-specific peptide HLA class I-restricted Ag (9, 10).

In this study we identified in vitro, and quantified in vivo, individual immunodominant melanoma-reactive CD8+ T cell clones by developing an approach that combines in vitro cell culture, immunomagnetic sorting of activated IFN-γ+ T cells, TCRβ locus anchored RT-PCR, and clonotypic qPCR. In published studies, the identification of clonal T cell responses has been accomplished by flow cytometry using mAbs directed against TCRβ V regions, by CDR3 spectratyping, or by microplate hybridization assay. These studies were able to demonstrate that the TCRβ repertoire is highly variable; for example, monoclonal, oligoclonal, or polyclonal CTL responses can be induced depending on the tumor Ag used (20–22). Interestingly, either monoclonal or polyclonal responses can be elicited by the same peptide derived from a MAGE-3.A1 tumor-specific Ag in different individuals (21, 22). Yet, using these techniques does not enable detailed analysis of individual T cell clones because, in the case of flow cytometry, the series of Abs are not complete enough to analyze all TCRβ V region families; in the case of spectratyping and microplate hybridization assay, TCRβ V region families, but not individual T cell clones within these families, can be identified (23–25). Our approach obviated skewing of the clonotype population by prolonged stimulation and propagation. Furthermore, the anchored RT-PCR step used to amplify TCRβ CDR3 regions of all T cell clones present in the sorted population avoided the incomplete coverage of, and bias to, particular TCRβ V families conferred by using TCRβ V-specific PCR primers. This approach required no prior knowledge of either the specific target Ag or the MHC-restricting element, and when combined with qPCR, it allowed for the sensitive and specific quantification of melanoma-reactive T cell clones in the patient at any point and in any blood or tissue sample. In agreement with spectratyping and microplate hybridization studies (23–25), we were able to detect oligoclonal or monoclonal expansions of melanoma-reactive CD8+ T cell clones. The sensitivity of clone-specific qPCR reached the threshold of 1 × 10−8, thus allowing us to monitor low-frequency clones. It has been shown that the frequency of naïve T cells recognizing melanoma-specific peptide Ags such as MAGE-A3, gp100, NA17, LAGE-1, or MAGE-A10 exists in vivo with the frequencies of 1 × 10−7 to 1 × 10−8 (10). The Melan-A/MART-1.12R–36 is a remarkable exception with a very high naïve T cell frequency of ∼5 × 10−4 of CD8+ T cells (26). Recently, Speiser et al. (27) demonstrated that human CD8+ T cell clones specific to the Melan-A/MART-1 persisted for >1 year in a patient with melanoma, reaching up to 2.5% of the circulating CD8+ T cells. At the time of the melanoma-specific T cell clonal expansion, the disease stabilized but subsequently progressed with loss of Melan-A-specific T cell clones (27). In agreement with that study, we were able to demonstrate that the immunodominant CD8+ T cell clones in five patients with progressive disease were only temporarily present (or were undetectable in one case) in the circulation, and all of these patients subsequently died of their disease. Melanoma-reactive clones were also undetectable in tumor biopsies taken at the time of tumor progression shortly before death. In contrast, all three patients with objective responses had melanoma-reactive CD8+ T cells present in the circulation for 18–60 mo with frequencies of 10−6 to 10−3. These low-frequency CD8+ T cell clones can probably be expanded as a response to tumor growth or as a response to melanoma treatment. Such observation further confirms the importance of individual tumor-reactive CD8+ T cell clones in cancer survival. Thus, prolonged persistence of melanoma-reactive CD8+ T cell clones is associated with better survival.

Acknowledgment

We thank Dr. Ellen S. Vetetta for helpful discussions and critical review of the manuscript.

Disclosures

The authors have no financial conflict of interest.

References

virus infection contains individual peptide-specific CTL clones that have un-
Maintenance of large numbers of virus-specific CD8+ T cells in HIV-infected
emergence of specific T cell clones during the generation of GVHD. Blood 98:
664a.
Pre-transplant identification of graft-versus-host specific T-cell clone and quan-
titative monitoring after allogeneic stem cell transplantation. Lancet 361:
1183–1185.
D. C. Douek, and E. S. Vitetta. 2003. Definitive separation of graft-versus-leu-
kemia and graft-versus-host specific CD4+ T cell clones by virtue of their T cell
allogeneic myeloma-specific interferon-γ producing T cells for adoptive immu-
17. Douek, D. C., M. R. Betts, J. M. Brenchley, B. J. Hill, D. R. Ambrozak,
approach to the analysis of specificity, clonality, and frequency of HIV-specific
T cell responses reveals a potential mechanism for control of viral escape. J.
18. Douek, D. C., J. M. Brenchley, M. R. Betts, D. R. Ambrozak, B. J. Hill,
D. J. Schendel, and T. Blankenstein. 2001. Adoptive tumor therapy with T lym-
20. Pacesny, S., J. Banchereau, K. M. Witkowsk1, G. Suracino, J. Fay, and
precursors in patients with metastatic melanoma vaccinated with CD34+ progen-
21. Coulie, P. G., V. Karamikas, D. Colau, C. Lurquin, C. Landry, M. Marchand,
T. Dorval, V. Brichard, and T. Boon. 2001. A monoclonal cytotoxic T-lympho-
cyte response observed in a melanoma patient vaccinated with a tumor-specific
10290–10295.
22. Godelaine, D., J. Carrasco, S. Lucas, V. Karamikas, B. Schuler-Thurner,
P. G. Coulie, G. Schuler, T. Boon, and A. Van Pel. 2003. Polyclonal CTL re-
sponses observed in melanoma patients vaccinated with dendritic cells pulsed
2000. Longitudinal monitoring of immune reconstitution by CDR3 size spectra-
typing after T-cell-depleted allogeneic bone marrow transplant and the effect of
analysis of T cell repertoires spectratypes generated by multiplex polymerase
chain reaction and evaluated by radioactivity or fluorescence. Hum. Immunol.
44: 28–34.
25. Matsutani, T., T. Yoshioka, Y. Tsuruta, S. Iwagami, T. Toyosaki-Maeda,
2000. Restricted usage of T-cell receptor β-chain variable region (TCRBV) repertoire after human allo-
generates a large T cell pool recognizing a self-peptide in humans. J. Exp. Med.
195: 485–495.
27. Speiser, D. E., P. Baumgaertner, C. Barbey, V. Rubio-Godoy, A. Moulin,
monoclonal approach to characterize clonality and differentiation of human melanoma-
specific T cell responses: spontaneous priming and efficient boosting by vacci-